- 30 Aug, 2023 1 commit
-
-
Rick Edgecombe authored
0day reports a sparse warning: arch/x86/kernel/shstk.c:295:55: sparse: sparse: cast removes address space '__user' of expression The __user is in the wrong spot. Move it to right spot and make sparse happy. Closes: https://lore.kernel.org/oe-kbuild-all/202308222312.Jt4Tog5T-lkp@intel.com/Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230825014554.1769194-1-rick.p.edgecombe%40intel.com
-
- 17 Aug, 2023 1 commit
-
-
Josh Poimboeuf authored
The following warning is reported when frame pointers and kernel IBT are enabled: vmlinux.o: warning: objtool: ibt_selftest+0x11: sibling call from callable instruction with modified stack frame The problem is that objtool interprets the indirect branch in ibt_selftest() as a sibling call, and GCC inserts a (partial) frame pointer prologue before it: 0000 000000000003f550 <ibt_selftest>: 0000 3f550: f3 0f 1e fa endbr64 0004 3f554: e8 00 00 00 00 call 3f559 <ibt_selftest+0x9> 3f555: R_X86_64_PLT32 __fentry__-0x4 0009 3f559: 55 push %rbp 000a 3f55a: 48 8d 05 02 00 00 00 lea 0x2(%rip),%rax # 3f563 <ibt_selftest_ip> 0011 3f561: ff e0 jmp *%rax Note the inline asm is missing ASM_CALL_CONSTRAINT, so the 'push %rbp' happens before the indirect branch and the 'mov %rsp, %rbp' happens afterwards. Simplify the generated code and make it easier to understand for both tools and humans by moving the selftest to proper asm. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/99a7e16b97bda97bf0a04aa141d6241cd8a839a2.1680912949.git.jpoimboe@kernel.org
-
- 02 Aug, 2023 24 commits
-
-
Rick Edgecombe authored
The existing comment around handling vm_munmap() failure when freeing a shadow stack is wrong. It asserts that vm_munmap() returns -EINTR when the mmap lock is only being held for a short time, and so the caller should retry. Based on this wrong understanding, unmap_shadow_stack() will loop retrying vm_munmap(). What -EINTR actually means in this case is that the process is going away (see ae798783), and the whole MM will be torn down soon. In order to facilitate this, the task should not linger in the kernel, but actually do the opposite. So don't loop in this scenario, just abandon the operation and let exit_mmap() clean it up. Also, update the comment to reflect the actual meaning of the error code. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230706233858.446232-1-rick.p.edgecombe%40intel.com
-
Dave Hansen authored
x86 documentation moved. Fix the reference. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202307271956.IxoG9X0c-lkp@intel.com/
-
Rick Edgecombe authored
The comment around VM_SHADOW_STACK in mm.h refers to a lot of x86 specific details that don't belong in a cross arch file. Remove these out of core mm, and just leave the non-arch details. Since the comment includes some useful details that would be good to retain in the source somewhere, put the arch specifics parts in arch/x86/shstk.c near alloc_shstk(), where memory of this type is allocated. Include a reference to the existence of the x86 details near the VM_SHADOW_STACK definition mm.h. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/all/20230706233248.445713-1-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
CRIU and GDB need to get the current shadow stack and WRSS enablement status. This information is already available via /proc/pid/status, but this is inconvenient for CRIU because it involves parsing the text output in an area of the code where this is difficult. Provide a status arch_prctl(), ARCH_SHSTK_STATUS for retrieving the status. Have arg2 be a userspace address, and make the new arch_prctl simply copy the features out to userspace. Suggested-by: Mike Rapoport <rppt@kernel.org> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-43-rick.p.edgecombe%40intel.com
-
Mike Rapoport authored
Userspace loaders may lock features before a CRIU restore operation has the chance to set them to whatever state is required by the process being restored. Allow a way for CRIU to unlock features. Add it as an arch_prctl() like the other shadow stack operations, but restrict it being called by the ptrace arch_pctl() interface. [Merged into recent API changes, added commit log and docs] Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Hildenbrand <david@redhat.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-42-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Some applications (like GDB) would like to tweak shadow stack state via ptrace. This allows for existing functionality to continue to work for seized shadow stack applications. Provide a regset interface for manipulating the shadow stack pointer (SSP). There is already ptrace functionality for accessing xstate, but this does not include supervisor xfeatures. So there is not a completely clear place for where to put the shadow stack state. Adding it to the user xfeatures regset would complicate that code, as it currently shares logic with signals which should not have supervisor features. Don't add a general supervisor xfeature regset like the user one, because it is better to maintain flexibility for other supervisor xfeatures to define their own interface. For example, an xfeature may decide not to expose all of it's state to userspace, as is actually the case for shadow stack ptrace functionality. A lot of enum values remain to be used, so just put it in dedicated shadow stack regset. The only downside to not having a generic supervisor xfeature regset, is that apps need to be enlightened of any new supervisor xfeature exposed this way (i.e. they can't try to have generic save/restore logic). But maybe that is a good thing, because they have to think through each new xfeature instead of encountering issues when a new supervisor xfeature was added. By adding a shadow stack regset, it also has the effect of including the shadow stack state in a core dump, which could be useful for debugging. The shadow stack specific xstate includes the SSP, and the shadow stack and WRSS enablement status. Enabling shadow stack or WRSS in the kernel involves more than just flipping the bit. The kernel is made aware that it has to do extra things when cloning or handling signals. That logic is triggered off of separate feature enablement state kept in the task struct. So the flipping on HW shadow stack enforcement without notifying the kernel to change its behavior would severely limit what an application could do without crashing, and the results would depend on kernel internal implementation details. There is also no known use for controlling this state via ptrace today. So only expose the SSP, which is something that userspace already has indirect control over. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-41-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Add a simple selftest for exercising some shadow stack behavior: - map_shadow_stack syscall and pivot - Faulting in shadow stack memory - Handling shadow stack violations - GUP of shadow stack memory - mprotect() of shadow stack memory - Userfaultfd on shadow stack memory - 32 bit segmentation - Guard gap test - Ptrace test Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-40-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Setting CR4.CET is a prerequisite for utilizing any CET features, most of which also require setting MSRs. Kernel IBT already enables the CET CR4 bit when it detects IBT HW support and is configured with kernel IBT. However, future patches that enable userspace shadow stack support will need the bit set as well. So change the logic to enable it in either case. Clear MSR_IA32_U_CET in cet_disable() so that it can't live to see userspace in a new kexec-ed kernel that has CR4.CET set from kernel IBT. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-39-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The kernel now has the main shadow stack functionality to support applications. Wire in the WRSS and shadow stack enable/disable functions into the existing shadow stack API skeleton. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-38-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Applications and loaders can have logic to decide whether to enable shadow stack. They usually don't report whether shadow stack has been enabled or not, so there is no way to verify whether an application actually is protected by shadow stack. Add two lines in /proc/$PID/status to report enabled and locked features. Since, this involves referring to arch specific defines in asm/prctl.h, implement an arch breakout to emit the feature lines. [Switched to CET, added to commit log] Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-37-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
For the current shadow stack implementation, shadow stacks contents can't easily be provisioned with arbitrary data. This property helps apps protect themselves better, but also restricts any potential apps that may want to do exotic things at the expense of a little security. The x86 shadow stack feature introduces a new instruction, WRSS, which can be enabled to write directly to shadow stack memory from userspace. Allow it to get enabled via the prctl interface. Only enable the userspace WRSS instruction, which allows writes to userspace shadow stacks from userspace. Do not allow it to be enabled independently of shadow stack, as HW does not support using WRSS when shadow stack is disabled. >From a fault handler perspective, WRSS will behave very similar to WRUSS, which is treated like a user access from a #PF err code perspective. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-36-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
When operating with shadow stacks enabled, the kernel will automatically allocate shadow stacks for new threads, however in some cases userspace will need additional shadow stacks. The main example of this is the ucontext family of functions, which require userspace allocating and pivoting to userspace managed stacks. Unlike most other user memory permissions, shadow stacks need to be provisioned with special data in order to be useful. They need to be setup with a restore token so that userspace can pivot to them via the RSTORSSP instruction. But, the security design of shadow stacks is that they should not be written to except in limited circumstances. This presents a problem for userspace, as to how userspace can provision this special data, without allowing for the shadow stack to be generally writable. Previously, a new PROT_SHADOW_STACK was attempted, which could be mprotect()ed from RW permissions after the data was provisioned. This was found to not be secure enough, as other threads could write to the shadow stack during the writable window. The kernel can use a special instruction, WRUSS, to write directly to userspace shadow stacks. So the solution can be that memory can be mapped as shadow stack permissions from the beginning (never generally writable in userspace), and the kernel itself can write the restore token. First, a new madvise() flag was explored, which could operate on the PROT_SHADOW_STACK memory. This had a couple of downsides: 1. Extra checks were needed in mprotect() to prevent writable memory from ever becoming PROT_SHADOW_STACK. 2. Extra checks/vma state were needed in the new madvise() to prevent restore tokens being written into the middle of pre-used shadow stacks. It is ideal to prevent restore tokens being added at arbitrary locations, so the check was to make sure the shadow stack had never been written to. 3. It stood out from the rest of the madvise flags, as more of direct action than a hint at future desired behavior. So rather than repurpose two existing syscalls (mmap, madvise) that don't quite fit, just implement a new map_shadow_stack syscall to allow userspace to map and setup new shadow stacks in one step. While ucontext is the primary motivator, userspace may have other unforeseen reasons to setup its own shadow stacks using the WRSS instruction. Towards this provide a flag so that stacks can be optionally setup securely for the common case of ucontext without enabling WRSS. Or potentially have the kernel set up the shadow stack in some new way. The following example demonstrates how to create a new shadow stack with map_shadow_stack: void *shstk = map_shadow_stack(addr, stack_size, SHADOW_STACK_SET_TOKEN); Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-35-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The shadow stack signal frame is read by the kernel on sigreturn. It relies on shadow stack memory protections to prevent forgeries of this signal frame (which included the pre-signal SSP). This behavior helps userspace protect itself. However, using the INCSSP instruction userspace can adjust the SSP to 8 bytes beyond the end of a shadow stack. INCSSP performs shadow stack reads to make sure it doesn’t increment off of the shadow stack, but on the end position it actually reads 8 bytes below the new SSP. For the shadow stack HW operations, this situation (INCSSP off the end of a shadow stack by 8 bytes) would be fine. If the a RET is executed, the push to the shadow stack would fail to write to the shadow stack. If a CALL is executed, the SSP will be incremented back onto the stack and the return address will be written successfully to the very end. That is expected behavior around shadow stack underflow. However, the kernel doesn’t have a way to read shadow stack memory using shadow stack accesses. WRUSS can write to shadow stack memory with a shadow stack access which ensures the access is to shadow stack memory. But unfortunately for this case, there is no equivalent instruction for shadow stack reads. So when reading the shadow stack signal frames, the kernel currently assumes the SSP is pointing to the shadow stack and uses a normal read. The SSP pointing to shadow stack memory will be true in most cases, but as described above, in can be untrue by 8 bytes. So lookup the VMA of the shadow stack sigframe being read to verify it is shadow stack. Since the SSP can only be beyond the shadow stack by 8 bytes, and shadow stack memory is page aligned, this check only needs to be done when this type of relative position to a page boundary is encountered. So skip the extra work otherwise. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230613001108.3040476-34-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The shadow stack signal frame is read by the kernel on sigreturn. It relies on shadow stack memory protections to prevent forgeries of this signal frame (which included the pre-signal SSP). It also relies on the shadow stack signal frame to have bit 63 set. Since this bit would not be set via typical shadow stack operations, so the kernel can assume it was a value it placed there. However, in order to support 32 bit shadow stack, the INCSSPD instruction can increment the shadow stack by 4 bytes. In this case SSP might be pointing to a region spanning two 8 byte shadow stack frames. It could confuse the checks described above. Since the kernel only supports shadow stack in 64 bit, just check that the SSP is 8 byte aligned in the sigreturn path. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230613001108.3040476-33-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
When a signal is handled, the context is pushed to the stack before handling it. For shadow stacks, since the shadow stack only tracks return addresses, there isn't any state that needs to be pushed. However, there are still a few things that need to be done. These things are visible to userspace and which will be kernel ABI for shadow stacks. One is to make sure the restorer address is written to shadow stack, since the signal handler (if not changing ucontext) returns to the restorer, and the restorer calls sigreturn. So add the restorer on the shadow stack before handling the signal, so there is not a conflict when the signal handler returns to the restorer. The other thing to do is to place some type of checkable token on the thread's shadow stack before handling the signal and check it during sigreturn. This is an extra layer of protection to hamper attackers calling sigreturn manually as in SROP-like attacks. For this token the shadow stack data format defined earlier can be used. Have the data pushed be the previous SSP. In the future the sigreturn might want to return back to a different stack. Storing the SSP (instead of a restore offset or something) allows for future functionality that may want to restore to a different stack. So, when handling a signal push - the SSP pointing in the shadow stack data format - the restorer address below the restore token. In sigreturn, verify SSP is stored in the data format and pop the shadow stack. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-32-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Shadow stacks are normally written to via CALL/RET or specific CET instructions like RSTORSSP/SAVEPREVSSP. However, sometimes the kernel will need to write to the shadow stack directly using the ring-0 only WRUSS instruction. A shadow stack restore token marks a restore point of the shadow stack, and the address in a token must point directly above the token, which is within the same shadow stack. This is distinctively different from other pointers on the shadow stack, since those pointers point to executable code area. Introduce token setup and verify routines. Also introduce WRUSS, which is a kernel-mode instruction but writes directly to user shadow stack. In future patches that enable shadow stack to work with signals, the kernel will need something to denote the point in the stack where sigreturn may be called. This will prevent attackers calling sigreturn at arbitrary places in the stack, in order to help prevent SROP attacks. To do this, something that can only be written by the kernel needs to be placed on the shadow stack. This can be accomplished by setting bit 63 in the frame written to the shadow stack. Userspace return addresses can't have this bit set as it is in the kernel range. It also can't be a valid restore token. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-31-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
When a process is duplicated, but the child shares the address space with the parent, there is potential for the threads sharing a single stack to cause conflicts for each other. In the normal non-CET case this is handled in two ways. With regular CLONE_VM a new stack is provided by userspace such that the parent and child have different stacks. For vfork, the parent is suspended until the child exits. So as long as the child doesn't return from the vfork()/CLONE_VFORK calling function and sticks to a limited set of operations, the parent and child can share the same stack. For shadow stack, these scenarios present similar sharing problems. For the CLONE_VM case, the child and the parent must have separate shadow stacks. Instead of changing clone to take a shadow stack, have the kernel just allocate one and switch to it. Use stack_size passed from clone3() syscall for thread shadow stack size. A compat-mode thread shadow stack size is further reduced to 1/4. This allows more threads to run in a 32-bit address space. The clone() does not pass stack_size, which was added to clone3(). In that case, use RLIMIT_STACK size and cap to 4 GB. For shadow stack enabled vfork(), the parent and child can share the same shadow stack, like they can share a normal stack. Since the parent is suspended until the child terminates, the child will not interfere with the parent while executing as long as it doesn't return from the vfork() and overwrite up the shadow stack. The child can safely overwrite down the shadow stack, as the parent can just overwrite this later. So CET does not add any additional limitations for vfork(). Free the shadow stack on thread exit by doing it in mm_release(). Skip this when exiting a vfork() child since the stack is shared in the parent. During this operation, the shadow stack pointer of the new thread needs to be updated to point to the newly allocated shadow stack. Since the ability to do this is confined to the FPU subsystem, change fpu_clone() to take the new shadow stack pointer, and update it internally inside the FPU subsystem. This part was suggested by Thomas Gleixner. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-30-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Introduce basic shadow stack enabling/disabling/allocation routines. A task's shadow stack is allocated from memory with VM_SHADOW_STACK flag and has a fixed size of min(RLIMIT_STACK, 4GB). Keep the task's shadow stack address and size in thread_struct. This will be copied when cloning new threads, but needs to be cleared during exec, so add a function to do this. 32 bit shadow stack is not expected to have many users and it will complicate the signal implementation. So do not support IA32 emulation or x32. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-29-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
A control-protection fault is triggered when a control-flow transfer attempt violates Shadow Stack or Indirect Branch Tracking constraints. For example, the return address for a RET instruction differs from the copy on the shadow stack. There already exists a control-protection fault handler for handling kernel IBT faults. Refactor this fault handler into separate user and kernel handlers, like the page fault handler. Add a control-protection handler for usermode. To avoid ifdeffery, put them both in a new file cet.c, which is compiled in the case of either of the two CET features supported in the kernel: kernel IBT or user mode shadow stack. Move some static inline functions from traps.c into a header so they can be used in cet.c. Opportunistically fix a comment in the kernel IBT part of the fault handler that is on the end of the line instead of preceding it. Keep the same behavior for the kernel side of the fault handler, except for converting a BUG to a WARN in the case of a #CP happening when the feature is missing. This unifies the behavior with the new shadow stack code, and also prevents the kernel from crashing under this situation which is potentially recoverable. The control-protection fault handler works in a similar way as the general protection fault handler. It provides the si_code SEGV_CPERR to the signal handler. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-28-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Add three new arch_prctl() handles: - ARCH_SHSTK_ENABLE/DISABLE enables or disables the specified feature. Returns 0 on success or a negative value on error. - ARCH_SHSTK_LOCK prevents future disabling or enabling of the specified feature. Returns 0 on success or a negative value on error. The features are handled per-thread and inherited over fork(2)/clone(2), but reset on exec(). Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-27-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Just like user xfeatures, supervisor xfeatures can be active in the registers or present in the task FPU buffer. If the registers are active, the registers can be modified directly. If the registers are not active, the modification must be performed on the task FPU buffer. When the state is not active, the kernel could perform modifications directly to the buffer. But in order for it to do that, it needs to know where in the buffer the specific state it wants to modify is located. Doing this is not robust against optimizations that compact the FPU buffer, as each access would require computing where in the buffer it is. The easiest way to modify supervisor xfeature data is to force restore the registers and write directly to the MSRs. Often times this is just fine anyway as the registers need to be restored before returning to userspace. Do this for now, leaving buffer writing optimizations for the future. Add a new function fpregs_lock_and_load() that can simultaneously call fpregs_lock() and do this restore. Also perform some extra sanity checks in this function since this will be used in non-fpu focused code. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-26-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Shadow stack register state can be managed with XSAVE. The registers can logically be separated into two groups: * Registers controlling user-mode operation * Registers controlling kernel-mode operation The architecture has two new XSAVE state components: one for each group of those groups of registers. This lets an OS manage them separately if it chooses. Future patches for host userspace and KVM guests will only utilize the user-mode registers, so only configure XSAVE to save user-mode registers. This state will add 16 bytes to the xsave buffer size. Future patches will use the user-mode XSAVE area to save guest user-mode CET state. However, VMCS includes new fields for guest CET supervisor states. KVM can use these to save and restore guest supervisor state, so host supervisor XSAVE support is not required. Adding this exacerbates the already unwieldy if statement in check_xstate_against_struct() that handles warning about unimplemented xfeatures. So refactor these check's by having XCHECK_SZ() set a bool when it actually check's the xfeature. This ends up exceeding 80 chars, but was better on balance than other options explored. Pass the bool as pointer to make it clear that XCHECK_SZ() can change the variable. While configuring user-mode XSAVE, clarify kernel-mode registers are not managed by XSAVE by defining the xfeature in XFEATURE_MASK_SUPERVISOR_UNSUPPORTED, like is done for XFEATURE_MASK_PT. This serves more of a documentation as code purpose, and functionally, only enables a few safety checks. Both XSAVE state components are supervisor states, even the state controlling user-mode operation. This is a departure from earlier features like protection keys where the PKRU state is a normal user (non-supervisor) state. Having the user state be supervisor-managed ensures there is no direct, unprivileged access to it, making it harder for an attacker to subvert CET. To facilitate this privileged access, define the two user-mode CET MSRs, and the bits defined in those MSRs relevant to future shadow stack enablement patches. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-25-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Introduce a new document on Control-flow Enforcement Technology (CET). Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-24-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The x86 Control-flow Enforcement Technology (CET) feature includes a new type of memory called shadow stack. This shadow stack memory has some unusual properties, which requires some core mm changes to function properly. In userspace, shadow stack memory is writable only in very specific, controlled ways. However, since userspace can, even in the limited ways, modify shadow stack contents, the kernel treats it as writable memory. As a result, without additional work there would remain many ways for userspace to trigger the kernel to write arbitrary data to shadow stacks via get_user_pages(, FOLL_WRITE) based operations. To help userspace protect their shadow stacks, make this a little less exposed by blocking writable get_user_pages() operations for shadow stack VMAs. Still allow FOLL_FORCE to write through shadow stack protections, as it does for read-only protections. This is required for debugging use cases. [ dhansen: fix rebase goof, readd writable_file_mapping_allowed() hunk ] Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-23-rick.p.edgecombe%40intel.com
-
- 11 Jul, 2023 14 commits
-
-
Rick Edgecombe authored
If a VMA has the VM_SHADOW_STACK flag, it is shadow stack memory. So when it is made writable with pte_mkwrite(), it should create shadow stack memory, not conventionally writable memory. Now that all the places where shadow stack memory might be created pass a VMA into pte_mkwrite(), it can know when it should do this. So make pte_mkwrite() create shadow stack memory when the VMA has the VM_SHADOW_STACK flag. Do the same thing for pmd_mkwrite(). This requires referencing VM_SHADOW_STACK in these functions, which are currently defined in pgtable.h, however mm.h (where VM_SHADOW_STACK is located) can't be pulled in without causing problems for files that reference pgtable.h. So also move pte/pmd_mkwrite() into pgtable.c, where they can safely reference VM_SHADOW_STACK. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Deepak Gupta <debug@rivosinc.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-22-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The x86 Control-flow Enforcement Technology (CET) feature includes a new type of memory called shadow stack. This shadow stack memory has some unusual properties, which require some core mm changes to function properly. One of the properties is that the shadow stack pointer (SSP), which is a CPU register that points to the shadow stack like the stack pointer points to the stack, can't be pointing outside of the 32 bit address space when the CPU is executing in 32 bit mode. It is desirable to prevent executing in 32 bit mode when shadow stack is enabled because the kernel can't easily support 32 bit signals. On x86 it is possible to transition to 32 bit mode without any special interaction with the kernel, by doing a "far call" to a 32 bit segment. So the shadow stack implementation can use this address space behavior as a feature, by enforcing that shadow stack memory is always mapped outside of the 32 bit address space. This way userspace will trigger a general protection fault which will in turn trigger a segfault if it tries to transition to 32 bit mode with shadow stack enabled. This provides a clean error generating border for the user if they try attempt to do 32 bit mode shadow stack, rather than leave the kernel in a half working state for userspace to be surprised by. So to allow future shadow stack enabling patches to map shadow stacks out of the 32 bit address space, introduce MAP_ABOVE4G. The behavior is pretty much like MAP_32BIT, except that it has the opposite address range. The are a few differences though. If both MAP_32BIT and MAP_ABOVE4G are provided, the kernel will use the MAP_ABOVE4G behavior. Like MAP_32BIT, MAP_ABOVE4G is ignored in a 32 bit syscall. Since the default search behavior is top down, the normal kaslr base can be used for MAP_ABOVE4G. This is unlike MAP_32BIT which has to add its own randomization in the bottom up case. For MAP_32BIT, only the bottom up search path is used. For MAP_ABOVE4G both are potentially valid, so both are used. In the bottomup search path, the default behavior is already consistent with MAP_ABOVE4G since mmap base should be above 4GB. Without MAP_ABOVE4G, the shadow stack will already normally be above 4GB. So without introducing MAP_ABOVE4G, trying to transition to 32 bit mode with shadow stack enabled would usually segfault anyway. This is already pretty decent guard rails. But the addition of MAP_ABOVE4G is some small complexity spent to make it make it more complete. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-21-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The x86 Control-flow Enforcement Technology (CET) feature includes a new type of memory called shadow stack. This shadow stack memory has some unusual properties, which requires some core mm changes to function properly. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-20-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
When user shadow stack is in use, Write=0,Dirty=1 is treated by the CPU as shadow stack memory. So for shadow stack memory this bit combination is valid, but when Dirty=1,Write=1 (conventionally writable) memory is being write protected, the kernel has been taught to transition the Dirty=1 bit to SavedDirty=1, to avoid inadvertently creating shadow stack memory. It does this inside pte_wrprotect() because it knows the PTE is not intended to be a writable shadow stack entry, it is supposed to be write protected. However, when a PTE is created by a raw prot using mk_pte(), mk_pte() can't know whether to adjust Dirty=1 to SavedDirty=1. It can't distinguish between the caller intending to create a shadow stack PTE or needing the SavedDirty shift. The kernel has been updated to not do this, and so Write=0,Dirty=1 memory should only be created by the pte_mkfoo() helpers. Add a warning to make sure no new mk_pte() start doing this, like, for example, set_memory_rox() did. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-19-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The x86 Control-flow Enforcement Technology (CET) feature includes a new type of memory called shadow stack. This shadow stack memory has some unusual properties, which requires some core mm changes to function properly. One sharp edge is that PTEs that are both Write=0 and Dirty=1 are treated as shadow by the CPU, but this combination used to be created by the kernel on x86. Previous patches have changed the kernel to now avoid creating these PTEs unless they are for shadow stack memory. In case any missed corners of the kernel are still creating PTEs like this for non-shadow stack memory, and to catch any re-introductions of the logic, warn if any shadow stack PTEs (Write=0, Dirty=1) are found in non-shadow stack VMAs when they are being zapped. This won't catch transient cases but should have decent coverage. In order to check if a PTE is shadow stack in core mm code, add two arch breakouts arch_check_zapped_pte/pmd(). This will allow shadow stack specific code to be kept in arch/x86. Only do the check if shadow stack is supported by the CPU and configured because in rare cases older CPUs may write Dirty=1 to a Write=0 CPU on older CPUs. This check is handled in pte_shstk()/pmd_shstk(). Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-18-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The x86 Control-flow Enforcement Technology (CET) feature includes a new type of memory called shadow stack. This shadow stack memory has some unusual properties, which requires some core mm changes to function properly. The architecture of shadow stack constrains the ability of userspace to move the shadow stack pointer (SSP) in order to prevent corrupting or switching to other shadow stacks. The RSTORSSP instruction can move the SSP to different shadow stacks, but it requires a specially placed token in order to do this. However, the architecture does not prevent incrementing the stack pointer to wander onto an adjacent shadow stack. To prevent this in software, enforce guard pages at the beginning of shadow stack VMAs, such that there will always be a gap between adjacent shadow stacks. Make the gap big enough so that no userspace SSP changing operations (besides RSTORSSP), can move the SSP from one stack to the next. The SSP can be incremented or decremented by CALL, RET and INCSSP. CALL and RET can move the SSP by a maximum of 8 bytes, at which point the shadow stack would be accessed. The INCSSP instruction can also increment the shadow stack pointer. It is the shadow stack analog of an instruction like: addq $0x80, %rsp However, there is one important difference between an ADD on %rsp and INCSSP. In addition to modifying SSP, INCSSP also reads from the memory of the first and last elements that were "popped". It can be thought of as acting like this: READ_ONCE(ssp); // read+discard top element on stack ssp += nr_to_pop * 8; // move the shadow stack READ_ONCE(ssp-8); // read+discard last popped stack element The maximum distance INCSSP can move the SSP is 2040 bytes, before it would read the memory. Therefore, a single page gap will be enough to prevent any operation from shifting the SSP to an adjacent stack, since it would have to land in the gap at least once, causing a fault. This could be accomplished by using VM_GROWSDOWN, but this has a downside. The behavior would allow shadow stacks to grow, which is unneeded and adds a strange difference to how most regular stacks work. In the maple tree code, there is some logic for retrying the unmapped area search if a guard gap is violated. This retry should happen for shadow stack guard gap violations as well. This logic currently only checks for VM_GROWSDOWN for start gaps. Since shadow stacks also have a start gap as well, create an new define VM_STARTGAP_FLAGS to hold all the VM flag bits that have start gaps, and make mmap use it. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-17-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The CPU performs "shadow stack accesses" when it expects to encounter shadow stack mappings. These accesses can be implicit (via CALL/RET instructions) or explicit (instructions like WRSS). Shadow stack accesses to shadow-stack mappings can result in faults in normal, valid operation just like regular accesses to regular mappings. Shadow stacks need some of the same features like delayed allocation, swap and copy-on-write. The kernel needs to use faults to implement those features. The architecture has concepts of both shadow stack reads and shadow stack writes. Any shadow stack access to non-shadow stack memory will generate a fault with the shadow stack error code bit set. This means that, unlike normal write protection, the fault handler needs to create a type of memory that can be written to (with instructions that generate shadow stack writes), even to fulfill a read access. So in the case of COW memory, the COW needs to take place even with a shadow stack read. Otherwise the page will be left (shadow stack) writable in userspace. So to trigger the appropriate behavior, set FAULT_FLAG_WRITE for shadow stack accesses, even if the access was a shadow stack read. For the purpose of making this clearer, consider the following example. If a process has a shadow stack, and forks, the shadow stack PTEs will become read-only due to COW. If the CPU in one process performs a shadow stack read access to the shadow stack, for example executing a RET and causing the CPU to read the shadow stack copy of the return address, then in order for the fault to be resolved the PTE will need to be set with shadow stack permissions. But then the memory would be changeable from userspace (from CALL, RET, WRSS, etc). So this scenario needs to trigger COW, otherwise the shared page would be changeable from both processes. Shadow stack accesses can also result in errors, such as when a shadow stack overflows, or if a shadow stack access occurs to a non-shadow-stack mapping. Also, generate the errors for invalid shadow stack accesses. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-16-rick.p.edgecombe%40intel.com
-
Yu-cheng Yu authored
New hardware extensions implement support for shadow stack memory, such as x86 Control-flow Enforcement Technology (CET). Add a new VM flag to identify these areas, for example, to be used to properly indicate shadow stack PTEs to the hardware. Shadow stack VMA creation will be tightly controlled and limited to anonymous memory to make the implementation simpler and since that is all that is required. The solution will rely on pte_mkwrite() to create the shadow stack PTEs, so it will not be required for vm_get_page_prot() to learn how to create shadow stack memory. For this reason document that VM_SHADOW_STACK should not be mixed with VM_SHARED. Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Tested-by: Mark Brown <broonie@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-15-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
New processors that support Shadow Stack regard Write=0,Dirty=1 PTEs as shadow stack pages. In normal cases, it can be helpful to create Write=1 PTEs as also Dirty=1 if HW dirty tracking is not needed, because if the Dirty bit is not already set the CPU has to set Dirty=1 when the memory gets written to. This creates additional work for the CPU. So traditional wisdom was to simply set the Dirty bit whenever you didn't care about it. However, it was never really very helpful for read-only kernel memory. When CR4.CET=1 and IA32_S_CET.SH_STK_EN=1, some instructions can write to such supervisor memory. The kernel does not set IA32_S_CET.SH_STK_EN, so avoiding kernel Write=0,Dirty=1 memory is not strictly needed for any functional reason. But having Write=0,Dirty=1 kernel memory doesn't have any functional benefit either, so to reduce ambiguity between shadow stack and regular Write=0 pages, remove Dirty=1 from any kernel Write=0 PTEs. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-14-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The recently introduced _PAGE_SAVED_DIRTY should be used instead of the HW Dirty bit whenever a PTE is Write=0, in order to not inadvertently create shadow stack PTEs. Update pte_mk*() helpers to do this, and apply the same changes to pmd and pud. Since there is no x86 version of pte_mkwrite() to hold this arch specific logic, create one. Add it to x86/mm/pgtable.c instead of x86/asm/include/pgtable.h as future patches will require it to live in pgtable.c and it will make the diff easier for reviewers. Since CPUs without shadow stack support could create Write=0,Dirty=1 PTEs, only return true for pte_shstk() if the CPU also supports shadow stack. This will prevent these HW creates PTEs as showing as true for pte_write(). For pte_modify() this is a bit trickier. It takes a "raw" pgprot_t which was not necessarily created with any of the existing PTE bit helpers. That means that it can return a pte_t with Write=0,Dirty=1, a shadow stack PTE, when it did not intend to create one. Modify it to also move _PAGE_DIRTY to _PAGE_SAVED_DIRTY. To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid: 1. Marking Write=0 PTEs Dirty=1 2. Marking Dirty=1 PTEs Write=0 The first case cannot happen as the existing behavior of pte_modify() is to filter out any Dirty bit passed in newprot. Handle the second case by shifting _PAGE_DIRTY=1 to _PAGE_SAVED_DIRTY=1 if the PTE was write protected by the pte_modify() call. Apply the same changes to pmd_modify(). Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-13-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
When shadow stack is in use, Write=0,Dirty=1 PTE are preserved for shadow stack. Copy-on-write PTEs then have Write=0,SavedDirty=1. When a PTE goes from Write=1,Dirty=1 to Write=0,SavedDirty=1, it could become a transient shadow stack PTE in two cases: 1. Some processors can start a write but end up seeing a Write=0 PTE by the time they get to the Dirty bit, creating a transient shadow stack PTE. However, this will not occur on processors supporting shadow stack, and a TLB flush is not necessary. 2. When _PAGE_DIRTY is replaced with _PAGE_SAVED_DIRTY non-atomically, a transient shadow stack PTE can be created as a result. Prevent the second case when doing a write protection and Dirty->SavedDirty shift at the same time with a CMPXCHG loop. The first case Note, in the PAE case CMPXCHG will need to operate on 8 byte, but try_cmpxchg() will not use CMPXCHG8B, so it cannot operate on a full PAE PTE. However the exiting logic is not operating on a full 8 byte region either, and relies on the fact that the Write bit is in the first 4 bytes when doing the clear_bit(). Since both the Dirty, SavedDirty and Write bits are in the first 4 bytes, casting to a long will be similar to the existing behavior which also casts to a long. Dave Hansen, Jann Horn, Andy Lutomirski, and Peter Zijlstra provided many insights to the issue. Jann Horn provided the CMPXCHG solution. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-12-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
Some OSes have a greater dependence on software available bits in PTEs than Linux. That left the hardware architects looking for a way to represent a new memory type (shadow stack) within the existing bits. They chose to repurpose a lightly-used state: Write=0,Dirty=1. So in order to support shadow stack memory, Linux should avoid creating memory with this PTE bit combination unless it intends for it to be shadow stack. The reason it's lightly used is that Dirty=1 is normally set by HW _before_ a write. A write with a Write=0 PTE would typically only generate a fault, not set Dirty=1. Hardware can (rarely) both set Dirty=1 *and* generate the fault, resulting in a Write=0,Dirty=1 PTE. Hardware which supports shadow stacks will no longer exhibit this oddity. So that leaves Write=0,Dirty=1 PTEs created in software. To avoid inadvertently created shadow stack memory, in places where Linux normally creates Write=0,Dirty=1, it can use the software-defined _PAGE_SAVED_DIRTY in place of the hardware _PAGE_DIRTY. In other words, whenever Linux needs to create Write=0,Dirty=1, it instead creates Write=0,SavedDirty=1 except for shadow stack, which is Write=0,Dirty=1. There are six bits left available to software in the 64-bit PTE after consuming a bit for _PAGE_SAVED_DIRTY. For 32 bit, the same bit as _PAGE_BIT_UFFD_WP is used, since user fault fd is not supported on 32 bit. This leaves one unused software bit on 32 bit (_PAGE_BIT_SOFT_DIRTY, as this is also not supported on 32 bit). Implement only the infrastructure for _PAGE_SAVED_DIRTY. Changes to actually begin creating _PAGE_SAVED_DIRTY PTEs will follow once other pieces are in place. Since this SavedDirty shifting is done for all x86 CPUs, this leaves the possibility for the hardware oddity to still create Write=0,Dirty=1 PTEs in rare cases. Since these CPUs also don't support shadow stack, this will be harmless as it was before the introduction of SavedDirty. Implement the shifting logic to be branchless. Embed the logic of whether to do the shifting (including checking the Write bits) so that it can be called by future callers that would otherwise need additional branching logic. This efficiency allows the logic of when to do the shifting to be centralized, making the code easier to reason about. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-11-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
To prepare the introduction of _PAGE_SAVED_DIRTY, move pmd_write() and pud_write() up in the file, so that they can be used by other helpers below. No functional changes. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-10-rick.p.edgecombe%40intel.com
-
Rick Edgecombe authored
The Control-Flow Enforcement Technology contains two related features, one of which is Shadow Stacks. Future patches will utilize this feature for shadow stack support in KVM, so add a CPU feature flags for Shadow Stacks (CPUID.(EAX=7,ECX=0):ECX[bit 7]). To protect shadow stack state from malicious modification, the registers are only accessible in supervisor mode. This implementation context-switches the registers with XSAVES. Make X86_FEATURE_SHSTK depend on XSAVES. The shadow stack feature, enumerated by the CPUID bit described above, encompasses both supervisor and userspace support for shadow stack. In near future patches, only userspace shadow stack will be enabled. In expectation of future supervisor shadow stack support, create a software CPU capability to enumerate kernel utilization of userspace shadow stack support. This user shadow stack bit should depend on the HW "shstk" capability and that logic will be implemented in future patches. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-9-rick.p.edgecombe%40intel.com
-