- 14 Mar, 2015 40 commits
-
-
Quentin Casasnovas authored
commit dd9ef135 upstream. Improper arithmetics when calculting the address of the extended ref could lead to an out of bounds memory read and kernel panic. Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com> Reviewed-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Filipe Manana authored
commit 3a8b36f3 upstream. When using the fast file fsync code path we can miss the fact that new writes happened since the last file fsync and therefore return without waiting for the IO to finish and write the new extents to the fsync log. Here's an example scenario where the fsync will miss the fact that new file data exists that wasn't yet durably persisted: 1. fs_info->last_trans_committed == N - 1 and current transaction is transaction N (fs_info->generation == N); 2. do a buffered write; 3. fsync our inode, this clears our inode's full sync flag, starts an ordered extent and waits for it to complete - when it completes at btrfs_finish_ordered_io(), the inode's last_trans is set to the value N (via btrfs_update_inode_fallback -> btrfs_update_inode -> btrfs_set_inode_last_trans); 4. transaction N is committed, so fs_info->last_trans_committed is now set to the value N and fs_info->generation remains with the value N; 5. do another buffered write, when this happens btrfs_file_write_iter sets our inode's last_trans to the value N + 1 (that is fs_info->generation + 1 == N + 1); 6. transaction N + 1 is started and fs_info->generation now has the value N + 1; 7. transaction N + 1 is committed, so fs_info->last_trans_committed is set to the value N + 1; 8. fsync our inode - because it doesn't have the full sync flag set, we only start the ordered extent, we don't wait for it to complete (only in a later phase) therefore its last_trans field has the value N + 1 set previously by btrfs_file_write_iter(), and so we have: inode->last_trans <= fs_info->last_trans_committed (N + 1) (N + 1) Which made us not log the last buffered write and exit the fsync handler immediately, returning success (0) to user space and resulting in data loss after a crash. This can actually be triggered deterministically and the following excerpt from a testcase I made for xfstests triggers the issue. It moves a dummy file across directories and then fsyncs the old parent directory - this is just to trigger a transaction commit, so moving files around isn't directly related to the issue but it was chosen because running 'sync' for example does more than just committing the current transaction, as it flushes/waits for all file data to be persisted. The issue can also happen at random periods, since the transaction kthread periodicaly commits the current transaction (about every 30 seconds by default). The body of the test is: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our main test file 'foo', the one we check for data loss. # By doing an fsync against our file, it makes btrfs clear the 'needs_full_sync' # bit from its flags (btrfs inode specific flags). $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" \ -c "fsync" $SCRATCH_MNT/foo | _filter_xfs_io # Now create one other file and 2 directories. We will move this second file # from one directory to the other later because it forces btrfs to commit its # currently open transaction if we fsync the old parent directory. This is # necessary to trigger the data loss bug that affected btrfs. mkdir $SCRATCH_MNT/testdir_1 touch $SCRATCH_MNT/testdir_1/bar mkdir $SCRATCH_MNT/testdir_2 # Make sure everything is durably persisted. sync # Write more 8Kb of data to our file. $XFS_IO_PROG -c "pwrite -S 0xbb 8K 8K" $SCRATCH_MNT/foo | _filter_xfs_io # Move our 'bar' file into a new directory. mv $SCRATCH_MNT/testdir_1/bar $SCRATCH_MNT/testdir_2/bar # Fsync our first directory. Because it had a file moved into some other # directory, this made btrfs commit the currently open transaction. This is # a condition necessary to trigger the data loss bug. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir_1 # Now fsync our main test file. If the fsync succeeds, we expect the 8Kb of # data we wrote previously to be persisted and available if a crash happens. # This did not happen with btrfs, because of the transaction commit that # happened when we fsynced the parent directory. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Now check that all data we wrote before are available. echo "File content after log replay:" od -t x1 $SCRATCH_MNT/foo status=0 exit The expected golden output for the test, which is what we get with this fix applied (or when running against ext3/4 and xfs), is: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 8192/8192 bytes at offset 8192 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb * 0040000 Without this fix applied, the output shows the test file does not have the second 8Kb extent that we successfully fsynced: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 8192/8192 bytes at offset 8192 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 So fix this by skipping the fsync only if we're doing a full sync and if the inode's last_trans is <= fs_info->last_trans_committed, or if the inode is already in the log. Also remove setting the inode's last_trans in btrfs_file_write_iter since it's useless/unreliable. Also because btrfs_file_write_iter no longer sets inode->last_trans to fs_info->generation + 1, don't set last_trans to 0 if we bail out and don't bail out if last_trans is 0, otherwise something as simple as the following example wouldn't log the second write on the last fsync: 1. write to file 2. fsync file 3. fsync file |--> btrfs_inode_in_log() returns true and it set last_trans to 0 4. write to file |--> btrfs_file_write_iter() no longers sets last_trans, so it remained with a value of 0 5. fsync |--> inode->last_trans == 0, so it bails out without logging the second write A test case for xfstests will be sent soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Sterba authored
commit 1932b7be upstream. A block-local variable stores error code but btrfs_get_blocks_direct may not return it in the end as there's a ret defined in the function scope. Fixes: d187663e ("Btrfs: lock extents as we map them in DIO") Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Filipe Manana authored
commit 4d884fce upstream. We can have multiple fsync operations against the same file during the same transaction and they can collect the same ordered extents while they don't complete (still accessible from the inode's ordered tree). If this happens, those ordered extents will never get their reference counts decremented to 0, leading to memory leaks and inode leaks (an iput for an ordered extent's inode is scheduled only when the ordered extent's refcount drops to 0). The following sequence diagram explains this race: CPU 1 CPU 2 btrfs_sync_file() btrfs_sync_file() mutex_lock(inode->i_mutex) btrfs_log_inode() btrfs_get_logged_extents() --> collects ordered extent X --> increments ordered extent X's refcount btrfs_submit_logged_extents() mutex_unlock(inode->i_mutex) mutex_lock(inode->i_mutex) btrfs_sync_log() btrfs_wait_logged_extents() --> list_del_init(&ordered->log_list) btrfs_log_inode() btrfs_get_logged_extents() --> Adds ordered extent X to logged_list because at this point: list_empty(&ordered->log_list) && test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags) == 0 --> Increments ordered extent X's refcount --> check if ordered extent's io is finished or not, start it if necessary and wait for it to finish --> sets bit BTRFS_ORDERED_LOGGED on ordered extent X's flags and adds it to trans->ordered btrfs_sync_log() finishes btrfs_submit_logged_extents() btrfs_log_inode() finishes mutex_unlock(inode->i_mutex) btrfs_sync_file() finishes btrfs_sync_log() btrfs_wait_logged_extents() --> Sees ordered extent X has the bit BTRFS_ORDERED_LOGGED set in its flags --> X's refcount is untouched btrfs_sync_log() finishes btrfs_sync_file() finishes btrfs_commit_transaction() --> called by transaction kthread for e.g. btrfs_wait_pending_ordered() --> waits for ordered extent X to complete --> decrements ordered extent X's refcount by 1 only, corresponding to the increment done by the fsync task ran by CPU 1 In the scenario of the above diagram, after the transaction commit, the ordered extent will remain with a refcount of 1 forever, leaking the ordered extent structure and preventing the i_count of its inode from ever decreasing to 0, since the delayed iput is scheduled only when the ordered extent's refcount drops to 0, preventing the inode from ever being evicted by the VFS. Fix this by using the flag BTRFS_ORDERED_LOGGED differently. Use it to mean that an ordered extent is already being processed by an fsync call, which will attach it to the current transaction, preventing it from being collected by subsequent fsync operations against the same inode. This race was introduced with the following change (added in 3.19 and backported to stable 3.18 and 3.17): Btrfs: make sure logged extents complete in the current transaction V3 commit 50d9aa99 I ran into this issue while running xfstests/generic/113 in a loop, which failed about 1 out of 10 runs with the following warning in dmesg: [ 2612.440038] WARNING: CPU: 4 PID: 22057 at fs/btrfs/disk-io.c:3558 free_fs_root+0x36/0x133 [btrfs]() [ 2612.442810] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop processor parport_pc parport psmouse therma l_sys i2c_piix4 serio_raw pcspkr evdev microcode button i2c_core ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic virtio_pci ata_piix virtio_ring libata virtio flo ppy e1000 scsi_mod [last unloaded: btrfs] [ 2612.452711] CPU: 4 PID: 22057 Comm: umount Tainted: G W 3.19.0-rc5-btrfs-next-4+ #1 [ 2612.454921] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [ 2612.457709] 0000000000000009 ffff8801342c3c78 ffffffff8142425e ffff88023ec8f2d8 [ 2612.459829] 0000000000000000 ffff8801342c3cb8 ffffffff81045308 ffff880046460000 [ 2612.461564] ffffffffa036da56 ffff88003d07b000 ffff880046460000 ffff880046460068 [ 2612.463163] Call Trace: [ 2612.463719] [<ffffffff8142425e>] dump_stack+0x4c/0x65 [ 2612.464789] [<ffffffff81045308>] warn_slowpath_common+0xa1/0xbb [ 2612.466026] [<ffffffffa036da56>] ? free_fs_root+0x36/0x133 [btrfs] [ 2612.467247] [<ffffffff810453c5>] warn_slowpath_null+0x1a/0x1c [ 2612.468416] [<ffffffffa036da56>] free_fs_root+0x36/0x133 [btrfs] [ 2612.469625] [<ffffffffa036f2a7>] btrfs_drop_and_free_fs_root+0x93/0x9b [btrfs] [ 2612.471251] [<ffffffffa036f353>] btrfs_free_fs_roots+0xa4/0xd6 [btrfs] [ 2612.472536] [<ffffffff8142612e>] ? wait_for_completion+0x24/0x26 [ 2612.473742] [<ffffffffa0370bbc>] close_ctree+0x1f3/0x33c [btrfs] [ 2612.475477] [<ffffffff81059d1d>] ? destroy_workqueue+0x148/0x1ba [ 2612.476695] [<ffffffffa034e3da>] btrfs_put_super+0x19/0x1b [btrfs] [ 2612.477911] [<ffffffff81153e53>] generic_shutdown_super+0x73/0xef [ 2612.479106] [<ffffffff811540e2>] kill_anon_super+0x13/0x1e [ 2612.480226] [<ffffffffa034e1e3>] btrfs_kill_super+0x17/0x23 [btrfs] [ 2612.481471] [<ffffffff81154307>] deactivate_locked_super+0x3b/0x50 [ 2612.482686] [<ffffffff811547a7>] deactivate_super+0x3f/0x43 [ 2612.483791] [<ffffffff8116b3ed>] cleanup_mnt+0x59/0x78 [ 2612.484842] [<ffffffff8116b44c>] __cleanup_mnt+0x12/0x14 [ 2612.485900] [<ffffffff8105d019>] task_work_run+0x8f/0xbc [ 2612.486960] [<ffffffff810028d8>] do_notify_resume+0x5a/0x6b [ 2612.488083] [<ffffffff81236e5b>] ? trace_hardirqs_on_thunk+0x3a/0x3f [ 2612.489333] [<ffffffff8142a17f>] int_signal+0x12/0x17 [ 2612.490353] ---[ end trace 54a960a6bdcb8d93 ]--- [ 2612.557253] VFS: Busy inodes after unmount of sdb. Self-destruct in 5 seconds. Have a nice day... Kmemleak confirmed the ordered extent leak (and btrfs inode specific structures such as delayed nodes): $ cat /sys/kernel/debug/kmemleak unreferenced object 0xffff880154290db0 (size 576): comm "btrfsck", pid 21980, jiffies 4295542503 (age 1273.412s) hex dump (first 32 bytes): 01 40 00 00 01 00 00 00 b0 1d f1 4e 01 88 ff ff .@.........N.... 00 00 00 00 00 00 00 00 c8 0d 29 54 01 88 ff ff ..........)T.... backtrace: [<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a [<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83 [<ffffffff8122fb26>] __radix_tree_create+0x109/0x190 [<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac [<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs] [<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs] [<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs] [<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs] [<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs] [<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed [<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa [<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b [<ffffffff81429e92>] system_call_fastpath+0x12/0x17 [<ffffffffffffffff>] 0xffffffffffffffff unreferenced object 0xffff88014ef11db0 (size 576): comm "rm", pid 22009, jiffies 4295542593 (age 1273.052s) hex dump (first 32 bytes): 02 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 c8 1d f1 4e 01 88 ff ff ...........N.... backtrace: [<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a [<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83 [<ffffffff8122fb26>] __radix_tree_create+0x109/0x190 [<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac [<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs] [<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs] [<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs] [<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs] [<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs] [<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed [<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa [<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b [<ffffffff81429e92>] system_call_fastpath+0x12/0x17 [<ffffffffffffffff>] 0xffffffffffffffff unreferenced object 0xffff8800336feda8 (size 584): comm "aio-stress", pid 22031, jiffies 4295543006 (age 1271.400s) hex dump (first 32 bytes): 00 40 3e 00 00 00 00 00 00 00 8f 42 00 00 00 00 .@>........B.... 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00 ................ backtrace: [<ffffffff8114eb34>] create_object+0x172/0x29a [<ffffffff8141d790>] kmemleak_alloc+0x25/0x41 [<ffffffff81141ae6>] kmemleak_alloc_recursive.constprop.52+0x16/0x18 [<ffffffff81145288>] kmem_cache_alloc+0xf7/0x198 [<ffffffffa0389243>] __btrfs_add_ordered_extent+0x43/0x309 [btrfs] [<ffffffffa038968b>] btrfs_add_ordered_extent_dio+0x12/0x14 [btrfs] [<ffffffffa03810e2>] btrfs_get_blocks_direct+0x3ef/0x571 [btrfs] [<ffffffff81181349>] do_blockdev_direct_IO+0x62a/0xb47 [<ffffffff8118189a>] __blockdev_direct_IO+0x34/0x36 [<ffffffffa03776e5>] btrfs_direct_IO+0x16a/0x1e8 [btrfs] [<ffffffff81100373>] generic_file_direct_write+0xb8/0x12d [<ffffffffa038615c>] btrfs_file_write_iter+0x24b/0x42f [btrfs] [<ffffffff8118bb0d>] aio_run_iocb+0x2b7/0x32e [<ffffffff8118c99a>] do_io_submit+0x26e/0x2ff [<ffffffff8118ca3b>] SyS_io_submit+0x10/0x12 [<ffffffff81429e92>] system_call_fastpath+0x12/0x17 Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Alexander Usyskin authored
commit 6c15a851 upstream. Set the internal device state to to disabled after hardware reset in stop flow. This will cover cases when driver was not brought to disabled state because of an error and in stop flow we wish not to retry the reset. Signed-off-by: Alexander Usyskin <alexander.usyskin@intel.com> Signed-off-by: Tomas Winkler <tomas.winkler@intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Angelo Compagnucci authored
commit 9e128ced upstream. This patch fixes uncorrect order of mcp3422_scales table, the values was erroneously transposed. It removes also an unused array and a wrong comment. Signed-off-by: Angelo Compagnucci <angelo.compagnucci@gmail.com> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Urs Fässler authored
commit da019f59 upstream. When not using the "_optional" function, a dummy regulator is returned and the driver fails to initialize. Signed-off-by: Urs Fässler <urs.fassler@bytesatwork.ch> Acked-by: Lars-Peter Clausen <lars@metafoo.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kristina Martšenko authored
commit 89bb35e2 upstream. Using the touchscreen while running buffered capture results in the buffer reporting lots of wrong values, often just zeros. This is because we push readings to the buffer every time a touchscreen interrupt arrives, including when the buffer's own conversions have not yet finished. So let's only push to the buffer when its conversions are ready. Signed-off-by: Kristina Martšenko <kristina.martsenko@gmail.com> Reviewed-by: Marek Vasut <marex@denx.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kristina Martšenko authored
commit 6abe0300 upstream. Reading a channel through sysfs, or starting a buffered capture, can occasionally turn off the touchscreen. This is because the read_raw() and buffer preenable()/postdisable() callbacks unschedule current conversions on all channels. If a delay channel happens to schedule a touchscreen conversion at the same time, the conversion gets cancelled and the touchscreen sequence stops. This is probably related to this note from the reference manual: "If a delay group schedules channels to be sampled and a manual write to the schedule field in CTRL0 occurs while the block is discarding samples, the LRADC will switch to the new schedule and will not sample the channels that were previously scheduled. The time window for this to happen is very small and lasts only while the LRADC is discarding samples." So make the callbacks only unschedule conversions for the channels they use. This means channel 0 for read_raw() and channels 0-5 for the buffer (if the touchscreen is enabled). Since the touchscreen uses different channels (6 and 7), it no longer gets turned off. This is tested and fixes the issue on i.MX28, but hasn't been tested on i.MX23. Signed-off-by: Kristina Martšenko <kristina.martsenko@gmail.com> Reviewed-by: Marek Vasut <marex@denx.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kristina Martšenko authored
commit 86bf7f3e upstream. Reading a channel through sysfs, or starting a buffered capture, will currently turn off the touchscreen. This is because the read_raw() and buffer preenable()/postdisable() callbacks disable interrupts for all LRADC channels, including those the touchscreen uses. So make the callbacks only disable interrupts for the channels they use. This means channel 0 for read_raw() and channels 0-5 for the buffer (if the touchscreen is enabled). Since the touchscreen uses different channels (6 and 7), it no longer gets turned off. Note that only i.MX28 is affected by this issue, i.MX23 should be fine. Signed-off-by: Kristina Martšenko <kristina.martsenko@gmail.com> Reviewed-by: Marek Vasut <marex@denx.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Kristina Martšenko authored
commit f81197b8 upstream. The touchscreen was initially designed [1] to map all of its physical channels to one virtual channel, leaving buffered capture to use the remaining 7 virtual channels. When the touchscreen was reimplemented [2], it was made to use four virtual channels, which overlap and conflict with the channels the buffer uses. As a result, when the buffer is enabled, the touchscreen's virtual channels are remapped to whichever physical channels the buffer was configured with, causing the touchscreen to read those instead of the touch measurement channels. Effectively the touchscreen stops working. So here we separate the channels again, giving the touchscreen 2 virtual channels and the buffer 6. We can't give the touchscreen just 1 channel as before, as the current pressure calculation requires 2 channels to be read at the same time. This makes the touchscreen continue to work during buffered capture. It has been tested on i.MX28, but not on i.MX23. [1] 06ddd353 ("iio: mxs: Implement support for touchscreen") [2] dee05308 ("Staging/iio/adc/touchscreen/MXS: add interrupt driven touch detection") Signed-off-by: Kristina Martšenko <kristina.martsenko@gmail.com> Reviewed-by: Marek Vasut <marex@denx.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Rasmus Villemoes authored
commit 19e353f2 upstream. The intention is obviously to sign-extend a 12 bit quantity. But because of C's promotion rules, the assignment is equivalent to "val16 &= 0xfff;". Use the proper API for this. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: Lars-Peter Clausen <lars@metafoo.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Stefan Wahren authored
commit 03305e53 upstream. Since commit c8231a9a ("iio: mxs-lradc: compute temperature from channel 8 and 9") with the removal of adc channel 9 there is no 1-1 mapping in the channel spec. All hwmon channel values above 9 are accessible via there index minus one. So add a hidden iio channel 9 to fix this issue. Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com> Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com> Reviewed-by: Marek Vasut <marex@denx.de> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Quentin Casasnovas authored
commit 06c8173e upstream. Commit: f31a9f7c ("x86/xsaves: Use xsaves/xrstors to save and restore xsave area") introduced alternative instructions for XSAVES/XRSTORS and commit: adb9d526 ("x86/xsaves: Add xsaves and xrstors support for booting time") added support for the XSAVES/XRSTORS instructions at boot time. Unfortunately both failed to properly protect them against faulting: The 'xstate_fault' macro will use the closest label named '1' backward and that ends up in the .altinstr_replacement section rather than in .text. This means that the kernel will never find in the __ex_table the .text address where this instruction might fault, leading to serious problems if userspace manages to trigger the fault. Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com> Signed-off-by: Jamie Iles <jamie.iles@oracle.com> [ Improved the changelog, fixed some whitespace noise. ] Acked-by: Borislav Petkov <bp@alien8.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Allan Xavier <mr.a.xavier@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: adb9d526 ("x86/xsaves: Add xsaves and xrstors support for booting time") Fixes: f31a9f7c ("x86/xsaves: Use xsaves/xrstors to save and restore xsave area") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Andy Lutomirski authored
commit 956421fb upstream. 'ret_from_fork' checks TIF_IA32 to determine whether 'pt_regs' and the related state make sense for 'ret_from_sys_call'. This is entirely the wrong check. TS_COMPAT would make a little more sense, but there's really no point in keeping this optimization at all. This fixes a return to the wrong user CS if we came from int 0x80 in a 64-bit task. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/4710be56d76ef994ddf59087aad98c000fbab9a4.1424989793.git.luto@amacapital.net [ Backported from tip:x86/asm. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nicholas Bellinger authored
commit aa179935 upstream. This patch adds a check to sbc_parse_cdb() in order to detect when an LBA + sector vs. end-of-device calculation wraps when the LBA is sufficently large enough (eg: 0xFFFFFFFFFFFFFFFF). Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nicholas Bellinger authored
commit 8e575c50 upstream. This patch adds a check to sbc_setup_write_same() to verify the incoming WRITE_SAME LBA + number of blocks does not exceed past the end-of-device. Also check for potential LBA wrap-around as well. Reported-by: Bart Van Assche <bart.vanassche@sandisk.com> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nicholas Bellinger authored
commit f161d4b4 upstream. This patch addresses the original PR_APTPL_BUF_LEN = 8k limitiation for write-out of PR APTPL metadata that Martin has recently been running into. It changes core_scsi3_update_and_write_aptpl() to use vzalloc'ed memory instead of kzalloc, and increases the default hardcoded length to 256k. It also adds logic in core_scsi3_update_and_write_aptpl() to double the original length upon core_scsi3_update_aptpl_buf() failure, and retries until the vzalloc'ed buffer is large enough to accommodate the outgoing APTPL metadata. Reported-by: Martin Svec <martin.svec@zoner.cz> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Shobhit Kumar authored
commit d180d2bb upstream. As per the specififcation, the SB_DevFn is the PCI_DEVFN of the target device and not the source. So PCI_DEVFN(2,0) is not correct. Further the port ID should be enough to identify devices unless they are MFD. The SB_DevFn was intended to remove ambiguity in case of these MFD devices. For non MFD devices the recommendation for the target device IP was to ignore these fields, but not all of them followed the recommendation. Some like CCK ignore these fields and hence PCI_DEVFN(2, 0) works and so does PCI_DEVFN(0, 0) as it works for DPIO. The issue came to light because of GPIONC which was not getting programmed correctly with PCI_DEVFN(2, 0). It turned out that this did not follow the recommendation and expected 0 in this field. In general the recommendation is to use SB_DevFn as PCI_DEVFN(0, 0) for all devices except target PCI devices. Signed-off-by: Shobhit Kumar <shobhit.kumar@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Michał Winiarski authored
commit 460822b0 upstream. It's possible for invalidate_range_start mmu notifier callback to race against userptr object release. If the gem object was released prior to obtaining the spinlock in invalidate_range_start we're hitting null pointer dereference. Testcase: igt/gem_userptr_blits/stress-mm-invalidate-close Testcase: igt/gem_userptr_blits/stress-mm-invalidate-close-overlap Cc: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Michał Winiarski <michal.winiarski@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> [Jani: added code comment suggested by Chris] Signed-off-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Daniel Vetter authored
commit 0ca09685 upstream. Nothing in Bspec seems to indicate that we actually needs this, and it looks like can't work since by this point the pipe is off and so vblanks won't really happen any more. Note that Bspec mentions that it takes a vblank for this bit to change, but _only_ when enabling. Dropping this code quenches an annoying backtrace introduced by the more anal checking since commit 51e31d49 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 15 12:36:02 2014 +0200 drm/i915: Use generic vblank wait Note: This fixes the fallout from the above commit, but does not address the shortcomings of the IBX transcoder select workaround implementation discussed during review [1]. [1] http://mid.gmane.org/87y4o7usxf.fsf@intel.com Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=86095Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Chris Wilson authored
commit f0a1fb10 upstream. This looked like an odd regression from commit ec5cc0f9 Author: Chris Wilson <chris@chris-wilson.co.uk> Date: Thu Jun 12 10:28:55 2014 +0100 drm/i915: Restrict GPU boost to the RCS engine but in reality it undercovered a much older coherency bug. The issue that boosting the GPU frequency on the BCS ring was masking was that we could wake the CPU up after completion of a BCS batch and inspect memory prior to the write cache being fully evicted. In order to serialise the breadcrumb interrupt (and so ensure that the CPU's view of memory is coherent) we need to perform a post-sync operation in the MI_FLUSH_DW. v2: Fix all the MI_FLUSH_DW (bsd plus the duplication in execlists). Also fix the invalidate_domains mask in gen8_emit_flush() for ring != VCS. Testcase: gpuX-rcs-gpu-read-after-write Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Alex Deucher authored
commit 09b6e85f upstream. Missing parameter when fetching the real voltage values from atom. Fixes problems with dynamic clocking on certain boards. bug: https://bugs.freedesktop.org/show_bug.cgi?id=87457Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Alex Deucher authored
commit 66c2b84b upstream. Don't restrict it to just eDP panels. Some LVDS bridge chips require this. Fixes blank panels on resume on certain laptops. Noticed by mrnuke on IRC. bug: https://bugs.freedesktop.org/show_bug.cgi?id=42960Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christian König authored
commit a9c73a0e upstream. Emit the EOP twice to avoid cache flushing problems. Signed-off-by: Christian König <christian.koenig@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Alex Deucher authored
commit 410af8d7 upstream. Enable at init and disable on fini. Workaround for hardware problems. v2 (chk): extend commit message v3: add new function Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Christian König <christian.koenig@amd.com> (v2) Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Michel Dänzer authored
commit a53fa438 upstream. Doing so can cause things to become slow. Print a warning at compile time and an informative message at runtime in that case. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=88758Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Michel Dänzer <michel.daenzer@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Ung authored
commit 31f40f86 upstream. When copying a relocation from userspace, copy the correct target offset. Signed-off-by: David Ung <davidu@nvidia.com> Fixes: 961e3bea ("drm/tegra: Make job submission 64-bit safe") [treding@nvidia.com: provide a better commit message] Signed-off-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Hugh Dickins authored
commit ff59909a upstream. The vmstat interfaces are good at hiding negative counts (at least when CONFIG_SMP); but if you peer behind the curtain, you find that nr_isolated_anon and nr_isolated_file soon go negative, and grow ever more negative: so they can absorb larger and larger numbers of isolated pages, yet still appear to be zero. I'm happy to avoid a congestion_wait() when too_many_isolated() myself; but I guess it's there for a good reason, in which case we ought to get too_many_isolated() working again. The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case: putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot to call acct_isolated() to increment them. It is possible that the bug whcih this patch fixes could cause OOM kills when the system still has a lot of reclaimable page cache. Fixes: edc2ca61 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Grazvydas Ignotas authored
commit 9cb12d7b upstream. For whatever reason, generic_access_phys() only remaps one page, but actually allows to access arbitrary size. It's quite easy to trigger large reads, like printing out large structure with gdb, which leads to a crash. Fix it by remapping correct size. Fixes: 28b2ee20 ("access_process_vm device memory infrastructure") Signed-off-by: Grazvydas Ignotas <notasas@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Joonsoo Kim authored
commit 372549c2 upstream. What we want to check here is whether there is highorder freepage in buddy list of other migratetype in order to steal it without fragmentation. But, current code just checks cc->order which means allocation request order. So, this is wrong. Without this fix, non-movable synchronous compaction below pageblock order would not stopped until compaction is complete, because migratetype of most pageblocks are movable and high order freepage made by compaction is usually on movable type buddy list. There is some report related to this bug. See below link. http://www.spinics.net/lists/linux-mm/msg81666.html Although the issued system still has load spike comes from compaction, this makes that system completely stable and responsive according to his report. stress-highalloc test in mmtests with non movable order 7 allocation doesn't show any notable difference in allocation success rate, but, it shows more compaction success rate. Compaction success rate (Compaction success * 100 / Compaction stalls, %) 18.47 : 28.94 Fixes: 1fb3f8ca ("mm: compaction: capture a suitable high-order page immediately when it is made available") Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Roman Gushchin authored
commit 8138a67a upstream. I noticed that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d098 ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Roman Gushchin authored
commit 5703b087 upstream. I noticed, that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d098 ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. [akpm@linux-foundation.org: use min_t] Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Vlastimil Babka authored
commit 99592d59 upstream. When studying page stealing, I noticed some weird looking decisions in try_to_steal_freepages(). The first I assume is a bug (Patch 1), the following two patches were driven by evaluation. Testing was done with stress-highalloc of mmtests, using the mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how often page stealing occurs for individual migratetypes, and what migratetypes are used for fallbacks. Arguably, the worst case of page stealing is when UNMOVABLE allocation steals from MOVABLE pageblock. RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal, so the goal is to minimize these two cases. The evaluation of v2 wasn't always clear win and Joonsoo questioned the results. Here I used different baseline which includes RFC compaction improvements from [1]. I found that the compaction improvements reduce variability of stress-highalloc, so there's less noise in the data. First, let's look at stress-highalloc configured to do sync compaction, and how these patches reduce page stealing events during the test. First column is after fresh reboot, other two are reiterations of test without reboot. That was all accumulater over 5 re-iterations (so the benchmark was run 5x3 times with 5 fresh restarts). Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Page alloc extfrag event 10264225 8702233 10244125 Extfrag fragmenting 10263271 8701552 10243473 Extfrag fragmenting for unmovable 13595 17616 15960 Extfrag fragmenting unmovable placed with movable 7989 12193 8447 Extfrag fragmenting for reclaimable 658 1840 1817 Extfrag fragmenting reclaimable placed with movable 558 1677 1679 Extfrag fragmenting for movable 10249018 8682096 10225696 With Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Page alloc extfrag event 11834954 9877523 9774860 Extfrag fragmenting 11833993 9876880 9774245 Extfrag fragmenting for unmovable 7342 16129 11712 Extfrag fragmenting unmovable placed with movable 4191 10547 6270 Extfrag fragmenting for reclaimable 373 1130 923 Extfrag fragmenting reclaimable placed with movable 302 906 738 Extfrag fragmenting for movable 11826278 9859621 9761610 With Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Page alloc extfrag event 4725990 3668793 3807436 Extfrag fragmenting 4725104 3668252 3806898 Extfrag fragmenting for unmovable 6678 7974 7281 Extfrag fragmenting unmovable placed with movable 2051 3829 4017 Extfrag fragmenting for reclaimable 429 1208 1278 Extfrag fragmenting reclaimable placed with movable 369 976 1034 Extfrag fragmenting for movable 4717997 3659070 3798339 With Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Page alloc extfrag event 5016183 4700142 3850633 Extfrag fragmenting 5015325 4699613 3850072 Extfrag fragmenting for unmovable 1312 3154 3088 Extfrag fragmenting unmovable placed with movable 1115 2777 2714 Extfrag fragmenting for reclaimable 437 1193 1097 Extfrag fragmenting reclaimable placed with movable 330 969 879 Extfrag fragmenting for movable 5013576 4695266 3845887 In v2 we've seen apparent regression with Patch 1 for unmovable events, this is now gone, suggesting it was indeed noise. Here, each patch improves the situation for unmovable events. Reclaimable is improved by patch 1 and then either the same modulo noise, or perhaps sligtly worse - a small price for unmovable improvements, IMHO. The number of movable allocations falling back to other migratetypes is most noisy, but it's reduced to half at Patch 2 nevertheless. These are least critical as compaction can move them around. If we look at success rates, the patches don't affect them, that didn't change. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Success 1 Min 49.00 ( 0.00%) 42.00 ( 14.29%) 41.00 ( 16.33%) Success 1 Mean 51.00 ( 0.00%) 45.00 ( 11.76%) 42.60 ( 16.47%) Success 1 Max 55.00 ( 0.00%) 51.00 ( 7.27%) 46.00 ( 16.36%) Success 2 Min 53.00 ( 0.00%) 47.00 ( 11.32%) 44.00 ( 16.98%) Success 2 Mean 59.60 ( 0.00%) 50.80 ( 14.77%) 48.20 ( 19.13%) Success 2 Max 64.00 ( 0.00%) 56.00 ( 12.50%) 52.00 ( 18.75%) Success 3 Min 84.00 ( 0.00%) 82.00 ( 2.38%) 78.00 ( 7.14%) Success 3 Mean 85.60 ( 0.00%) 82.80 ( 3.27%) 79.40 ( 7.24%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Success 1 Min 49.00 ( 0.00%) 44.00 ( 10.20%) 44.00 ( 10.20%) Success 1 Mean 51.80 ( 0.00%) 46.00 ( 11.20%) 45.80 ( 11.58%) Success 1 Max 54.00 ( 0.00%) 49.00 ( 9.26%) 49.00 ( 9.26%) Success 2 Min 58.00 ( 0.00%) 49.00 ( 15.52%) 48.00 ( 17.24%) Success 2 Mean 60.40 ( 0.00%) 51.80 ( 14.24%) 50.80 ( 15.89%) Success 2 Max 63.00 ( 0.00%) 54.00 ( 14.29%) 55.00 ( 12.70%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 81.60 ( 4.00%) 79.80 ( 6.12%) Success 3 Max 86.00 ( 0.00%) 82.00 ( 4.65%) 82.00 ( 4.65%) Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Success 1 Min 50.00 ( 0.00%) 44.00 ( 12.00%) 39.00 ( 22.00%) Success 1 Mean 52.80 ( 0.00%) 45.60 ( 13.64%) 42.40 ( 19.70%) Success 1 Max 55.00 ( 0.00%) 46.00 ( 16.36%) 47.00 ( 14.55%) Success 2 Min 52.00 ( 0.00%) 48.00 ( 7.69%) 45.00 ( 13.46%) Success 2 Mean 53.40 ( 0.00%) 49.80 ( 6.74%) 48.80 ( 8.61%) Success 2 Max 57.00 ( 0.00%) 52.00 ( 8.77%) 52.00 ( 8.77%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 82.40 ( 3.06%) 79.60 ( 6.35%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Success 1 Min 46.00 ( 0.00%) 44.00 ( 4.35%) 42.00 ( 8.70%) Success 1 Mean 50.20 ( 0.00%) 45.60 ( 9.16%) 44.00 ( 12.35%) Success 1 Max 52.00 ( 0.00%) 47.00 ( 9.62%) 47.00 ( 9.62%) Success 2 Min 53.00 ( 0.00%) 49.00 ( 7.55%) 48.00 ( 9.43%) Success 2 Mean 55.80 ( 0.00%) 50.60 ( 9.32%) 49.00 ( 12.19%) Success 2 Max 59.00 ( 0.00%) 52.00 ( 11.86%) 51.00 ( 13.56%) Success 3 Min 84.00 ( 0.00%) 80.00 ( 4.76%) 79.00 ( 5.95%) Success 3 Mean 85.40 ( 0.00%) 81.60 ( 4.45%) 80.40 ( 5.85%) Success 3 Max 87.00 ( 0.00%) 83.00 ( 4.60%) 82.00 ( 5.75%) While there's no improvement here, I consider reduced fragmentation events to be worth on its own. Patch 2 also seems to reduce scanning for free pages, and migrations in compaction, suggesting it has somewhat less work to do: Patch 1: Compaction stalls 4153 3959 3978 Compaction success 1523 1441 1446 Compaction failures 2630 2517 2531 Page migrate success 4600827 4943120 5104348 Page migrate failure 19763 16656 17806 Compaction pages isolated 9597640 10305617 10653541 Compaction migrate scanned 77828948 86533283 87137064 Compaction free scanned 517758295 521312840 521462251 Compaction cost 5503 5932 6110 Patch 2: Compaction stalls 3800 3450 3518 Compaction success 1421 1316 1317 Compaction failures 2379 2134 2201 Page migrate success 4160421 4502708 4752148 Page migrate failure 19705 14340 14911 Compaction pages isolated 8731983 9382374 9910043 Compaction migrate scanned 98362797 96349194 98609686 Compaction free scanned 496512560 469502017 480442545 Compaction cost 5173 5526 5811 As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers of unmovable and reclaimable pageblocks. Configuring the benchmark to allocate like THP page fault (i.e. no sync compaction) gives much noisier results for iterations 2 and 3 after reboot. This is not so surprising given how [1] offers lower improvements in this scenario due to less restarts after deferred compaction which would change compaction pivot. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-thp-1 5-thp-2 5-thp-3 Page alloc extfrag event 8148965 6227815 6646741 Extfrag fragmenting 8147872 6227130 6646117 Extfrag fragmenting for unmovable 10324 12942 15975 Extfrag fragmenting unmovable placed with movable 5972 8495 10907 Extfrag fragmenting for reclaimable 601 1707 2210 Extfrag fragmenting reclaimable placed with movable 520 1570 2000 Extfrag fragmenting for movable 8136947 6212481 6627932 Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-thp-1 6-thp-2 6-thp-3 Page alloc extfrag event 8345457 7574471 7020419 Extfrag fragmenting 8343546 7573777 7019718 Extfrag fragmenting for unmovable 10256 18535 30716 Extfrag fragmenting unmovable placed with movable 6893 11726 22181 Extfrag fragmenting for reclaimable 465 1208 1023 Extfrag fragmenting reclaimable placed with movable 353 996 843 Extfrag fragmenting for movable 8332825 7554034 6987979 Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-thp-1 7-thp-2 7-thp-3 Page alloc extfrag event 3512847 3020756 2891625 Extfrag fragmenting 3511940 3020185 2891059 Extfrag fragmenting for unmovable 9017 6892 6191 Extfrag fragmenting unmovable placed with movable 1524 3053 2435 Extfrag fragmenting for reclaimable 445 1081 1160 Extfrag fragmenting reclaimable placed with movable 375 918 986 Extfrag fragmenting for movable 3502478 3012212 2883708 Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-thp-1 8-thp-2 8-thp-3 Page alloc extfrag event 3181699 3082881 2674164 Extfrag fragmenting 3180812 3082303 2673611 Extfrag fragmenting for unmovable 1201 4031 4040 Extfrag fragmenting unmovable placed with movable 974 3611 3645 Extfrag fragmenting for reclaimable 478 1165 1294 Extfrag fragmenting reclaimable placed with movable 387 985 1030 Extfrag fragmenting for movable 3179133 3077107 2668277 The improvements for first iteration are clear, the rest is much noisier and can appear like regression for Patch 1. Anyway, patch 2 rectifies it. Allocation success rates are again unaffected so there's no point in making this e-mail any longer. [1] http://marc.info/?l=linux-mm&m=142166196321125&w=2 This patch (of 3): When __rmqueue_fallback() is called to allocate a page of order X, it will find a page of order Y >= X of a fallback migratetype, which is different from the desired migratetype. With the help of try_to_steal_freepages(), it may change the migratetype (to the desired one) also of: 1) all currently free pages in the pageblock containing the fallback page 2) the fallback pageblock itself 3) buddy pages created by splitting the fallback page (when Y > X) These decisions take the order Y into account, as well as the desired migratetype, with the goal of preventing multiple fallback allocations that could e.g. distribute UNMOVABLE allocations among multiple pageblocks. Originally, decision for 1) has implied the decision for 3). Commit 47118af0 ("mm: mmzone: MIGRATE_CMA migration type added") changed that (probably unintentionally) so that the buddy pages in case 3) are always changed to the desired migratetype, except for CMA pageblocks. Commit fef903ef ("mm/page_allo.c: restructure free-page stealing code and fix a bug") did some refactoring and added a comment that the case of 3) is intended. Commit 0cbef29a ("mm: __rmqueue_fallback() should respect pageblock type") removed the comment and tried to restore the original behavior where 1) implies 3), but due to the previous refactoring, the result is instead that only 2) implies 3) - and the conditions for 2) are less frequently met than conditions for 1). This may increase fragmentation in situations where the code decides to steal all free pages from the pageblock (case 1)), but then gives back the buddy pages produced by splitting. This patch restores the original intended logic where 1) implies 3). During testing with stress-highalloc from mmtests, this has shown to decrease the number of events where UNMOVABLE and RECLAIMABLE allocations steal from MOVABLE pageblocks, which can lead to permanent fragmentation. In some cases it has increased the number of events when MOVABLE allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are fixable by sync compaction and thus less harmful. Note that evaluation has shown that the behavior introduced by 47118af0 for buddy pages in case 3) is actually even better than the original logic, so the following patch will introduce it properly once again. For stable backports of this patch it makes thus sense to only fix versions containing 0cbef29a. [iamjoonsoo.kim@lge.com: tracepoint fix] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Andrey Ryabinin authored
commit 3cd7645d upstream. Commit ed4d4902 ("mm, hugetlb: remove hugetlb_zero and hugetlb_infinity") replaced 'unsigned long hugetlb_zero' with 'int zero' leading to out-of-bounds access in proc_doulongvec_minmax(). Use '.extra1 = NULL' instead of '.extra1 = &zero'. Passing NULL is equivalent to passing minimal value, which is 0 for unsigned types. Fixes: ed4d4902 ("mm, hugetlb: remove hugetlb_zero and hugetlb_infinity") Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Suggested-by: Manfred Spraul <manfred@colorfullife.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Naoya Horiguchi authored
commit 9fbc1f63 upstream. If __unmap_hugepage_range() tries to unmap the address range over which hugepage migration is on the way, we get the wrong page because pte_page() doesn't work for migration entries. This patch simply clears the pte for migration entries as we do for hwpoison entries. Fixes: 290408d4 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Naoya Horiguchi authored
commit a8bda28d upstream. There is a race condition between hugepage migration and change_protection(), where hugetlb_change_protection() doesn't care about migration entries and wrongly overwrites them. That causes unexpected results like kernel crash. HWPoison entries also can cause the same problem. This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this function to do proper actions. Fixes: 290408d4 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Naoya Horiguchi authored
commit 0f792cf9 upstream. When running the test which causes the race as shown in the previous patch, we can hit the BUG "get_page() on refcount 0 page" in hugetlb_fault(). This race happens when pte turns into migration entry just after the first check of is_hugetlb_entry_migration() in hugetlb_fault() passed with false. To fix this, we need to check pte_present() again after huge_ptep_get(). This patch also reorders taking ptl and doing pte_page(), because pte_page() should be done in ptl. Due to this reordering, we need use trylock_page() in page != pagecache_page case to respect locking order. Fixes: 66aebce7 ("hugetlb: fix race condition in hugetlb_fault()") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jiri Pirko authored
[ Upstream commit 9215f437 ] Currently the list is traversed using rcu variant. That is not correct since dev_set_mac_address can be called which eventually calls rtmsg_ifinfo_build_skb and there, skb allocation can sleep. So fix this by remove the rcu usage here. Fixes: 3d249d4c "net: introduce ethernet teaming device" Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Lorenzo Colitti authored
[ Upstream commit 9145736d ] 1. For an IPv4 ping socket, ping_check_bind_addr does not check the family of the socket address that's passed in. Instead, make it behave like inet_bind, which enforces either that the address family is AF_INET, or that the family is AF_UNSPEC and the address is 0.0.0.0. 2. For an IPv6 ping socket, ping_check_bind_addr returns EINVAL if the socket family is not AF_INET6. Return EAFNOSUPPORT instead, for consistency with inet6_bind. 3. Make ping_v4_sendmsg and ping_v6_sendmsg return EAFNOSUPPORT instead of EINVAL if an incorrect socket address structure is passed in. 4. Make IPv6 ping sockets be IPv6-only. The code does not support IPv4, and it cannot easily be made to support IPv4 because the protocol numbers for ICMP and ICMPv6 are different. This makes connect(::ffff:192.0.2.1) fail with EAFNOSUPPORT instead of making the socket unusable. Among other things, this fixes an oops that can be triggered by: int s = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP); struct sockaddr_in6 sin6 = { .sin6_family = AF_INET6, .sin6_addr = in6addr_any, }; bind(s, (struct sockaddr *) &sin6, sizeof(sin6)); Change-Id: If06ca86d9f1e4593c0d6df174caca3487c57a241 Signed-off-by: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-