- 26 Oct, 2021 40 commits
-
-
Omar Sandoval authored
Attempting to defragment a Btrfs file containing a transparent huge page immediately deadlocks with the following stack trace: #0 context_switch (kernel/sched/core.c:4940:2) #1 __schedule (kernel/sched/core.c:6287:8) #2 schedule (kernel/sched/core.c:6366:3) #3 io_schedule (kernel/sched/core.c:8389:2) #4 wait_on_page_bit_common (mm/filemap.c:1356:4) #5 __lock_page (mm/filemap.c:1648:2) #6 lock_page (./include/linux/pagemap.h:625:3) #7 pagecache_get_page (mm/filemap.c:1910:4) #8 find_or_create_page (./include/linux/pagemap.h:420:9) #9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9) #10 defrag_one_range (fs/btrfs/ioctl.c:1326:14) #11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9) #12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9) #13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9) #14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10) #15 vfs_ioctl (fs/ioctl.c:51:10) #16 __do_sys_ioctl (fs/ioctl.c:874:11) #17 __se_sys_ioctl (fs/ioctl.c:860:1) #18 __x64_sys_ioctl (fs/ioctl.c:860:1) #19 do_syscall_x64 (arch/x86/entry/common.c:50:14) #20 do_syscall_64 (arch/x86/entry/common.c:80:7) #21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113) A huge page is represented by a compound page, which consists of a struct page for each PAGE_SIZE page within the huge page. The first struct page is the "head page", and the remaining are "tail pages". Defragmentation attempts to lock each page in the range. However, lock_page() on a tail page actually locks the corresponding head page. So, if defragmentation tries to lock more than one struct page in a compound page, it tries to lock the same head page twice and deadlocks with itself. Ideally, we should be able to defragment transparent huge pages. However, THP for filesystems is currently read-only, so a lot of code is not ready to use huge pages for I/O. For now, let's just return ETXTBUSY. This can be reproduced with the following on a kernel with CONFIG_READ_ONLY_THP_FOR_FS=y: $ cat create_thp_file.c #include <fcntl.h> #include <stdbool.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> static const char zeroes[1024 * 1024]; static const size_t FILE_SIZE = 2 * 1024 * 1024; int main(int argc, char **argv) { if (argc != 2) { fprintf(stderr, "usage: %s PATH\n", argv[0]); return EXIT_FAILURE; } int fd = creat(argv[1], 0777); if (fd == -1) { perror("creat"); return EXIT_FAILURE; } size_t written = 0; while (written < FILE_SIZE) { ssize_t ret = write(fd, zeroes, sizeof(zeroes) < FILE_SIZE - written ? sizeof(zeroes) : FILE_SIZE - written); if (ret < 0) { perror("write"); return EXIT_FAILURE; } written += ret; } close(fd); fd = open(argv[1], O_RDONLY); if (fd == -1) { perror("open"); return EXIT_FAILURE; } /* * Reserve some address space so that we can align the file mapping to * the huge page size. */ void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (placeholder_map == MAP_FAILED) { perror("mmap (placeholder)"); return EXIT_FAILURE; } void *aligned_address = (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1)); void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC, MAP_SHARED | MAP_FIXED, fd, 0); if (map == MAP_FAILED) { perror("mmap"); return EXIT_FAILURE; } if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) { perror("madvise"); return EXIT_FAILURE; } char *line = NULL; size_t line_capacity = 0; FILE *smaps_file = fopen("/proc/self/smaps", "r"); if (!smaps_file) { perror("fopen"); return EXIT_FAILURE; } for (;;) { for (size_t off = 0; off < FILE_SIZE; off += 4096) ((volatile char *)map)[off]; ssize_t ret; bool this_mapping = false; while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) { unsigned long start, end, huge; if (sscanf(line, "%lx-%lx", &start, &end) == 2) { this_mapping = (start <= (uintptr_t)map && (uintptr_t)map < end); } else if (this_mapping && sscanf(line, "FilePmdMapped: %ld", &huge) == 1 && huge > 0) { return EXIT_SUCCESS; } } sleep(6); rewind(smaps_file); fflush(smaps_file); } } $ ./create_thp_file huge $ btrfs fi defrag -czstd ./huge Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Commit 2efc459d ("sysfs: Add sysfs_emit and sysfs_emit_at to format sysfs out") merged in 5.10 introduced two new functions sysfs_emit() and sysfs_emit_at() which are aware of the PAGE_SIZE limit of the output buffer. Use the above two new functions instead of scnprintf() and snprintf() in various sysfs show(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
It's a common practice to avoid use sizeof(struct btrfs_super_block) (3531), but to use BTRFS_SUPER_INFO_SIZE (4096). The problem is that, sizeof(struct btrfs_super_block) doesn't match BTRFS_SUPER_INFO_SIZE from the very beginning. Furthermore, for all call sites except selftests, we always allocate BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason to use the smaller value, and it doesn't really save any space. So let's get rid of such confusing behavior, and unify those two values. This modification also adds a new static_assert() to verify the size, and moves the BTRFS_SUPER_INFO_* macros to the definition of btrfs_super_block for the static_assert(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Update the comments at btrfs_chunk_alloc() and do_chunk_alloc() that describe which cases can lead to a failure to allocate metadata and system space despite having previously reserved space. This adds one more reason that I previously forgot to mention. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd3712 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
Currently auto reclaim of unusable zones reclaims the block-groups in the order they have been added to the reclaim list. Change this to a greedy algorithm by sorting the list so we have the block-groups with the least amount of valid bytes reclaimed first. Note: we can't splice the block groups from reclaim_bgs to let the sort happen outside of the lock. The block groups can be still in use by other parts eg. via bg_list and we must hold unused_bgs_lock while processing them. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> [ write note and comment why we can't splice the list ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Just use the %pg format specifier in all the debug printks previously using it. Note that both bdevname and the %pg specifier never print a pathname, so the kbasename call wasn't needed to start with. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ adjust messages and indentation ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We are going to want to populate our device lookup args outside of any locks and then do the actual device lookup later, so add a helper to do this work and make btrfs_find_device_by_devspec() use this helper for now. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We have a lot of device lookup functions that all do something slightly different. Clean this up by adding a struct to hold the different lookup criteria, and then pass this around to btrfs_find_device() so it can do the proper matching based on the lookup criteria. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
There's a subtle case where if we're removing the seed device from a file system we need to free its private copy of the fs_devices. However we do not need to call close_fs_devices(), because at this point there are no devices left to close as we've closed the last one. The only thing that close_fs_devices() does is decrement ->opened, which should be 1. We want to avoid calling close_fs_devices() here because it has a lockdep_assert_held(&uuid_mutex), and we are going to stop holding the uuid_mutex in this path. So simply decrement the ->opened counter like we should, and then clean up like normal. Also add a comment explaining what we're doing here as I initially removed this code erroneously. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
A bug was was checking a wrong device count before we delete the struct btrfs_fs_devices in btrfs_rm_device(). To avoid future confusion and easy reference add a comment about the various device counts that we have in the struct btrfs_fs_devices. Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
For both sprout and seed fsids, btrfs_fs_devices::num_devices provides device count including missing btrfs_fs_devices::open_devices provides device count excluding missing We create a dummy struct btrfs_device for the missing device, so num_devices != open_devices when there is a missing device. In btrfs_rm_devices() we wrongly check for %cur_devices->open_devices before freeing the seed fs_devices. Instead we should check for %cur_devices->num_devices. Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
At replay_dir_deletes(), if find_dir_range() returns an error we break out of the main while loop and then assign a value of 0 (success) to the 'ret' variable, resulting in completely ignoring that an error happened. Fix that by jumping to the 'out' label when find_dir_range() returns an error (negative value). CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
The member btrfs_bio::logical is only initialized by two call sites: - btrfs_repair_one_sector() No corresponding site to utilize it. - btrfs_submit_direct() The corresponding site to utilize it is btrfs_check_read_dio_bio(). However for btrfs_check_read_dio_bio(), we can grab the file_offset from btrfs_dio_private::file_offset directly. Thus it turns out we don't really need that btrfs_bio::logical member at all. For btrfs_bio, the logical bytenr can be fetched from its bio->bi_iter.bi_sector directly. So let's just remove the member to save 8 bytes for structure btrfs_bio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
The naming of "logical_offset" can be confused with logical bytenr of the dio range. In fact it's file offset, and the naming "file_offset" is already widely used in all other sites. Just do the rename to avoid confusion. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Using local kmaps slightly reduces the chances to stray writes, and the bvec interface cleans up the code a little bit. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
btrfs_update_block_group() accounts for the number of bytes allocated or freed. Argument @alloc specifies whether the call is for alloc or free. Convert the argument @alloc type from int to bool. Reviewed-by: Su Yue <l@damenly.su> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Now that real_root is only used in ref-verify core gate it behind CONFIG_BTRFS_FS_REF_VERIFY ifdef. This shrinks the size of pending delayed refs by 8 bytes per ref, of which we can have many at any one time depending on intensity of the workload. Also change the comment about the member as it no longer deals with qgroups. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Instead of checking whether qgroup processing for a dealyed ref has to happen in the core of delayed ref, simply pull the check at init time of respective delayed ref structures. This eliminates the final use of real_root in delayed-ref core paving the way to making this member optional. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
In order to make 'real_root' used only in ref-verify it's required to have the necessary context to perform the same checks that this member is used for. So add 'mod_root' which will contain the root on behalf of which a delayed ref was created and a 'skip_group' parameter which will contain callsite-specific override of skip_qgroup. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
The real_root field is going to be used only by ref-verify tool so limit its use outside of it. Blocks belonging to the chunk root will always have it as an owner so the check is equivalent. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Both data and metadata delayed ref structures have fields named root/ref_root respectively. Those are somewhat cryptic and don't really convey the real meaning. In fact those roots are really the original owners of the respective block (i.e in case of a snapshot a data delayed ref will contain the original root that owns the given block). Rename those fields accordingly and adjust comments. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Error injection stressing uncovered a busy loop in our data reclaim loop. There are two cases here, one where we loop creating block groups until space_info->full is set, or in the main loop we will skip erroring out any tickets if space_info->full == 0. Unfortunately if we aborted the transaction then we will never allocate chunks or reclaim any space and thus never get ->full, and you'll see stack traces like this: watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [kworker/u4:4:139] CPU: 0 PID: 139 Comm: kworker/u4:4 Tainted: G W 5.13.0-rc1+ #328 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Workqueue: events_unbound btrfs_async_reclaim_data_space RIP: 0010:btrfs_join_transaction+0x12/0x20 RSP: 0018:ffffb2b780b77de0 EFLAGS: 00000246 RAX: ffffb2b781863d58 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000801 RSI: ffff987952b57400 RDI: ffff987940aa3000 RBP: ffff987954d55000 R08: 0000000000000001 R09: ffff98795539e8f0 R10: 000000000000000f R11: 000000000000000f R12: ffffffffffffffff R13: ffff987952b574c8 R14: ffff987952b57400 R15: 0000000000000008 FS: 0000000000000000(0000) GS:ffff9879bbc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0703da4000 CR3: 0000000113398004 CR4: 0000000000370ef0 Call Trace: flush_space+0x4a8/0x660 btrfs_async_reclaim_data_space+0x55/0x130 process_one_work+0x1e9/0x380 worker_thread+0x53/0x3e0 ? process_one_work+0x380/0x380 kthread+0x118/0x140 ? __kthread_bind_mask+0x60/0x60 ret_from_fork+0x1f/0x30 Fix this by checking to see if we have a btrfs fs error in either of the reclaim loops, and if so fail the tickets and bail. In addition to this, fix maybe_fail_all_tickets() to not try to grant tickets if we've aborted, simply fail everything. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We have a few flags that are inconsistently used to describe the fs in different states of failure. As of 5963ffca ("btrfs: always abort the transaction if we abort a trans handle") we will always set BTRFS_FS_STATE_ERROR if we abort, so we don't have to check both ABORTED and ERROR to see if things have gone wrong. Add a helper to check BTRFS_FS_STATE_ERROR and then convert all checkers of FS_STATE_ERROR to use the helper. The TRANS_ABORTED bit check was added in af722733 ("Btrfs: clean up resources during umount after trans is aborted") but is not actually specific. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Currently we will abort the transaction if we get a random error (like -EIO) while trying to remove the directory entries from the root log during rename. However since these are simply log tree related errors, we can mark the trans as needing a full commit. Then if the error was truly catastrophic we'll hit it during the normal commit and abort as appropriate. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
During inspection of the return path for replay I noticed that we don't actually abort the transaction if we get a failure during replay. This isn't a problem necessarily, as we properly return the error and will fail to mount. However we still leave this dangling transaction that could conceivably be committed without thinking there was an error. We were using btrfs_handle_fs_error() here, but that pre-dates the transaction abort code. Simply replace the btrfs_handle_fs_error() calls with transaction aborts, so we still know where exactly things went wrong, and add a few in some other un-handled error cases. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Kai Song authored
Fix memdup.cocci warning: fs/btrfs/zoned.c:1198:23-30: WARNING opportunity for kmemdup Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Kai Song <songkai01@inspur.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
For compressed write, we use a mechanism called async COW, which unlike regular run_delalloc_cow() or cow_file_range() will also unlock the first page. This mechanism allows us to continue handling next ranges, without waiting for the time consuming compression. But this has a problem for subpage case, as we could have the following delalloc range for a page: 0 32K 64K | |///////| |///////| \- A \- B In the above case, if we pass both ranges to cow_file_range_async(), both range A and range B will try to unlock the full page [0, 64K). And which one finishes later than the other one will try to do other page operations like end_page_writeback() on a unlocked page, triggering VM layer BUG_ON(). To make subpage compression work at least partially, here we add another restriction for it, only allow compression if the delalloc range is fully page aligned. By that, async extent is always ensured to unlock the first page exclusively, just like it used to be for regular sectorsize. In theory, we only need to make sure the delalloc range fully covers its first page, but the tail page will be locked anyway, blocking later writeback until the compression finishes. Thus here we choose to make sure the range is fully page aligned before doing the compression. In the future, we could optimize the situation by properly increasing subpage::writers number for the locked page, but that also means we need to change how we run delalloc range of page. (Instead of running each delalloc range we hit, we need to find and lock all delalloc ranges covering the page, then run each of them). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] With experimental subpage compression enabled, a simple fsstress can lead to self deadlock on page 720896: mkfs.btrfs -f -s 4k $dev > /dev/null mount $dev -o compress $mnt $fsstress -p 1 -n 100 -w -d $mnt -v -s 1625511156 [CAUSE] If we have a file layout looks like below: 0 32K 64K 96K 128K |//| |///////////////| 4K Then we run delalloc range for the inode, it will: - Call find_lock_delalloc_range() with @delalloc_start = 0 Then we got a delalloc range [0, 4K). This range will be COWed. - Call find_lock_delalloc_range() again with @delalloc_start = 4K Since find_lock_delalloc_range() never cares whether the range is still inside page range [0, 64K), it will return range [64K, 128K). This range meets the condition for subpage compression, will go through async COW path. And async COW path will return @page_started. But that @page_started is now for range [64K, 128K), not for range [0, 64K). - writepage_dellloc() returned 1 for page [0, 64K) Thus page [0, 64K) will not be unlocked, nor its page dirty status will be cleared. Next time when we try to lock page [0, 64K) we will deadlock, as there is no one to release page [0, 64K). This problem will never happen for regular page size as one page only contains one sector. After the first find_lock_delalloc_range() call, the @delalloc_end will go beyond @page_end no matter if we found a delalloc range or not Thus this bug only happens for subpage, as now we need multiple runs to exhaust the delalloc range of a page. [FIX] Fix the problem by ensuring the delalloc range we ran at least started inside @locked_page. So that we will never get incorrect @page_started. And to prevent such problem from happening again: - Make find_lock_delalloc_range() return false if the found range is beyond @end value passed in. Since @end will be utilized now, add an ASSERT() to ensure we pass correct @end into find_lock_delalloc_range(). This also means, for selftests we needs to populate @end before calling find_lock_delalloc_range(). - New ASSERT() in find_lock_delalloc_range() Now we will make sure the @start/@end passed in at least covers part of the page. - New ASSERT() in run_delalloc_range() To make sure the range at least starts inside @locked page. - Use @delalloc_start as proper cursor, while @delalloc_end is always reset to @page_end. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There are several call sites of extent_clear_unlock_delalloc() which get @locked_page = NULL. So that extent_clear_unlock_delalloc() will try to call process_one_page() to unlock every page even the first page is not locked by btrfs_page_start_writer_lock(). This will trigger an ASSERT() in btrfs_subpage_end_and_test_writer() as previously we require every page passed to btrfs_subpage_end_and_test_writer() to be locked by btrfs_page_start_writer_lock(). But compression path doesn't go that way. Thankfully it's not hard to distinguish page locked by lock_page() and btrfs_page_start_writer_lock(). So do the check in btrfs_subpage_end_and_test_writer() so now it can handle both cases well. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Pages passed to __extent_writepage() are always locked, but they may be locked by different functions. There are two types of locked page for __extent_writepage(): - Page locked by plain lock_page() It should not have any subpage::writers count. Can be unlocked by unlock_page(). This is the most common locked page for __extent_writepage() called inside extent_write_cache_pages() or extent_write_full_page(). Rarer cases include the @locked_page from extent_write_locked_range(). - Page locked by lock_delalloc_pages() There is only one caller, all pages except @locked_page for extent_write_locked_range(). In this case, we have to call subpage helper to handle the case. So here we introduce a helper, btrfs_page_unlock_writer(), to allow __extent_writepage() to unlock different locked pages. And since for all other callers of __extent_writepage() their pages are ensured to be locked by lock_page(), also add an extra check for epd::extent_locked to unlock such pages directly. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There are several problems in lzo_compress_pages() preventing it from being subpage compatible: - No page offset is calculated when reading from inode pages For subpage case, we could have @start which is not aligned to PAGE_SIZE. Thus the destination where we read data from must take offset in page into consideration. - The padding for segment header is bound to PAGE_SIZE This means, for subpage case we can skip several corners where on x86 machines we need to add padding zeros. The rework will: - Update the comment to replace "page" with "sector" - Introduce a new helper, copy_compressed_data_to_page(), to do the copy So that we don't need to bother page switching for both input and output. Now in lzo_compress_pages() we only care about page switching for input, while in copy_compressed_data_to_page() we only care about the page switching for output. - Only one main cursor For lzo_compress_pages() we use @cur_in as main cursor. It will be the file offset we are currently at. All other helper variables will be only declared inside the loop. For copy_compressed_data_to_page() it's similar, we will have @cur_out at the main cursor, which records how many bytes are in the output. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Introduce a new helper, submit_uncompressed_range(), for async cow cases where we fallback to COW. There are some new updates introduced to the helper: - Proper locked_page detection It's possible that the async_extent range doesn't cover the locked page. In that case we shouldn't unlock the locked page. In the new helper, we will ensure that we only unlock the locked page when: * The locked page covers part of the async_extent range * The locked page is not unlocked by cow_file_range() nor extent_write_locked_range() This also means extra comments are added focusing on the page locking. - Add extra comment on some rare parameter used. We use @unlock_page = 0 for cow_file_range(), where only two call sites doing the same thing, including the new helper. It's definitely worth some comments. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There are two sites are not subpage compatible yet for extent_write_locked_range(): - How @nr_pages are calculated For subpage we can have the following range with 64K page size: 0 32K 64K 96K 128K | |////|/////| | In that case, although 96K - 32K == 64K, thus it looks like one page is enough, but the range spans two pages, not one. Fix it by doing proper round_up() and round_down() to calculate @nr_pages. Also add some extra ASSERT()s to ensure the range passed in is already aligned. - How the page end is calculated Currently we just use cur + PAGE_SIZE - 1 to calculate the page end. Which can't handle the above range layout, and will trigger ASSERT() in btrfs_writepage_endio_finish_ordered(), as the range is no longer covered by the page range. Fix it by taking page end into consideration. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
In end_compressed_writeback() we just clear the full page writeback. For subpage case, if there are two delalloc ranges in the same page, the 2nd range will trigger a BUG_ON() as the page writeback is already cleared by previous range. Fix it by using btrfs_page_clamp_clear_writeback() helper. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There is a WARN_ON() checking if @start is aligned to PAGE_SIZE, not sectorsize, which will cause false alert for subpage. Fix it to check against sectorsize. Furthermore: - Use ASSERT() to do the check So that in the future we may skip the check for production build - Also check alignment for @len Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
In function compress_file_range(), when the compression is finished, the function just rounds up @total_in to PAGE_SIZE. This is fine for regular sectorsize == PAGE_SIZE case, but not for subpage. Just change the ALIGN(, PAGE_SIZE) to round_up(, sectorsize) so that both regular sectorsize and subpage sectorsize will be happy. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There are several cleanups for extent_write_locked_range(), most of them are pure cleanups, but with some preparation for future subpage support. - Add a proper comment for which call sites are suitable Unlike regular synchronized extent write back, if async COW or zoned COW happens, we have all pages in the range still locked. Thus for those (only) two call sites, we need this function to submit page content into bios and submit them. - Remove @mode parameter All the existing two call sites pass WB_SYNC_ALL. No need for @mode parameter. - Better error handling Currently if we hit an error during the page iteration loop, we overwrite @ret, causing only the last error can be recorded. Here we add @found_error and @first_error variable to record if we hit any error, and the first error we hit. So the first error won't get lost. - Don't reuse @start as the cursor We reuse the parameter @start as the cursor to iterate the range, not a big problem, but since we're here, introduce a proper @cur as the cursor. - Remove impossible branch Since all pages are still locked after the ordered extent is inserted, there is no way that pages can get its dirty bit cleared. Remove the branch where page is not dirty and replace it with an ASSERT(). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
We have a big chunk of code inside a while() loop, with tons of strange jumps for error handling. It's definitely not to the code standard of today. Move the code into a new function, submit_one_async_extent(). Since we're here, also do the following changes: - Comment style change To follow the current scheme - Don't fallback to non-compressed write then hitting ENOSPC If we hit ENOSPC for compressed write, how could we reserve more space for non-compressed write? Thus we go error path directly. This removes the retry: label. - Add more comment for super long parameter list Explain which parameter is for, so we don't need to check the prototype. - Move the error handling to submit_one_async_extent() Thus no strange code like: out_free: ... goto again; Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-