- 31 Jan, 2019 40 commits
-
-
Juergen Gross authored
commit 867cefb4 upstream. Commit f94c8d11 ("sched/clock, x86/tsc: Rework the x86 'unstable' sched_clock() interface") broke Xen guest time handling across migration: [ 187.249951] Freezing user space processes ... (elapsed 0.001 seconds) done. [ 187.251137] OOM killer disabled. [ 187.251137] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done. [ 187.252299] suspending xenstore... [ 187.266987] xen:grant_table: Grant tables using version 1 layout [18446743811.706476] OOM killer enabled. [18446743811.706478] Restarting tasks ... done. [18446743811.720505] Setting capacity to 16777216 Fix that by setting xen_sched_clock_offset at resume time to ensure a monotonic clock value. [boris: replaced pr_info() with pr_info_once() in xen_callback_vector() to avoid printing with incorrect timestamp during resume (as we haven't re-adjusted the clock yet)] Fixes: f94c8d11 ("sched/clock, x86/tsc: Rework the x86 'unstable' sched_clock() interface") Cc: <stable@vger.kernel.org> # 4.11 Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: Juergen Gross <jgross@suse.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Tatashin authored
commit 38669ba2 upstream. It is expected for sched_clock() to output data from 0, when system boots. Add an offset xen_sched_clock_offset (similarly how it is done in other hypervisors i.e. kvm_sched_clock_offset) to count sched_clock() from 0, when time is first initialized. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: steven.sistare@oracle.com Cc: daniel.m.jordan@oracle.com Cc: linux@armlinux.org.uk Cc: schwidefsky@de.ibm.com Cc: heiko.carstens@de.ibm.com Cc: john.stultz@linaro.org Cc: sboyd@codeaurora.org Cc: hpa@zytor.com Cc: douly.fnst@cn.fujitsu.com Cc: peterz@infradead.org Cc: prarit@redhat.com Cc: feng.tang@intel.com Cc: pmladek@suse.com Cc: gnomes@lxorguk.ukuu.org.uk Cc: linux-s390@vger.kernel.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: pbonzini@redhat.com Link: https://lkml.kernel.org/r/20180719205545.16512-14-pasha.tatashin@oracle.comSigned-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joao Martins authored
commit 2229f70b upstream. In order to support pvclock vdso on xen we need to setup the time info page for vcpu 0 and register the page with Xen using the VCPUOP_register_vcpu_time_memory_area hypercall. This hypercall will also forcefully update the pvti which will set some of the necessary flags for vdso. Afterwards we check if it supports the PVCLOCK_TSC_STABLE_BIT flag which is mandatory for having vdso/vsyscall support. And if so, it will set the cpu 0 pvti that will be later on used when mapping the vdso image. The xen headers are also updated to include the new hypercall for registering the secondary vcpu_time_info struct. Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Reviewed-by: Juergen Gross <jgross@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joao Martins authored
commit b8888080 upstream. Specifically check for PVCLOCK_TSC_STABLE_BIT and if this bit is set, then set it too on pvclock flags. This allows Xen clocksource to use it and thus speeding up xen_clocksource_read() callers (i.e. sched_clock()) Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joao Martins authored
commit 9f08890a upstream. Right now there is only a pvclock_pvti_cpu0_va() which is defined on kvmclock since: commit dac16fba ("x86/vdso: Get pvclock data from the vvar VMA instead of the fixmap") The only user of this interface so far is kvm. This commit adds a setter function for the pvti page and moves pvclock_pvti_cpu0_va to pvclock, which is a more generic place to have it; and would allow other PV clocksources to use it, such as Xen. While moving pvclock_pvti_cpu0_va into pvclock, rename also this function to pvclock_get_pvti_cpu0_va (including its call sites) to be symmetric with the setter (pvclock_set_pvti_cpu0_va). Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Acked-by: Andy Lutomirski <luto@kernel.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joao Martins authored
commit 001f60e1 upstream. In the event of moving pvclock_pvti_cpu0_va() definition to common pvclock code, this function would return a value on non KVM guests. Later on this would fail with a GPF on ptp_kvm_init when running on a Xen guest. Therefore, ptp_kvm_init() should check whether it is running in a KVM guest. Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mathias Nyman authored
commit f0680904 upstream. Ensure that the shared_hcd pointer is valid when calling usb_put_hcd() The shared_hcd is removed and freed in xhci by first calling usb_remove_hcd(xhci->shared_hcd), and later usb_put_hcd(xhci->shared_hcd) Afer commit fe190ed0 ("xhci: Do not halt the host until both HCD have disconnected their devices.") the shared_hcd was never properly put as xhci->shared_hcd was set to NULL before usb_put_hcd(xhci->shared_hcd) was called. shared_hcd (USB3) is removed before primary hcd (USB2). While removing the primary hcd we might need to handle xhci interrupts to cleanly remove last USB2 devices, therefore we need to set xhci->shared_hcd to NULL before removing the primary hcd to let xhci interrupt handler know shared_hcd is no longer available. xhci-plat.c, xhci-histb.c and xhci-mtk first create both their hcd's before adding them. so to keep the correct reverse removal order use a temporary shared_hcd variable for them. For more details see commit 4ac53087 ("usb: xhci: plat: Create both HCDs before adding them") Fixes: fe190ed0 ("xhci: Do not halt the host until both HCD have disconnected their devices.") Cc: Joel Stanley <joel@jms.id.au> Cc: Chunfeng Yun <chunfeng.yun@mediatek.com> Cc: Thierry Reding <treding@nvidia.com> Cc: Jianguo Sun <sunjianguo1@huawei.com> Cc: <stable@vger.kernel.org> Reported-by: Jack Pham <jackp@codeaurora.org> Tested-by: Jack Pham <jackp@codeaurora.org> Tested-by: Peter Chen <peter.chen@nxp.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jack Pham authored
commit bd674224 upstream. OUT endpoint requests may somtimes have this flag set when preparing to be submitted to HW indicating that there is an additional TRB chained to the request for alignment purposes. If that request is removed before the controller can execute the transfer (e.g. ep_dequeue/ep_disable), the request will not go through the dwc3_gadget_ep_cleanup_completed_request() handler and will not have its needs_extra_trb flag cleared when dwc3_gadget_giveback() is called. This same request could be later requeued for a new transfer that does not require an extra TRB and if it is successfully completed, the cleanup and TRB reclamation will incorrectly process the additional TRB which belongs to the next request, and incorrectly advances the TRB dequeue pointer, thereby messing up calculation of the next requeust's actual/remaining count when it completes. The right thing to do here is to ensure that the flag is cleared before it is given back to the function driver. A good place to do that is in dwc3_gadget_del_and_unmap_request(). Fixes: c6267a51 ("usb: dwc3: gadget: align transfers to wMaxPacketSize") Cc: stable@vger.kernel.org Signed-off-by: Jack Pham <jackp@codeaurora.org> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> [jackp: backport to <= 4.20: replaced 'needs_extra_trb' with 'unaligned' and 'zero' members in patch and reworded commit text] Signed-off-by: Jack Pham <jackp@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Raju Rangoju authored
commit 5cbab630 upstream. Under heavy load if we don't have any pre-allocated rsps left, we dynamically allocate a rsp, but we are not actually allocating memory for nvme_completion (rsp->req.rsp). In such a case, accessing pointer fields (req->rsp->status) in nvmet_req_init() will result in crash. To fix this, allocate the memory for nvme_completion by calling nvmet_rdma_alloc_rsp() Fixes: 8407879c("nvmet-rdma:fix possible bogus dereference under heavy load") Cc: <stable@vger.kernel.org> Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Raju Rangoju <rajur@chelsio.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Israel Rukshin authored
commit ad1f8249 upstream. Signed-off-by: Israel Rukshin <israelr@mellanox.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Cc: Raju Rangoju <rajur@chelsio.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Hildenbrand authored
commit 60f1bf29 upstream. When calling smp_call_ipl_cpu() from the IPL CPU, we will try to read from pcpu_devices->lowcore. However, due to prefixing, that will result in reading from absolute address 0 on that CPU. We have to go via the actual lowcore instead. This means that right now, we will read lc->nodat_stack == 0 and therfore work on a very wrong stack. This BUG essentially broke rebooting under QEMU TCG (which will report a low address protection exception). And checking under KVM, it is also broken under KVM. With 1 VCPU it can be easily triggered. :/# echo 1 > /proc/sys/kernel/sysrq :/# echo b > /proc/sysrq-trigger [ 28.476745] sysrq: SysRq : Resetting [ 28.476793] Kernel stack overflow. [ 28.476817] CPU: 0 PID: 424 Comm: sh Not tainted 5.0.0-rc1+ #13 [ 28.476820] Hardware name: IBM 2964 NE1 716 (KVM/Linux) [ 28.476826] Krnl PSW : 0400c00180000000 0000000000115c0c (pcpu_delegate+0x12c/0x140) [ 28.476861] R:0 T:1 IO:0 EX:0 Key:0 M:0 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3 [ 28.476863] Krnl GPRS: ffffffffffffffff 0000000000000000 000000000010dff8 0000000000000000 [ 28.476864] 0000000000000000 0000000000000000 0000000000ab7090 000003e0006efbf0 [ 28.476864] 000000000010dff8 0000000000000000 0000000000000000 0000000000000000 [ 28.476865] 000000007fffc000 0000000000730408 000003e0006efc58 0000000000000000 [ 28.476887] Krnl Code: 0000000000115bfe: 4170f000 la %r7,0(%r15) [ 28.476887] 0000000000115c02: 41f0a000 la %r15,0(%r10) [ 28.476887] #0000000000115c06: e370f0980024 stg %r7,152(%r15) [ 28.476887] >0000000000115c0c: c0e5fffff86e brasl %r14,114ce8 [ 28.476887] 0000000000115c12: 41f07000 la %r15,0(%r7) [ 28.476887] 0000000000115c16: a7f4ffa8 brc 15,115b66 [ 28.476887] 0000000000115c1a: 0707 bcr 0,%r7 [ 28.476887] 0000000000115c1c: 0707 bcr 0,%r7 [ 28.476901] Call Trace: [ 28.476902] Last Breaking-Event-Address: [ 28.476920] [<0000000000a01c4a>] arch_call_rest_init+0x22/0x80 [ 28.476927] Kernel panic - not syncing: Corrupt kernel stack, can't continue. [ 28.476930] CPU: 0 PID: 424 Comm: sh Not tainted 5.0.0-rc1+ #13 [ 28.476932] Hardware name: IBM 2964 NE1 716 (KVM/Linux) [ 28.476932] Call Trace: Fixes: 2f859d0d ("s390/smp: reduce size of struct pcpu") Cc: stable@vger.kernel.org # 4.0+ Reported-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sean Christopherson authored
Upstream commit: f775b13e ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") introduced a bug, which was later fixed by upstream commit: 5663d8f9 ("kvm: x86: fix WARN due to uninitialized guest FPU state") For reasons unknown, both commits were initially passed-over for inclusion in the 4.14 stable branch despite being tagged for stable. Eventually, someone noticed that the fixup, commit 5663d8f9, was missing from stable[1], and so it was queued up for 4.14 and included in release v4.14.79. Even later, the original buggy patch, commit f775b13e, was also applied to the 4.14 stable branch. Through an unlucky coincidence, the incorrect ordering did not generate a conflict between the two patches, and led to v4.14.94 and later releases containing a spurious call to kvm_load_guest_fpu() in kvm_arch_vcpu_ioctl_run(). As a result, KVM may reload stale guest FPU state, e.g. after accepting in INIT event. This can manifest as crashes during boot, segfaults, failed checksums and so on and so forth. Remove the unwanted kvm_{load,put}_guest_fpu() calls, i.e. make kvm_arch_vcpu_ioctl_run() look like commit 5663d8f9 was backported after commit f775b13e. [1] https://www.spinics.net/lists/stable/msg263931.html Fixes: 4124a4cf ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") Cc: stable@vger.kernel.org Cc: Sasha Levin <sashal@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Reported-by: Roman Mamedov Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jose Abreu authored
commit 52a76235 upstream. Currently we are using all the available fifo size in RQS and TQS fields. This will not work correctly in multi-queues IP's because total fifo size must be splitted to the enabled queues. Correct this by computing the available fifo size per queue and setting the right value in TQS and RQS fields. Signed-off-by: Jose Abreu <joabreu@synopsys.com> Cc: David S. Miller <davem@davemloft.net> Cc: Joao Pinto <jpinto@synopsys.com> Cc: Giuseppe Cavallaro <peppe.cavallaro@st.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Niklas Cassel <niklas.cassel@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sasha Levin authored
This reverts commit e65cd9a2. Tommi T. Rrantala notes: PTRACE_SECCOMP_GET_METADATA was only added in 4.16 (26500475) And it's also breaking seccomp_bpf.c compilation for me: seccomp_bpf.c: In function ‘get_metadata’: seccomp_bpf.c:2878:26: error: storage size of ‘md’ isn’t known struct seccomp_metadata md; Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Milian Wolff authored
[ Upstream commit 1fe627da ] libdwfl parses an ELF file itself and creates mappings for the individual sections. perf on the other hand sees raw mmap events which represent individual sections. When we encounter an address pointing into a mapping with pgoff != 0, we must take that into account and report the file at the non-offset base address. This fixes unwinding with libdwfl in some cases. E.g. for a file like: ``` using namespace std; mutex g_mutex; double worker() { lock_guard<mutex> guard(g_mutex); uniform_real_distribution<double> uniform(-1E5, 1E5); default_random_engine engine; double s = 0; for (int i = 0; i < 1000; ++i) { s += norm(complex<double>(uniform(engine), uniform(engine))); } cout << s << endl; return s; } int main() { vector<std::future<double>> results; for (int i = 0; i < 10000; ++i) { results.push_back(async(launch::async, worker)); } return 0; } ``` Compile it with `g++ -g -O2 -lpthread cpp-locking.cpp -o cpp-locking`, then record it with `perf record --call-graph dwarf -e sched:sched_switch`. When you analyze it with `perf script` and libunwind, you should see: ``` cpp-locking 20038 [005] 54830.236589: sched:sched_switch: prev_comm=cpp-locking prev_pid=20038 prev_prio=120 prev_state=T ==> next_comm=swapper/5 next_pid=0 next_prio=120 ffffffffb166fec5 __sched_text_start+0x545 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb166fec5 __sched_text_start+0x545 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1670208 schedule+0x28 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb16737cc rwsem_down_read_failed+0xec (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1665e04 call_rwsem_down_read_failed+0x14 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1672a03 down_read+0x13 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb106bd85 __do_page_fault+0x445 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb18015f5 page_fault+0x45 (/lib/modules/4.14.78-1-lts/build/vmlinux) 7f38e4252591 new_heap+0x101 (/usr/lib/libc-2.28.so) 7f38e4252d0b arena_get2.part.4+0x2fb (/usr/lib/libc-2.28.so) 7f38e4255b1c tcache_init.part.6+0xec (/usr/lib/libc-2.28.so) 7f38e42569e5 __GI___libc_malloc+0x115 (inlined) 7f38e4241790 __GI__IO_file_doallocate+0x90 (inlined) 7f38e424fbbf __GI__IO_doallocbuf+0x4f (inlined) 7f38e424ee47 __GI__IO_file_overflow+0x197 (inlined) 7f38e424df36 _IO_new_file_xsputn+0x116 (inlined) 7f38e4242bfb __GI__IO_fwrite+0xdb (inlined) 7f38e463fa6d std::basic_streambuf<char, std::char_traits<char> >::sputn(char const*, long)+0x1cd (inlined) 7f38e463fa6d std::ostreambuf_iterator<char, std::char_traits<char> >::_M_put(char const*, long)+0x1cd (inlined) 7f38e463fa6d std::ostreambuf_iterator<char, std::char_traits<char> > std::__write<char>(std::ostreambuf_iterator<char, std::char_traits<char> >, char const*, int)+0x1cd (inlined) 7f38e463fa6d std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_float<double>(std::ostreambuf_iterator<c> 7f38e464bd70 std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, double) const+0x90 (inl> 7f38e464bd70 std::ostream& std::ostream::_M_insert<double>(double)+0x90 (/usr/lib/libstdc++.so.6.0.25) 563b9cb502f7 std::ostream::operator<<(double)+0xb7 (inlined) 563b9cb502f7 worker()+0xb7 (/ssd/milian/projects/kdab/rnd/hotspot/build/tests/test-clients/cpp-locking/cpp-locking) 563b9cb506fb double std::__invoke_impl<double, double (*)()>(std::__invoke_other, double (*&&)())+0x2b (inlined) 563b9cb506fb std::__invoke_result<double (*)()>::type std::__invoke<double (*)()>(double (*&&)())+0x2b (inlined) 563b9cb506fb decltype (__invoke((_S_declval<0ul>)())) std::thread::_Invoker<std::tuple<double (*)()> >::_M_invoke<0ul>(std::_Index_tuple<0ul>)+0x2b (inlined) 563b9cb506fb std::thread::_Invoker<std::tuple<double (*)()> >::operator()()+0x2b (inlined) 563b9cb506fb std::__future_base::_Task_setter<std::unique_ptr<std::__future_base::_Result<double>, std::__future_base::_Result_base::_Deleter>, std::thread::_Invoker<std::tuple<double (*)()> >, dou> 563b9cb506fb std::_Function_handler<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> (), std::__future_base::_Task_setter<std::unique_ptr<std::__future_> 563b9cb507e8 std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>::operator()() const+0x28 (inlined) 563b9cb507e8 std::__future_base::_State_baseV2::_M_do_set(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>*, bool*)+0x28 (/ssd/milian/> 7f38e46d24fe __pthread_once_slow+0xbe (/usr/lib/libpthread-2.28.so) 563b9cb51149 __gthread_once+0xe9 (inlined) 563b9cb51149 void std::call_once<void (std::__future_base::_State_baseV2::*)(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>*, bool*)> 563b9cb51149 std::__future_base::_State_baseV2::_M_set_result(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>, bool)+0xe9 (inlined) 563b9cb51149 std::__future_base::_Async_state_impl<std::thread::_Invoker<std::tuple<double (*)()> >, double>::_Async_state_impl(std::thread::_Invoker<std::tuple<double (*)()> >&&)::{lambda()#1}::op> 563b9cb51149 void std::__invoke_impl<void, std::__future_base::_Async_state_impl<std::thread::_Invoker<std::tuple<double (*)()> >, double>::_Async_state_impl(std::thread::_Invoker<std::tuple<double> 563b9cb51149 std::__invoke_result<std::__future_base::_Async_state_impl<std::thread::_Invoker<std::tuple<double (*)()> >, double>::_Async_state_impl(std::thread::_Invoker<std::tuple<double (*)()> >> 563b9cb51149 decltype (__invoke((_S_declval<0ul>)())) std::thread::_Invoker<std::tuple<std::__future_base::_Async_state_impl<std::thread::_Invoker<std::tuple<double (*)()> >, double>::_Async_state_> 563b9cb51149 std::thread::_Invoker<std::tuple<std::__future_base::_Async_state_impl<std::thread::_Invoker<std::tuple<double (*)()> >, double>::_Async_state_impl(std::thread::_Invoker<std::tuple<dou> 563b9cb51149 std::thread::_State_impl<std::thread::_Invoker<std::tuple<std::__future_base::_Async_state_impl<std::thread::_Invoker<std::tuple<double (*)()> >, double>::_Async_state_impl(std::thread> 7f38e45f0062 execute_native_thread_routine+0x12 (/usr/lib/libstdc++.so.6.0.25) 7f38e46caa9c start_thread+0xfc (/usr/lib/libpthread-2.28.so) 7f38e42ccb22 __GI___clone+0x42 (inlined) ``` Before this patch, using libdwfl, you would see: ``` cpp-locking 20038 [005] 54830.236589: sched:sched_switch: prev_comm=cpp-locking prev_pid=20038 prev_prio=120 prev_state=T ==> next_comm=swapper/5 next_pid=0 next_prio=120 ffffffffb166fec5 __sched_text_start+0x545 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb166fec5 __sched_text_start+0x545 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1670208 schedule+0x28 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb16737cc rwsem_down_read_failed+0xec (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1665e04 call_rwsem_down_read_failed+0x14 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1672a03 down_read+0x13 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb106bd85 __do_page_fault+0x445 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb18015f5 page_fault+0x45 (/lib/modules/4.14.78-1-lts/build/vmlinux) 7f38e4252591 new_heap+0x101 (/usr/lib/libc-2.28.so) a041161e77950c5c [unknown] ([unknown]) ``` With this patch applied, we get a bit further in unwinding: ``` cpp-locking 20038 [005] 54830.236589: sched:sched_switch: prev_comm=cpp-locking prev_pid=20038 prev_prio=120 prev_state=T ==> next_comm=swapper/5 next_pid=0 next_prio=120 ffffffffb166fec5 __sched_text_start+0x545 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb166fec5 __sched_text_start+0x545 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1670208 schedule+0x28 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb16737cc rwsem_down_read_failed+0xec (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1665e04 call_rwsem_down_read_failed+0x14 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb1672a03 down_read+0x13 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb106bd85 __do_page_fault+0x445 (/lib/modules/4.14.78-1-lts/build/vmlinux) ffffffffb18015f5 page_fault+0x45 (/lib/modules/4.14.78-1-lts/build/vmlinux) 7f38e4252591 new_heap+0x101 (/usr/lib/libc-2.28.so) 7f38e4252d0b arena_get2.part.4+0x2fb (/usr/lib/libc-2.28.so) 7f38e4255b1c tcache_init.part.6+0xec (/usr/lib/libc-2.28.so) 7f38e42569e5 __GI___libc_malloc+0x115 (inlined) 7f38e4241790 __GI__IO_file_doallocate+0x90 (inlined) 7f38e424fbbf __GI__IO_doallocbuf+0x4f (inlined) 7f38e424ee47 __GI__IO_file_overflow+0x197 (inlined) 7f38e424df36 _IO_new_file_xsputn+0x116 (inlined) 7f38e4242bfb __GI__IO_fwrite+0xdb (inlined) 7f38e463fa6d std::basic_streambuf<char, std::char_traits<char> >::sputn(char const*, long)+0x1cd (inlined) 7f38e463fa6d std::ostreambuf_iterator<char, std::char_traits<char> >::_M_put(char const*, long)+0x1cd (inlined) 7f38e463fa6d std::ostreambuf_iterator<char, std::char_traits<char> > std::__write<char>(std::ostreambuf_iterator<char, std::char_traits<char> >, char const*, int)+0x1cd (inlined) 7f38e463fa6d std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_float<double>(std::ostreambuf_iterator<c> 7f38e464bd70 std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, double) const+0x90 (inl> 7f38e464bd70 std::ostream& std::ostream::_M_insert<double>(double)+0x90 (/usr/lib/libstdc++.so.6.0.25) 563b9cb502f7 std::ostream::operator<<(double)+0xb7 (inlined) 563b9cb502f7 worker()+0xb7 (/ssd/milian/projects/kdab/rnd/hotspot/build/tests/test-clients/cpp-locking/cpp-locking) 6eab825c1ee3e4ff [unknown] ([unknown]) ``` Note that the backtrace is still stopping too early, when compared to the nice results obtained via libunwind. It's unclear so far what the reason for that is. Committer note: Further comment by Milian on the thread started on the Link: tag below: --- The remaining issue is due to a bug in elfutils: https://sourceware.org/ml/elfutils-devel/2018-q4/msg00089.html With both patches applied, libunwind and elfutils produce the same output for the above scenario. --- Signed-off-by: Milian Wolff <milian.wolff@kdab.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20181029141644.3907-1-milian.wolff@kdab.comSigned-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Martin Vuille authored
[ Upstream commit 3d20c624 ] Path passed to libdw for unwinding doesn't include symfs path if specified, so unwinding fails because ELF file is not found. Similar to unwinding with libunwind, pass symsrc_filename instead of long_name. If there is no symsrc_filename, fallback to long_name. Signed-off-by: Martin Vuille <jpmv27@aim.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/20180211212420.18388-1-jpmv27@aim.comSigned-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Nicolas Pitre authored
commit 0c9b1965 upstream. User space using poll() on /dev/vcs devices are not awaken when a screen size change occurs. Let's fix that. Signed-off-by: Nicolas Pitre <nico@linaro.org> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Oliver Hartkopp authored
commit 93171ba6 upstream. Kyungtae Kim detected a potential integer overflow in bcm_[rx|tx]_setup() when the conversion into ktime multiplies the given value with NSEC_PER_USEC (1000). Reference: https://marc.info/?l=linux-can&m=154732118819828&w=2 Add a check for the given tv_usec, so that the value stays below one second. Additionally limit the tv_sec value to a reasonable value for CAN related use-cases of 400 days and ensure all values to be positive. Reported-by: Kyungtae Kim <kt0755@gmail.com> Tested-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Cc: linux-stable <stable@vger.kernel.org> # >= 2.6.26 Tested-by: Kyungtae Kim <kt0755@gmail.com> Acked-by: Andre Naujoks <nautsch2@gmail.com> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Manfred Schlaegl authored
commit 7b12c818 upstream. This patch revert commit 7da11ba5 ("can: dev: __can_get_echo_skb(): print error message, if trying to echo non existing skb") After introduction of this change we encountered following new error message on various i.MX plattforms (flexcan): | flexcan 53fc8000.can can0: __can_get_echo_skb: BUG! Trying to echo non | existing skb: can_priv::echo_skb[0] The introduction of the message was a mistake because priv->echo_skb[idx] = NULL is a perfectly valid in following case: If CAN_RAW_LOOPBACK is disabled (setsockopt) in applications, the pkt_type of the tx skb's given to can_put_echo_skb is set to PACKET_LOOPBACK. In this case can_put_echo_skb will not set priv->echo_skb[idx]. It is therefore kept NULL. As additional argument for revert: The order of check and usage of idx was changed. idx is used to access an array element before checking it's boundaries. Signed-off-by: Manfred Schlaegl <manfred.schlaegl@ginzinger.com> Fixes: 7da11ba5 ("can: dev: __can_get_echo_skb(): print error message, if trying to echo non existing skb") Cc: linux-stable <stable@vger.kernel.org> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marc Zyngier authored
commit 8208d170 upstream. The way we allocate events works fine in most cases, except when multiple PCI devices share an ITS-visible DevID, and that one of them is trying to use MultiMSI allocation. In that case, our allocation is not guaranteed to be zero-based anymore, and we have to make sure we allocate it on a boundary that is compatible with the PCI Multi-MSI constraints. Fix this by allocating the full region upfront instead of iterating over the number of MSIs. MSI-X are always allocated one by one, so this shouldn't change anything on that front. Fixes: b48ac83d ("irqchip: GICv3: ITS: MSI support") Cc: stable@vger.kernel.org Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit 93ad0fc0 upstream. The recent commit which prevented a division by 0 issue in the alarm timer code broke posix CPU timers as an unwanted side effect. The reason is that the common rearm code checks for timer->it_interval being 0 now. What went unnoticed is that the posix cpu timer setup does not initialize timer->it_interval as it stores the interval in CPU timer specific storage. The reason for the separate storage is historical as the posix CPU timers always had a 64bit nanoseconds representation internally while timer->it_interval is type ktime_t which used to be a modified timespec representation on 32bit machines. Instead of reverting the offending commit and fixing the alarmtimer issue in the alarmtimer code, store the interval in timer->it_interval at CPU timer setup time so the common code check works. This also repairs the existing inconistency of the posix CPU timer code which kept a single shot timer armed despite of the interval being 0. The separate storage can be removed in mainline, but that needs to be a separate commit as the current one has to be backported to stable kernels. Fixes: 0e334db6 ("posix-timers: Fix division by zero bug") Reported-by: H.J. Lu <hjl.tools@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190111133500.840117406@linutronix.deSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Drake authored
commit 7e6fc2f5 upstream. The outb() function takes parameters value and port, in that order. Fix the parameters used in the kalsr i8254 fallback code. Fixes: 5bfce5ef ("x86, kaslr: Provide randomness functions") Signed-off-by: Daniel Drake <drake@endlessm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: linux@endlessm.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190107034024.15005-1-drake@endlessm.comSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Hansen authored
commit e1812933 upstream. There was a bug where the per-mm pkey state was not being preserved across fork() in the child. fork() is performed in the pkey selftests, but all of the pkey activity is performed in the parent. The child does not perform any actions sensitive to pkey state. To make the test more sensitive to these kinds of bugs, add a fork() where the parent exits, and execution continues in the child. To achieve this let the key exhaustion test not terminate at the first allocation failure and fork after 2*NR_PKEYS loops and continue in the child. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: peterz@infradead.org Cc: mpe@ellerman.id.au Cc: will.deacon@arm.com Cc: luto@kernel.org Cc: jroedel@suse.de Cc: stable@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Will Deacon <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20190102215657.585704B7@viggo.jf.intel.comSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Hansen authored
commit a31e184e upstream. Memory protection key behavior should be the same in a child as it was in the parent before a fork. But, there is a bug that resets the state in the child at fork instead of preserving it. The creation of new mm's is a bit convoluted. At fork(), the code does: 1. memcpy() the parent mm to initialize child 2. mm_init() to initalize some select stuff stuff 3. dup_mmap() to create true copies that memcpy() did not do right For pkeys two bits of state need to be preserved across a fork: 'execute_only_pkey' and 'pkey_allocation_map'. Those are preserved by the memcpy(), but mm_init() invokes init_new_context() which overwrites 'execute_only_pkey' and 'pkey_allocation_map' with "new" values. The author of the code erroneously believed that init_new_context is *only* called at execve()-time. But, alas, init_new_context() is used at execve() and fork(). The result is that, after a fork(), the child's pkey state ends up looking like it does after an execve(), which is totally wrong. pkeys that are already allocated can be allocated again, for instance. To fix this, add code called by dup_mmap() to copy the pkey state from parent to child explicitly. Also add a comment above init_new_context() to make it more clear to the next poor sod what this code is used for. Fixes: e8c24d3a ("x86/pkeys: Allocation/free syscalls") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: peterz@infradead.org Cc: mpe@ellerman.id.au Cc: will.deacon@arm.com Cc: luto@kernel.org Cc: jroedel@suse.de Cc: stable@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Will Deacon <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20190102215655.7A69518C@viggo.jf.intel.comSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexander Popov authored
commit 5cc244a2 upstream. The single-step debugging of KVM guests on x86 is broken: if we run gdb 'stepi' command at the breakpoint when the guest interrupts are enabled, RIP always jumps to native_apic_mem_write(). Then other nasty effects follow. Long investigation showed that on Jun 7, 2017 the commit c8401dda ("KVM: x86: fix singlestepping over syscall") introduced the kvm_run.debug corruption: kvm_vcpu_do_singlestep() can be called without X86_EFLAGS_TF set. Let's fix it. Please consider that for -stable. Signed-off-by: Alexander Popov <alex.popov@linux.com> Cc: stable@vger.kernel.org Fixes: c8401dda ("KVM: x86: fix singlestepping over syscall") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Milan Broz authored
commit 1856b9f7 upstream. The dm-crypt cipher specification in a mapping table is defined as: cipher[:keycount]-chainmode-ivmode[:ivopts] or (new crypt API format): capi:cipher_api_spec-ivmode[:ivopts] For ESSIV, the parameter includes hash specification, for example: aes-cbc-essiv:sha256 The implementation expected that additional IV option to never include another dash '-' character. But, with SHA3, there are names like sha3-256; so the mapping table parser fails: dmsetup create test --table "0 8 crypt aes-cbc-essiv:sha3-256 9c1185a5c5e9fc54612808977ee8f5b9e 0 /dev/sdb 0" or (new crypt API format) dmsetup create test --table "0 8 crypt capi:cbc(aes)-essiv:sha3-256 9c1185a5c5e9fc54612808977ee8f5b9e 0 /dev/sdb 0" device-mapper: crypt: Ignoring unexpected additional cipher options device-mapper: table: 253:0: crypt: Error creating IV device-mapper: ioctl: error adding target to table Fix the dm-crypt constructor to ignore additional dash in IV options and also remove a bogus warning (that is ignored anyway). Cc: stable@vger.kernel.org # 4.12+ Signed-off-by: Milan Broz <gmazyland@gmail.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joe Thornber authored
commit d445bd9c upstream. Commit 00a0ea33 ("dm thin: do not queue freed thin mapping for next stage processing") changed process_prepared_discard_passdown_pt1() to increment all the blocks being discarded until after the passdown had completed to avoid them being prematurely reused. IO issued to a thin device that breaks sharing with a snapshot, followed by a discard issued to snapshot(s) that previously shared the block(s), results in passdown_double_checking_shared_status() being called to iterate through the blocks double checking their reference count is zero and issuing the passdown if so. So a side effect of commit 00a0ea33 is passdown_double_checking_shared_status() was broken. Fix this by checking if the block reference count is greater than 1. Also, rename dm_pool_block_is_used() to dm_pool_block_is_shared(). Fixes: 00a0ea33 ("dm thin: do not queue freed thin mapping for next stage processing") Cc: stable@vger.kernel.org # 4.9+ Reported-by: ryan.p.norwood@gmail.com Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dan Williams authored
commit 11189c10 upstream. The _DSM function number validation only happens to succeed when the generic Linux command number translation corresponds with a DSM-family-specific function number. This breaks NVDIMM-N implementations that correctly implement _LSR, _LSW, and _LSI, but do not happen to publish support for DSM function numbers 4, 5, and 6. Recall that the support for _LS{I,R,W} family of methods results in the DIMM being marked as supporting those command numbers at acpi_nfit_register_dimms() time. The DSM function mask is only used for ND_CMD_CALL support of non-NVDIMM_FAMILY_INTEL devices. Fixes: 31eca76b ("nfit, libnvdimm: limited/whitelisted dimm command...") Cc: <stable@vger.kernel.org> Link: https://github.com/pmem/ndctl/issues/78Reported-by: Sujith Pandel <sujith_pandel@dell.com> Tested-by: Sujith Pandel <sujith_pandel@dell.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dan Williams authored
commit 5e9e38d0 upstream. In preparation for using function number 0 as an error value, prevent it from being considered a valid function value by acpi_nfit_ctl(). Cc: <stable@vger.kernel.org> Cc: stuart hayes <stuart.w.hayes@gmail.com> Fixes: e02fb726 ("nfit: add Microsoft NVDIMM DSM command set...") Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dmitry Torokhov authored
commit d77651a2 upstream. An integer overflow may arise in uinput_validate_absinfo() if "max - min" can't be represented by an "int". We should check for overflow before trying to use the result. Reported-by: Kyungtae Kim <kt0755@gmail.com> Reviewed-by: Peter Hutterer <peter.hutterer@who-t.net> Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Rasmus Villemoes authored
commit f0907827 upstream. This adds wrappers for the __builtin overflow checkers present in gcc 5.1+ as well as fallback implementations for earlier compilers. It's not that easy to implement the fully generic __builtin_X_overflow(T1 a, T2 b, T3 *d) in macros, so the fallback code assumes that T1, T2 and T3 are the same. We obviously don't want the wrappers to have different semantics depending on $GCC_VERSION, so we also insist on that even when using the builtins. There are a few problems with the 'a+b < a' idiom for checking for overflow: For signed types, it relies on undefined behaviour and is not actually complete (it doesn't check underflow; e.g. INT_MIN+INT_MIN == 0 isn't caught). Due to type promotion it is wrong for all types (signed and unsigned) narrower than int. Similarly, when a and b does not have the same type, there are subtle cases like u32 a; if (a + sizeof(foo) < a) return -EOVERFLOW; a += sizeof(foo); where the test is always false on 64 bit platforms. Add to that that it is not always possible to determine the types involved at a glance. The new overflow.h is somewhat bulky, but that's mostly a result of trying to be type-generic, complete (e.g. catching not only overflow but also signed underflow) and not relying on undefined behaviour. Linus is of course right [1] that for unsigned subtraction a-b, the right way to check for overflow (underflow) is "b > a" and not "__builtin_sub_overflow(a, b, &d)", but that's just one out of six cases covered here, and included mostly for completeness. So is it worth it? I think it is, if nothing else for the documentation value of seeing if (check_add_overflow(a, b, &d)) return -EGOAWAY; do_stuff_with(d); instead of the open-coded (and possibly wrong and/or incomplete and/or UBsan-tickling) if (a+b < a) return -EGOAWAY; do_stuff_with(a+b); While gcc does recognize the 'a+b < a' idiom for testing unsigned add overflow, it doesn't do nearly as good for unsigned multiplication (there's also no single well-established idiom). So using check_mul_overflow in kcalloc and friends may also make gcc generate slightly better code. [1] https://lkml.org/lkml/2015/11/2/658Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Tom Panfil authored
commit fe2bfd0d upstream. Add support for the SteelSeries Stratus Duo, a wireless Xbox 360 controller. The Stratus Duo ships with a USB dongle to enable wireless connectivity, but it can also function as a wired controller by connecting it directly to a PC via USB, hence the need for two USD PIDs. 0x1430 is the dongle, and 0x1431 is the controller. Signed-off-by: Tom Panfil <tom@steelseries.com> Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Shilovsky authored
commit ef68e831 upstream. When executing add_credits() we currently call cifs_reconnect() if the number of credits is zero and there are no requests in flight. In this case we may call cifs_reconnect() recursively twice and cause memory corruption given the following sequence of functions: mid1.callback() -> add_credits() -> cifs_reconnect() -> -> mid2.callback() -> add_credits() -> cifs_reconnect(). Fix this by avoiding to call cifs_reconnect() in add_credits() and checking for zero credits in the demultiplex thread. Cc: <stable@vger.kernel.org> Signed-off-by: Pavel Shilovsky <pshilov@microsoft.com> Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com> Signed-off-by: Steve French <stfrench@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Shilovsky authored
commit ec678eae upstream. We do need to account for credits received in error responses to read requests on encrypted sessions. Cc: <stable@vger.kernel.org> Signed-off-by: Pavel Shilovsky <pshilov@microsoft.com> Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com> Signed-off-by: Steve French <stfrench@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Shilovsky authored
commit 8004c78c upstream. Currently we mark MID as malformed if we get an error from server in a read response. This leads to not properly processing credits in the readv callback. Fix this by marking such a response as normal received response and process it appropriately. Cc: <stable@vger.kernel.org> Signed-off-by: Pavel Shilovsky <pshilov@microsoft.com> Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com> Signed-off-by: Steve French <stfrench@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Shilovsky authored
commit acc58d0b upstream. When doing MTU i/o we need to leave some credits for possible reopen requests and other operations happening in parallel. Currently we leave 1 credit which is not enough even for reopen only: we need at least 2 credits if durable handle reconnect fails. Also there may be other operations at the same time including compounding ones which require 3 credits at a time each. Fix this by leaving 8 credits which is big enough to cover most scenarios. Was able to reproduce this when server was configured to give out fewer credits than usual. The proper fix would be to reconnect a file handle first and then obtain credits for an MTU request but this leads to bigger code changes and should happen in other patches. Cc: <stable@vger.kernel.org> Signed-off-by: Pavel Shilovsky <pshilov@microsoft.com> Signed-off-by: Steve French <stfrench@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dexuan Cui authored
commit ba50bf1c upstream. fc96df16 is good and can already fix the "return stack garbage" issue, but let's also improve hv_ringbuffer_get_debuginfo(), which would silently return stack garbage, if people forget to check channel->state or ring_info->ring_buffer, when using the function in the future. Having an error check in the function would eliminate the potential risk. Add a Fixes tag to indicate the patch depdendency. Fixes: fc96df16 ("Drivers: hv: vmbus: Return -EINVAL for the sys files for unopened channels") Cc: stable@vger.kernel.org Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com> Signed-off-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vitaly Kuznetsov authored
commit da8ced36 upstream. Hyper-V memory hotplug protocol has 2M granularity and in Linux x86 we use 128M. To deal with it we implement partial section onlining by registering custom page onlining callback (hv_online_page()). Later, when more memory arrives we try to online the 'tail' (see hv_bring_pgs_online()). It was found that in some cases this 'tail' onlining causes issues: BUG: Bad page state in process kworker/0:2 pfn:109e3a page:ffffe08344278e80 count:0 mapcount:1 mapping:0000000000000000 index:0x0 flags: 0xfffff80000000() raw: 000fffff80000000 dead000000000100 dead000000000200 0000000000000000 raw: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 page dumped because: nonzero mapcount ... Workqueue: events hot_add_req [hv_balloon] Call Trace: dump_stack+0x5c/0x80 bad_page.cold.112+0x7f/0xb2 free_pcppages_bulk+0x4b8/0x690 free_unref_page+0x54/0x70 hv_page_online_one+0x5c/0x80 [hv_balloon] hot_add_req.cold.24+0x182/0x835 [hv_balloon] ... Turns out that we now have deferred struct page initialization for memory hotplug so e.g. memory_block_action() in drivers/base/memory.c does pages_correctly_probed() check and in that check it avoids inspecting struct pages and checks sections instead. But in Hyper-V balloon driver we do PageReserved(pfn_to_page()) check and this is now wrong. Switch to checking online_section_nr() instead. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Paul Fulghum authored
commit fc01d8c6 upstream. Fix __might_sleep warning[1] in tty/n_hdlc.c read due to copy_to_user call while current is TASK_INTERRUPTIBLE. This is a false positive since the code path does not depend on current state remaining TASK_INTERRUPTIBLE. The loop breaks out and sets TASK_RUNNING after calling copy_to_user. This patch supresses the warning by setting TASK_RUNNING before calling copy_to_user. [1] https://syzkaller.appspot.com/bug?id=17d5de7f1fcab794cb8c40032f893f52de899324Signed-off-by: Paul Fulghum <paulkf@microgate.com> Reported-by: syzbot <syzbot+c244af085a0159d22879@syzkaller.appspotmail.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: stable <stable@vger.kernel.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Samir Virmani authored
commit aff9cf59 upstream. We were experiencing a crash similar to the one reported as part of commit:a5ba1d95 ("uart: fix race between uart_put_char() and uart_shutdown()") in our testbed as well. We continue to observe the same crash after integrating the commit a5ba1d95 ("uart: fix race between uart_put_char() and uart_shutdown()") On reviewing the change, the port lock should be taken prior to checking for if (!circ->buf) in fn. __uart_put_char and other fns. that update the buffer uart_state->xmit. Traceback: [11/27/2018 06:24:32.4870] Unable to handle kernel NULL pointer dereference at virtual address 0000003b [11/27/2018 06:24:32.4950] PC is at memcpy+0x48/0x180 [11/27/2018 06:24:32.4950] LR is at uart_write+0x74/0x120 [11/27/2018 06:24:32.4950] pc : [<ffffffc0002e6808>] lr : [<ffffffc0003747cc>] pstate: 000001c5 [11/27/2018 06:24:32.4950] sp : ffffffc076433d30 [11/27/2018 06:24:32.4950] x29: ffffffc076433d30 x28: 0000000000000140 [11/27/2018 06:24:32.4950] x27: ffffffc0009b9d5e x26: ffffffc07ce36580 [11/27/2018 06:24:32.4950] x25: 0000000000000000 x24: 0000000000000140 [11/27/2018 06:24:32.4950] x23: ffffffc000891200 x22: ffffffc01fc34000 [11/27/2018 06:24:32.4950] x21: 0000000000000fff x20: 0000000000000076 [11/27/2018 06:24:32.4950] x19: 0000000000000076 x18: 0000000000000000 [11/27/2018 06:24:32.4950] x17: 000000000047cf08 x16: ffffffc000099e68 [11/27/2018 06:24:32.4950] x15: 0000000000000018 x14: 776d726966205948 [11/27/2018 06:24:32.4950] x13: 50203a6c6974755f x12: 74647075205d3333 [11/27/2018 06:24:32.4950] x11: 3a35323a36203831 x10: 30322f37322f3131 [11/27/2018 06:24:32.4950] x9 : 5b205d303638342e x8 : 746164206f742070 [11/27/2018 06:24:32.4950] x7 : 7520736920657261 x6 : 000000000000003b [11/27/2018 06:24:32.4950] x5 : 000000000000817a x4 : 0000000000000008 [11/27/2018 06:24:32.4950] x3 : 2f37322f31312a5b x2 : 000000000000006e [11/27/2018 06:24:32.4950] x1 : ffffffc0009b9cf0 x0 : 000000000000003b [11/27/2018 06:24:32.4950] CPU2: stopping [11/27/2018 06:24:32.4950] CPU: 2 PID: 0 Comm: swapper/2 Tainted: P D O 4.1.51 #3 [11/27/2018 06:24:32.4950] Hardware name: Broadcom-v8A (DT) [11/27/2018 06:24:32.4950] Call trace: [11/27/2018 06:24:32.4950] [<ffffffc0000883b8>] dump_backtrace+0x0/0x150 [11/27/2018 06:24:32.4950] [<ffffffc00008851c>] show_stack+0x14/0x20 [11/27/2018 06:24:32.4950] [<ffffffc0005ee810>] dump_stack+0x90/0xb0 [11/27/2018 06:24:32.4950] [<ffffffc00008e844>] handle_IPI+0x18c/0x1a0 [11/27/2018 06:24:32.4950] [<ffffffc000080c68>] gic_handle_irq+0x88/0x90 Fixes: a5ba1d95 ("uart: fix race between uart_put_char() and uart_shutdown()") Cc: stable <stable@vger.kernel.org> Signed-off-by: Samir Virmani <samir@embedur.com> Acked-by: Tycho Andersen <tycho@tycho.ws> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-