1. 08 Oct, 2020 14 commits
  2. 06 Oct, 2020 4 commits
  3. 05 Oct, 2020 1 commit
  4. 02 Oct, 2020 9 commits
  5. 01 Oct, 2020 7 commits
  6. 29 Sep, 2020 5 commits
    • Mark Brown's avatar
      Merge series "spi: dw: Add full Baikal-T1 SPI Controllers support" from Serge... · 9d362152
      Mark Brown authored
      Merge series "spi: dw: Add full Baikal-T1 SPI Controllers support" from Serge Semin <Sergey.Semin@baikalelectronics.ru>:
      
      Originally I intended to merge a dedicated Baikal-T1 System Boot SPI
      Controller driver into the kernel and leave the DW APB SSI driver
      untouched. But after a long discussion (see the link at the bottom of the
      letter) Mark and Andy persuaded me to integrate what we developed there
      into the DW APB SSI core driver to be useful for another controllers,
      which may have got the same peculiarities/problems as ours:
      - No IRQ.
      - No DMA.
      - No GPIO CS, so a native CS is utilized.
      - small Tx/Rx FIFO depth.
      - Automatic CS assertion/de-assertion.
      - Slow system bus.
      All of them have been fixed in the framework of this patchset in some
      extent at least for the SPI memory operations. As I expected it wasn't
      that easy and the integration took that many patches as you can see from
      the subject. Though some of them are mere cleanups or weakly related with
      the subject fixes, but we just couldn't leave the code as is at some
      places since we were working with the DW APB SSI driver anyway. Here is
      what we did to fix the original DW APB SSI driver, to make it less messy.
      
      First two patches are just cleanups to simplify the DW APB SSI device
      initialization a bit. We suggest to discard the IRQ threshold macro as
      unused and use a ternary operator to initialize the set_cs callback
      instead of assigning-and-updating it.
      
      Then we've discovered that the n_bytes field of the driver private data is
      used by the DW APB SSI IRQ handler, which requires it to be initialized
      before the SMP memory barrier and to be visible from another CPUs. Speaking
      about the SMP memory barrier. Having one right after the shared resources
      initialization is enough and there is no point in using the spin-lock to
      protect the Tx/Rx buffer pointers. The protection functionality is
      redundant there by the driver design. (Though I have a doubt whether the
      SMP memory barrier is also required there because the normal IO-methods
      like readl/writel implies a full memory barrier. So any memory operations
      performed before them are supposed to be seen by devices and another CPUs.
      See the patch log for details of my concern.)
      
      Thirdly we've found out that there is some confusion in the IRQs
      masking/unmasking/clearing in the SPI-transfer procedure. Multiple interrupts
      are unmasked on the SPI-transfer initialization, but just TXEI is only
      masked back on completion. Similarly IRQ status isn't cleared on the
      controller reset, which actually makes the reset being not full and errors
      prone in the controller probe procedure.
      
      Another very important optimization is using the IO-relaxed accessors in
      the dw_read_io_reg()/dw_write_io_reg() methods. Since the Tx/Rx FIFO data
      registers are the most frequently accessible controller resource, using
      relaxed accessors there will significantly improve the data read/write
      performance. At least on Baikal-T1 SoC such modification opens up a way to
      have the DW APB SSI controller working with higher SPI bus speeds, than
      without it.
      
      Fifthly we've made an effort to cleanup the code using the SPI-device
      private data - chip_data. We suggest to remove the chip type from there
      since it isn't used and isn't implemented right anyway. Then instead of
      having a bus speed, clock divider, transfer mode preserved there, and
      recalculating the CR0 fields of the SPI-device-specific phase, polarity
      and frame format each time the SPI transfer is requested, we can save it
      in the chip_data instance. By doing so we'll make that structure finally
      used as it was supposed to by design (see the spi-fsl-dspi.c, spi-pl022.c,
      spi-pxa2xx.c drivers for examples).
      
      Sixthly instead of having the SPI-transfer specific CR0-update callback,
      we suggest to implement the DW APB SSI controller capabilities approach.
      By doing so we can now inject the vendor-specific peculiarities in
      different parts of the DW APB SSI core driver (which is required to
      implement both SPI-transfers and the SPI memory operations). This will
      also make the code less confusing like defining a callback in the core
      driver, setting it up in the glue layer, then calling it from the core
      driver again. Seeing the small capabilities implementation embedded
      in-situ is more readable than tracking the callbacks assignments. This
      will concern the CS-override, Keembay master setup, DW SSI-specific CR0
      registers layout capabilities.
      
      Seventhly since there are going to be two types of the transfers
      implemented in the DW APB SSI core driver, we need a common method to set
      the controller configuration like, Tx/Rx-mode, bus speed, data frame size
      and number of data frames to read in case of the memory operations. So we
      just detached the corresponding code from the SPI-transfer-one method and
      made it to be a part of the new dw_spi_update_config() function, which is
      former update_cr0(). Note that the new method will be also useful for the
      glue drivers, which due to the hardware design need to create their own
      memory operations (for instance, for the dirmap-operations provided in the
      Baikal-T System Boot SPI controller driver).
      
      Eighthly it is the data IO procedure and IRQ-based SPI-transfer
      implementation refactoring. The former one will look much simpler if the
      buffers initial pointers and the buffers length data utilized instead of
      the Tx/Rx buffers start and end pointers. The later one currently lacks of
      valid execution at the final stage of the SPI-transfer. So if there is no
      data left to send, but there is still data which needs to be received, the
      Tx FIFO Empty IRQ will constantly happen until all of the requested
      inbound data is received. So we suggest to fix that by taking the Rx FIFO
      Empty IRQ into account.
      
      Ninthly it's potentially errors prone to enable the DW APB SSI interrupts
      before enabling the chip. It specifically concerns a case if for some
      reason the DW APB SSI IRQs handler is executed before the controller is
      enabled. That will cause a part of the outbound data loss. So we suggest
      to reverse the order.
      
      Tenthly in order to be able to pre-initialize the Tx FIFO with data and
      only the start the SPI memory operations we need to have any CS
      de-activated. We'll fulfil that requirement by explicitly clearing the CS
      on the SPI transfer completion and at the explicit controller reset.
      
      Then seeing all the currently available and potentially being created
      types of the SPI transfers need to perform the DW APB SSI controller
      status register check and the errors handler procedure, we've created a
      common method for all of them.
      
      Eleventhly if before we've mostly had a series of fixups, cleanups and
      refactorings, here we've finally come to the new functionality
      implementation. It concerns the poll-based transfer (as Baikal-T1 System
      Boot SPI controller lacks a dedicated IRQ lane connected) and the SPI
      memory operations implementation. If the former feature is pretty much
      straightforward (see the patch log for details), the later one is a bit
      tricky. It's based on the EEPROM-read (write-then-read) and the Tx-only
      modes of the DW APB SSI controller, which as performing the automatic data
      read and write let's us to implement the faster IO procedure than using
      the Tx-Rx-mode-based approach. Having the memory-operations implemented
      that way is the best thing we can currently do to provide the errors-less
      SPI transfers to SPI devices with native CS attached.
      
      Note the approach utilized here to develop the SPI memory operations can
      be also used to create the "automatic CS toggle problem"-free(ish) SPI
      transfers (combine SPI-message transfers into two buffers, disable
      interrupts, push-pull the combined data). But we don't provide a solution
      in the framework of this patchset. It is a matter of a dedicated one,
      which we currently don't intend to spend our time on.
      
      Finally at the closure of the this patchset you'll find patches, which
      provide the Baikal-T1-specific DW APB SSI controllers support. The SoC has
      got three SPI controllers. Two of them are pretty much normal DW APB SSI
      interfaces: with IRQ, DMA, FIFOs of 64 words depth, 4x CSs. But the third
      one as being a part of the Baikal-T1 System Boot Controller has got a very
      limited resources: no IRQ, no DMA, only a single native chip-select and
      Tx/Rx FIFOs with just 8 words depth available. In order to provide a
      transparent initial boot code execution the System Boot SPI Controller is
      also utilized by an vendor-specific IP-block, which exposes an SPI flash
      memory direct mapping interface. Please see the corresponding patch for
      details.
      
      Link: https://lore.kernel.org/linux-spi/20200508093621.31619-1-Sergey.Semin@baikalelectronics.ru/
      
      [1] "LINUX KERNEL MEMORY BARRIERS", Documentation/memory-barriers.txt,
          Section "KERNEL I/O BARRIER EFFECTS"
      Signed-off-by: default avatarSerge Semin <Sergey.Semin@baikalelectronics.ru>
      Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
      Cc: Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru>
      Cc: Pavel Parkhomenko <Pavel.Parkhomenko@baikalelectronics.ru>
      Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
      Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
      Cc: Lars Povlsen <lars.povlsen@microchip.com>
      Cc: wuxu.wu <wuxu.wu@huawei.com>
      Cc: Feng Tang <feng.tang@intel.com>
      Cc: Rob Herring <robh+dt@kernel.org>
      Cc: linux-spi@vger.kernel.org
      Cc: devicetree@vger.kernel.org
      Cc: linux-kernel@vger.kernel.org
      
      Serge Semin (30):
        spi: dw: Discard IRQ threshold macro
        spi: dw: Use ternary op to init set_cs callback
        spi: dw: Initialize n_bytes before the memory barrier
        Revert: spi: spi-dw: Add lock protect dw_spi rx/tx to prevent
          concurrent calls
        spi: dw: Clear IRQ status on DW SPI controller reset
        spi: dw: Disable all IRQs when controller is unused
        spi: dw: Use relaxed IO-methods to access FIFOs
        spi: dw: Discard DW SSI chip type storages
        spi: dw: Convert CS-override to DW SPI capabilities
        spi: dw: Add KeemBay Master capability
        spi: dw: Add DWC SSI capability
        spi: dw: Detach SPI device specific CR0 config method
        spi: dw: Update SPI bus speed in a config function
        spi: dw: Simplify the SPI bus speed config procedure
        spi: dw: Update Rx sample delay in the config function
        spi: dw: Add DW SPI controller config structure
        spi: dw: Refactor data IO procedure
        spi: dw: Refactor IRQ-based SPI transfer procedure
        spi: dw: Perform IRQ setup in a dedicated function
        spi: dw: Unmask IRQs after enabling the chip
        spi: dw: Discard chip enabling on DMA setup error
        spi: dw: De-assert chip-select on reset
        spi: dw: Explicitly de-assert CS on SPI transfer completion
        spi: dw: Move num-of retries parameter to the header file
        spi: dw: Add generic DW SSI status-check method
        spi: dw: Add memory operations support
        spi: dw: Introduce max mem-ops SPI bus frequency setting
        spi: dw: Add poll-based SPI transfers support
        dt-bindings: spi: dw: Add Baikal-T1 SPI Controllers
        spi: dw: Add Baikal-T1 SPI Controller glue driver
      
       .../bindings/spi/snps,dw-apb-ssi.yaml         |  33 +-
       drivers/spi/Kconfig                           |  29 +
       drivers/spi/Makefile                          |   1 +
       drivers/spi/spi-dw-bt1.c                      | 339 +++++++++
       drivers/spi/spi-dw-core.c                     | 642 ++++++++++++++----
       drivers/spi/spi-dw-dma.c                      |  16 +-
       drivers/spi/spi-dw-mmio.c                     |  36 +-
       drivers/spi/spi-dw.h                          |  85 ++-
       8 files changed, 960 insertions(+), 221 deletions(-)
       create mode 100644 drivers/spi/spi-dw-bt1.c
      
      --
      2.27.0
      9d362152
    • Serge Semin's avatar
      spi: spi-dw: Remove extraneous locking · 0b6bfad4
      Serge Semin authored
      There is no point in having the commit 19b61392 ("spi: spi-dw: Add
      lock protect dw_spi rx/tx to prevent concurrent calls") applied. The
      commit author made an assumption that the problem with the rx data
      mismatch was due to the lack of the data protection. While most likely it
      was caused by the lack of the memory barrier. So having the
      commit bfda0445 ("spi: dw: use "smp_mb()" to avoid sending spi data
      error") applied would be enough to fix the problem.
      
      Indeed the spin unlock operation makes sure each memory operation issued
      before the release will be completed before it's completed. In other words
      it works as an implicit one way memory barrier. So having both smp_mb()
      and the spin_unlock_irqrestore() here is just redundant. One of them would
      be enough. It's better to leave the smp_mb() since the Tx/Rx buffers
      consistency is provided by the data transfer algorithm implementation:
      first we initialize the buffers pointers, then make sure the assignments
      are visible by the other CPUs by calling the smp_mb(), only after that
      enable the interrupt, which handler uses the buffers.
      Signed-off-by: default avatarSerge Semin <Sergey.Semin@baikalelectronics.ru>
      Link: https://lore.kernel.org/r/20200920112914.26501-5-Sergey.Semin@baikalelectronics.ruSigned-off-by: default avatarMark Brown <broonie@kernel.org>
      0b6bfad4
    • Serge Semin's avatar
      spi: dw: Add KeemBay Master capability · ffb7ca54
      Serge Semin authored
      In a further commit we'll have to get rid of the update_cr0() callback and
      define a DW SSI capability instead. Since Keem Bay master/slave
      functionality is controller by the CTRL0 register bitfield, we need to
      first move the master mode selection into the internal corresponding
      update_cr0 method, which would be activated by means of the dedicated
      DW_SPI_CAP_KEEMBAY_MST capability setup.
      
      Note this will be also useful if the driver will be ever altered to
      support the DW SPI slave interface.
      Signed-off-by: default avatarSerge Semin <Sergey.Semin@baikalelectronics.ru>
      Link: https://lore.kernel.org/r/20200920112914.26501-11-Sergey.Semin@baikalelectronics.ruSigned-off-by: default avatarMark Brown <broonie@kernel.org>
      ffb7ca54
    • Serge Semin's avatar
      spi: dw: Convert CS-override to DW SPI capabilities · cc760f31
      Serge Semin authored
      There are several vendor-specific versions of the DW SPI controllers,
      each of which may have some peculiarities with respect to the original
      IP-core. Seeing it has already caused adding flags and a callback into the
      DW SPI private data, let's introduce a generic capabilities interface to
      tune the generic DW SPI controller driver up in accordance with the
      particular controller specifics. It's done by converting a simple
      Alpine-specific CS-override capability into the DW SPI controller
      capability activated by setting the DW_SPI_CAP_CS_OVERRIDE flag.
      Signed-off-by: default avatarSerge Semin <Sergey.Semin@baikalelectronics.ru>
      Link: https://lore.kernel.org/r/20200920112914.26501-10-Sergey.Semin@baikalelectronics.ruSigned-off-by: default avatarMark Brown <broonie@kernel.org>
      cc760f31
    • Serge Semin's avatar
      spi: dw: Discard DW SSI chip type storages · 675e7c9d
      Serge Semin authored
      Keeping SPI peripheral devices type is pointless since first it hasn't
      been functionally utilized by any of the client drivers/code and second it
      won't work for Microwire type at the very least. Moreover there is no
      point in setting up the type by means of the chip-data in the modern
      kernel. The peripheral devices with specific interface type need to be
      detected in order to activate the corresponding frame format. It most
      likely will require some peripheral device specific DT property or
      whatever to find out the interface protocol. So let's remove the serial
      interface type fields from the DW APB SSI controller and the SPI
      peripheral device private data.
      
      Note we'll preserve the explicit SSI_MOTO_SPI interface type setting up to
      signify the only currently supported interface protocol.
      Signed-off-by: default avatarSerge Semin <Sergey.Semin@baikalelectronics.ru>
      Link: https://lore.kernel.org/r/20200920112914.26501-9-Sergey.Semin@baikalelectronics.ruSigned-off-by: default avatarMark Brown <broonie@kernel.org>
      675e7c9d