- 30 Oct, 2014 40 commits
-
-
David S. Miller authored
[ Upstream commit bb4e6e85 ] In order to accomodate embedded per-cpu allocation with large numbers of cpus and numa nodes, we have to use as much virtual address space as possible for the vmalloc region. Otherwise we can get things like: PERCPU: max_distance=0x380001c10000 too large for vmalloc space 0xff00000000 So, once we select a value for PAGE_OFFSET, derive the size of the vmalloc region based upon that. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
Make sure, at compile time, that the kernel can properly support whatever MAX_PHYS_ADDRESS_BITS is defined to. On M7 chips, use a max_phys_bits value of 49. Based upon a patch by Bob Picco. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit c06240c7 ] For sparse memory configurations, the vmemmap array behaves terribly and it takes up an inordinate amount of space in the BSS section of the kernel image unconditionally. Just build huge PMDs and look them up just like we do for TLB misses in the vmalloc area. Kernel BSS shrinks by about 2MB. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 0dd5b7b0 ] If max_phys_bits needs to be > 43 (f.e. for T4 chips), things like DEBUG_PAGEALLOC stop working because the 3-level page tables only can cover up to 43 bits. Another problem is that when we increased MAX_PHYS_ADDRESS_BITS up to 47, several statically allocated tables became enormous. Compounding this is that we will need to support up to 49 bits of physical addressing for M7 chips. The two tables in question are sparc64_valid_addr_bitmap and kpte_linear_bitmap. The first holds a bitmap, with 1 bit for each 4MB chunk of physical memory, indicating whether that chunk actually exists in the machine and is valid. The second table is a set of 2-bit values which tell how large of a mapping (4MB, 256MB, 2GB, 16GB, respectively) we can use at each 256MB chunk of ram in the system. These tables are huge and take up an enormous amount of the BSS section of the sparc64 kernel image. Specifically, the sparc64_valid_addr_bitmap is 4MB, and the kpte_linear_bitmap is 128K. So let's solve the space wastage and the DEBUG_PAGEALLOC problem at the same time, by using the kernel page tables (as designed) to manage this information. We have to keep using large mappings when DEBUG_PAGEALLOC is disabled, and we do this by encoding huge PMDs and PUDs. On a T4-2 with 256GB of ram the kernel page table takes up 16K with DEBUG_PAGEALLOC disabled and 256MB with it enabled. Furthermore, this memory is dynamically allocated at run time rather than coded statically into the kernel image. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 8c82dc0e ] As currently coded the KTSB accesses in the kernel only support up to 47 bits of physical addressing. Adjust the instruction and patching sequence in order to support arbitrary 64 bits addresses. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 4397bed0 ] Now that we use 4-level page tables, we can provide up to 53-bits of virtual address space to the user. Adjust the VA hole based upon the capabilities of the cpu type probed. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit ac55c768 ] This has become necessary with chips that support more than 43-bits of physical addressing. Based almost entirely upon a patch by Bob Picco. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
bob picco authored
The T5 (niagara5) has different PCR related HV fast trap values and a new HV API Group. This patch utilizes these and shares when possible with niagara4. We use the same sparc_pmu niagara4_pmu. Should there be new effort to obtain the MCU perf statistics then this would have to be changed. Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Allen Pais authored
Signed-off-by: Allen Pais <allen.pais@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Allen Pais authored
Add M6 and M7 chip type in cpumap.c to correctly build CPU distribution map that spans all online CPUs. Signed-off-by: Allen Pais <allen.pais@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Allen Pais authored
The following patch adds support for correctly recognising M6 and M7 cpu type. Signed-off-by: Allen Pais <allen.pais@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
We changed PAGE_OFFSET to be a variable rather than a constant, but this reference here in the hibernate assembler got missed. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit e2653143 ] This breaks the stack end corruption detection facility. What that facility does it write a magic value to "end_of_stack()" and checking to see if it gets overwritten. "end_of_stack()" is "task_thread_info(p) + 1", which for sparc64 is the beginning of the FPU register save area. So once the user uses the FPU, the magic value is overwritten and the debug checks trigger. Fix this by making the size explicit. Due to the size we use for the fpsaved[], gsr[], and xfsr[] arrays we are limited to 7 levels of FPU state saves. So each FPU register set is 256 bytes, allocate 256 * 7 for the fpregs area. Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit f4da3628 ] The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the key material is preloaded into the FPU registers, and then we loop over and over doing the crypt operation, reusing those pre-cooked key registers. There are intervening blkcipher*() calls between the crypt operation calls. And those might perform memcpy() and thus also try to use the FPU. The sparc64 kernel FPU usage mechanism is designed to allow such recursive uses, but with a catch. There has to be a trap between the two FPU using threads of control. The mechanism works by, when the FPU is already in use by the kernel, allocating a slot for FPU saving at trap time. Then if, within the trap handler, we try to use the FPU registers, the pre-trap FPU register state is saved into the slot. Then at trap return time we notice this and restore the pre-trap FPU state. Over the long term there are various more involved ways we can make this work, but for a quick fix let's take advantage of the fact that the situation where this happens is very limited. All sparc64 chips that support the crypto instructiosn also are using the Niagara4 memcpy routine, and that routine only uses the FPU for large copies where we can't get the source aligned properly to a multiple of 8 bytes. We look to see if the FPU is already in use in this context, and if so we use the non-large copy path which only uses integer registers. Furthermore, we also limit this special logic to when we are doing kernel copy, rather than a user copy. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit bdcf81b6 ] Inconsistently, the raw_* IRQ routines do not interact with and update the irqflags tracing and lockdep state, whereas the raw_* spinlock interfaces do. This causes problems in p1275_cmd_direct() because we disable hardirqs by hand using raw_local_irq_restore() and then do a raw_spin_lock() which triggers a lockdep trace because the CPU's hw IRQ state doesn't match IRQ tracing's internal software copy of that state. The CPU's irqs are disabled, yet current->hardirqs_enabled is true. ==================== reboot: Restarting system ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at kernel/locking/lockdep.c:3536 check_flags+0x7c/0x240() DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) Modules linked in: openpromfs CPU: 0 PID: 1 Comm: systemd-shutdow Tainted: G W 3.17.0-dirty #145 Call Trace: [000000000045919c] warn_slowpath_common+0x5c/0xa0 [0000000000459210] warn_slowpath_fmt+0x30/0x40 [000000000048f41c] check_flags+0x7c/0x240 [0000000000493280] lock_acquire+0x20/0x1c0 [0000000000832b70] _raw_spin_lock+0x30/0x60 [000000000068f2fc] p1275_cmd_direct+0x1c/0x60 [000000000068ed28] prom_reboot+0x28/0x40 [000000000043610c] machine_restart+0x4c/0x80 [000000000047d2d4] kernel_restart+0x54/0x80 [000000000047d618] SyS_reboot+0x138/0x200 [00000000004060b4] linux_sparc_syscall32+0x34/0x60 ---[ end trace 5c439fe81c05a100 ]--- possible reason: unannotated irqs-off. irq event stamp: 2010267 hardirqs last enabled at (2010267): [<000000000049a358>] vprintk_emit+0x4b8/0x580 hardirqs last disabled at (2010266): [<0000000000499f08>] vprintk_emit+0x68/0x580 softirqs last enabled at (2010046): [<000000000045d278>] __do_softirq+0x378/0x4a0 softirqs last disabled at (2010039): [<000000000042bf08>] do_softirq_own_stack+0x28/0x40 Resetting ... ==================== Use local_* variables of the hw IRQ interfaces so that IRQ tracing sees all of our changes. Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 473ad7f4 ] When we have to split up a flush request into multiple pieces (in order to avoid the firmware range) we don't specify the arguments in the right order for the second piece. Fix the order, or else we get hangs as the code tries to flush "a lot" of entries and we get lockups like this: [ 4422.981276] NMI watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [expect:117032] [ 4422.996130] Modules linked in: ipv6 loop usb_storage igb ptp sg sr_mod ehci_pci ehci_hcd pps_core n2_rng rng_core [ 4423.016617] CPU: 12 PID: 117032 Comm: expect Not tainted 3.17.0-rc4+ #1608 [ 4423.030331] task: fff8003cc730e220 ti: fff8003d99d54000 task.ti: fff8003d99d54000 [ 4423.045282] TSTATE: 0000000011001602 TPC: 00000000004521e8 TNPC: 00000000004521ec Y: 00000000 Not tainted [ 4423.064905] TPC: <__flush_tlb_kernel_range+0x28/0x40> [ 4423.074964] g0: 000000000052fd10 g1: 00000001295a8000 g2: ffffff7176ffc000 g3: 0000000000002000 [ 4423.092324] g4: fff8003cc730e220 g5: fff8003dfedcc000 g6: fff8003d99d54000 g7: 0000000000000006 [ 4423.109687] o0: 0000000000000000 o1: 0000000000000000 o2: 0000000000000003 o3: 00000000f0000000 [ 4423.127058] o4: 0000000000000080 o5: 00000001295a8000 sp: fff8003d99d56d01 ret_pc: 000000000052ff54 [ 4423.145121] RPC: <__purge_vmap_area_lazy+0x314/0x3a0> [ 4423.155185] l0: 0000000000000000 l1: 0000000000000000 l2: 0000000000a38040 l3: 0000000000000000 [ 4423.172559] l4: fff8003dae8965e0 l5: ffffffffffffffff l6: 0000000000000000 l7: 00000000f7e2b138 [ 4423.189913] i0: fff8003d99d576a0 i1: fff8003d99d576a8 i2: fff8003d99d575e8 i3: 0000000000000000 [ 4423.207284] i4: 0000000000008008 i5: fff8003d99d575c8 i6: fff8003d99d56df1 i7: 0000000000530c24 [ 4423.224640] I7: <free_vmap_area_noflush+0x64/0x80> [ 4423.234193] Call Trace: [ 4423.239051] [0000000000530c24] free_vmap_area_noflush+0x64/0x80 [ 4423.251029] [0000000000531a7c] remove_vm_area+0x5c/0x80 [ 4423.261628] [0000000000531b80] __vunmap+0x20/0x120 [ 4423.271352] [000000000071cf18] n_tty_close+0x18/0x40 [ 4423.281423] [00000000007222b0] tty_ldisc_close+0x30/0x60 [ 4423.292183] [00000000007225a4] tty_ldisc_reinit+0x24/0xa0 [ 4423.303120] [0000000000722ab4] tty_ldisc_hangup+0xd4/0x1e0 [ 4423.314232] [0000000000719aa0] __tty_hangup+0x280/0x3c0 [ 4423.324835] [0000000000724cb4] pty_close+0x134/0x1a0 [ 4423.334905] [000000000071aa24] tty_release+0x104/0x500 [ 4423.345316] [00000000005511d0] __fput+0x90/0x1e0 [ 4423.354701] [000000000047fa54] task_work_run+0x94/0xe0 [ 4423.365126] [0000000000404b44] __handle_signal+0xc/0x2c Fixes: 4ca9a237 ("sparc64: Guard against flushing openfirmware mappings.") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexei Starovoitov authored
[ Upstream commit 35607b02 ] - fix BPF_LD|ABS|IND from negative offsets: make sure to sign extend lower 32 bits in 64-bit register before calling C helpers from JITed code, otherwise 'int k' argument of bpf_internal_load_pointer_neg_helper() function will be added as large unsigned integer, causing packet size check to trigger and abort the program. It's worth noting that JITed code for 'A = A op K' will affect upper 32 bits differently depending whether K is simm13 or not. Since small constants are sign extended, whereas large constants are stored in temp register and zero extended. That is ok and we don't have to pay a penalty of sign extension for every sethi, since all classic BPF instructions have 32-bit semantics and we only need to set correct upper bits when transitioning from JITed code into C. - though instructions 'A &= 0' and 'A *= 0' are odd, JIT compiler should not optimize them out Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexei Starovoitov authored
[ Upstream commit f6f2332d ] fix several issues in sparc BPF JIT compiler. ldx/stx related: . classic BPF instructions that access mem[] slots were not setting SEEN_MEM flag, so stack wasn't allocated. Fix that by advertising correct flags . LDX/STX instructions were missing SEEN_XREG, so register value could have leaked to user space. Fix it. . since stack for mem[] slots is allocated with 'sub %sp' instead of 'save %sp', use %sp as base register instead of %fp. . ldx mem[0] means first slot in classic BPF which should have -4 offset instead of 0. . sparc64 needs 2047 stack bias as per ABI to access stack . emit_stmem() was using LD32I macro instead of ST32I SKF_AD_VLAN_TAG* related: . SKF_AD_VLAN_TAG_PRESENT must return 1 or 0 instead of '> 0' or 0 as per classic BPF de facto standard . SKF_AD_VLAN_TAG needs to mask the field correctly Fixes: 2809a208 ("net: filter: Just In Time compiler for sparc") Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andreas Larsson authored
[ Upstream commit 74cad25c ] This makes memset follow the standard (instead of returning 0 on success). This is needed when certain versions of gcc optimizes around memset calls and assume that the address argument is preserved in %o0. Signed-off-by: Andreas Larsson <andreas@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sowmini Varadhan authored
[ Upstream commit c21c4ab0 ] The request_irq() needs to be done from ldc_alloc() to avoid the following (caught by lockdep) [00000000004a0738] __might_sleep+0xf8/0x120 [000000000058bea4] kmem_cache_alloc_trace+0x184/0x2c0 [00000000004faf80] request_threaded_irq+0x80/0x160 [000000000044f71c] ldc_bind+0x7c/0x220 [0000000000452454] vio_port_up+0x54/0xe0 [00000000101f6778] probe_disk+0x38/0x220 [sunvdc] [00000000101f6b8c] vdc_port_probe+0x22c/0x300 [sunvdc] [0000000000451a88] vio_device_probe+0x48/0x60 [000000000074c56c] really_probe+0x6c/0x300 [000000000074c83c] driver_probe_device+0x3c/0xa0 [000000000074c92c] __driver_attach+0x8c/0xa0 [000000000074a6ec] bus_for_each_dev+0x6c/0xa0 [000000000074c1dc] driver_attach+0x1c/0x40 [000000000074b0fc] bus_add_driver+0xbc/0x280 Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Acked-by: Dwight Engen <dwight.engen@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
bob picco authored
[ Upstream commit 3dee9df5 ] We have seen an issue with guest boot into LDOM that causes early boot failures because of no matching rules for node identitity of the memory. I analyzed this on my T4 and concluded there might not be a solution. I saw the issue in mainline too when booting into the control/primary domain - with guests configured. Note, this could be a firmware bug on some older machines. I'll provide a full explanation of the issues below. Should we not find a matching BEST latency group for a real address (RA) then we will assume node 0. On the T4-2 here with the information provided I can't see an alternative. Technically the LDOM shown below should match the MBLOCK to the favorable latency group. However other factors must be considered too. Were the memory controllers configured "fine" grained interleave or "coarse" grain interleaved - T4. Also should a "group" MD node be considered a NUMA node? There has to be at least one Machine Description (MD) "group" and hence one NUMA node. The group can have one or more latency groups (lg) - more than one memory controller. The current code chooses the smallest latency as the most favorable per group. The latency and lg information is in MLGROUP below. MBLOCK is the base and size of the RAs for the machine as fetched from OBP /memory "available" property. My machine has one MBLOCK but more would be possible - with holes? For a T4-2 the following information has been gathered: with LDOM guest MEMBLOCK configuration: memory size = 0x27f870000 memory.cnt = 0x3 memory[0x0] [0x00000020400000-0x0000029fc67fff], 0x27f868000 bytes memory[0x1] [0x0000029fd8a000-0x0000029fd8bfff], 0x2000 bytes memory[0x2] [0x0000029fd92000-0x0000029fd97fff], 0x6000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00000020800000-0x000000216c15c0], 0xec15c1 bytes reserved[0x1] [0x00000024800000-0x0000002c180c1e], 0x7980c1f bytes MBLOCK[0]: base[20000000] size[280000000] offset[0] (note: "base" and "size" reported in "MBLOCK" encompass the "memory[X]" values) (note: (RA + offset) & mask = val is the formula to detect a match for the memory controller. should there be no match for find_node node, a return value of -1 resulted for the node - BAD) There is one group. It has these forward links MLGROUP[1]: node[545] latency[1f7e8] match[200000000] mask[200000000] MLGROUP[2]: node[54d] latency[2de60] match[0] mask[200000000] NUMA NODE[0]: node[545] mask[200000000] val[200000000] (latency[1f7e8]) (note: "val" is the best lg's (smallest latency) "match") no LDOM guest - bare metal MEMBLOCK configuration: memory size = 0xfdf2d0000 memory.cnt = 0x3 memory[0x0] [0x00000020400000-0x00000fff6adfff], 0xfdf2ae000 bytes memory[0x1] [0x00000fff6d2000-0x00000fff6e7fff], 0x16000 bytes memory[0x2] [0x00000fff766000-0x00000fff771fff], 0xc000 bytes reserved.cnt = 0x2 reserved[0x0] [0x00000020800000-0x00000021a04580], 0x1204581 bytes reserved[0x1] [0x00000024800000-0x0000002c7d29fc], 0x7fd29fd bytes MBLOCK[0]: base[20000000] size[fe0000000] offset[0] there are two groups group node[16d5] MLGROUP[0]: node[1765] latency[1f7e8] match[0] mask[200000000] MLGROUP[3]: node[177d] latency[2de60] match[200000000] mask[200000000] NUMA NODE[0]: node[1765] mask[200000000] val[0] (latency[1f7e8]) group node[171d] MLGROUP[2]: node[1775] latency[2de60] match[0] mask[200000000] MLGROUP[1]: node[176d] latency[1f7e8] match[200000000] mask[200000000] NUMA NODE[1]: node[176d] mask[200000000] val[200000000] (latency[1f7e8]) (note: for this two "group" bare metal machine, 1/2 memory is in group one's lg and 1/2 memory is in group two's lg). Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 84bd6d8b ] Every path that ends up at do_sparc64_fault() must install a valid FAULT_CODE_* bitmask in the per-thread fault code byte. Two paths leading to the label winfix_trampoline (which expects the FAULT_CODE_* mask in register %g4) were not doing so: 1) For pre-hypervisor TLB protection violation traps, if we took the 'winfix_trampoline' path we wouldn't have %g4 initialized with the FAULT_CODE_* value yet. Resulting in using the TLB_TAG_ACCESS register address value instead. 2) In the TSB miss path, when we notice that we are going to use a hugepage mapping, but we haven't allocated the hugepage TSB yet, we still have to take the window fixup case into consideration and in that particular path we leave %g4 not setup properly. Errors on this sort were largely invisible previously, but after commit 4ccb9272 ("sparc64: sun4v TLB error power off events") we now have a fault_code mask bit (FAULT_CODE_BAD_RA) that triggers due to this bug. FAULT_CODE_BAD_RA triggers because this bit is set in TLB_TAG_ACCESS (see #1 above) and thus we get seemingly random bus errors triggered for user processes. Fixes: 4ccb9272 ("sparc64: sun4v TLB error power off events") Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
bob picco authored
[ Upstream commit 4ccb9272 ] We've witnessed a few TLB events causing the machine to power off because of prom_halt. In one case it was some nfs related area during rmmod. Another was an mmapper of /dev/mem. A more recent one is an ITLB issue with a bad pagesize which could be a hardware bug. Bugs happen but we should attempt to not power off the machine and/or hang it when possible. This is a DTLB error from an mmapper of /dev/mem: [root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1 SUN4V-DTLB: TPC<0xfffff80100903e6c> SUN4V-DTLB: O7[fffff801081979d0] SUN4V-DTLB: O7<0xfffff801081979d0> SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2] . This is recent mainline for ITLB: [ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc> [ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8] [ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8> [ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4] . Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call prom_halt() and drop us to OF command prompt "ok". This isn't the case for LDOMs and the machine powers off. For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal one("1"). Otherwise, for %tl > 1, we proceed eventually to die_if_kernel(). The logic of this patch was partially inspired by David Miller's feedback. Power off of large sparc64 machines is painful. Plus die_if_kernel provides more context. A reset sequence isn't a brief period on large sparc64 but better than power-off/power-on sequence. Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Hellstrom authored
[ Upstream commit d1105287 ] dma_zalloc_coherent() calls dma_alloc_coherent(__GFP_ZERO) but the sparc32 implementations sbus_alloc_coherent() and pci32_alloc_coherent() doesn't take the gfp flags into account. Tested on the SPARC32/LEON GRETH Ethernet driver which fails due to dma_alloc_coherent(__GFP_ZERO) returns non zeroed pages. Signed-off-by: Daniel Hellstrom <daniel@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 8bccf5b3 ] Christopher reports that perf_event_print_debug() can crash in uniprocessor builds. The crash is due to pcr_ops being NULL. This happens because pcr_arch_init() is only invoked by smp_cpus_done() which only executes in SMP builds. init_hw_perf_events() is closely intertwined with pcr_ops being setup properly, therefore: 1) Call pcr_arch_init() early on from init_hw_perf_events(), instead of from smp_cpus_done(). 2) Do not hook up a PMU type if pcr_ops is NULL after pcr_arch_init(). 3) Move init_hw_perf_events to a later initcall so that it we will be sure to invoke pcr_arch_init() after all cpus are brought up. Finally, guard the one naked sequence of pcr_ops dereferences in __global_pmu_self() with an appropriate NULL check. Reported-by: Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 58556104 ] nmi_cpu_busy() is a SMP function call that just makes sure that all of the cpus are spinning using cpu cycles while the NMI test runs. It does not need to disable IRQs because we just care about NMIs executing which will even with 'normal' IRQs disabled. It is not legal to enable hard IRQs in a SMP cross call, in fact this bug triggers the BUG check in irq_work_run_list(): BUG_ON(!irqs_disabled()); Because now irq_work_run() is invoked from the tail of generic_smp_call_function_single_interrupt(). Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Chinner authored
commit 0d085a52 upstream. XFS has been having trouble with stray delayed allocation extents beyond EOF for a long time. Recent changes to the collapse range code has triggered erroneous EBUSY errors on page invalidtion for block size smaller than page size filesystems. These have been caused by dirty buffers beyond EOF on a partial page which do not get written to disk during a sync. The issue is that write-ahead in xfs_cluster_write() finds such a partial page and handles it by leaving the page dirty but pushing it into a writeback state. This used to work just fine, as the write_cache_pages() code would then find the dirty partial page in the next mapping tree lookup as the dirty tag is still set. Unfortunately, when we moved to a mark and sweep approach to writeback to fix other writeback sync issues, we broken this. THe act of marking the page as under writeback now clears the TOWRITE tag in the radix tree, even though the page is still dirty. This causes the TOWRITE tag to be cleared, and hence the next lookup on the mapping tree does not find the dirty partial page and so doesn't try to write it again. This same writeback bug was found recently in ext4 and fixed in commit 1c8349a1 ("ext4: fix data integrity sync in ordered mode") without communication to the wider filesystem community. We can use exactly the same fix here so the TOWRITE flag is not cleared on partial page writes. cc: stable@vger.kernel.org # dependent on 1c8349a1Root-cause-found-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Chao Yu authored
commit 35425ea2 upstream. Christopher Head 2014-06-28 05:26:20 UTC described: "I tried to reproduce this on 3.12.21. Instead, when I do "echo hello > foo" in an ecryptfs mount with ecryptfs_xattr specified, I get a kernel crash: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff8110eb39>] fsstack_copy_attr_all+0x2/0x61 PGD d7840067 PUD b2c3c067 PMD 0 Oops: 0002 [#1] SMP Modules linked in: nvidia(PO) CPU: 3 PID: 3566 Comm: bash Tainted: P O 3.12.21-gentoo-r1 #2 Hardware name: ASUSTek Computer Inc. G60JX/G60JX, BIOS 206 03/15/2010 task: ffff8801948944c0 ti: ffff8800bad70000 task.ti: ffff8800bad70000 RIP: 0010:[<ffffffff8110eb39>] [<ffffffff8110eb39>] fsstack_copy_attr_all+0x2/0x61 RSP: 0018:ffff8800bad71c10 EFLAGS: 00010246 RAX: 00000000000181a4 RBX: ffff880198648480 RCX: 0000000000000000 RDX: 0000000000000004 RSI: ffff880172010450 RDI: 0000000000000000 RBP: ffff880198490e40 R08: 0000000000000000 R09: 0000000000000000 R10: ffff880172010450 R11: ffffea0002c51e80 R12: 0000000000002000 R13: 000000000000001a R14: 0000000000000000 R15: ffff880198490e40 FS: 00007ff224caa700(0000) GS:ffff88019fcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000000bb07f000 CR4: 00000000000007e0 Stack: ffffffff811826e8 ffff8800a39d8000 0000000000000000 000000000000001a ffff8800a01d0000 ffff8800a39d8000 ffffffff81185fd5 ffffffff81082c2c 00000001a39d8000 53d0abbc98490e40 0000000000000037 ffff8800a39d8220 Call Trace: [<ffffffff811826e8>] ? ecryptfs_setxattr+0x40/0x52 [<ffffffff81185fd5>] ? ecryptfs_write_metadata+0x1b3/0x223 [<ffffffff81082c2c>] ? should_resched+0x5/0x23 [<ffffffff8118322b>] ? ecryptfs_initialize_file+0xaf/0xd4 [<ffffffff81183344>] ? ecryptfs_create+0xf4/0x142 [<ffffffff810f8c0d>] ? vfs_create+0x48/0x71 [<ffffffff810f9c86>] ? do_last.isra.68+0x559/0x952 [<ffffffff810f7ce7>] ? link_path_walk+0xbd/0x458 [<ffffffff810fa2a3>] ? path_openat+0x224/0x472 [<ffffffff810fa7bd>] ? do_filp_open+0x2b/0x6f [<ffffffff81103606>] ? __alloc_fd+0xd6/0xe7 [<ffffffff810ee6ab>] ? do_sys_open+0x65/0xe9 [<ffffffff8157d022>] ? system_call_fastpath+0x16/0x1b RIP [<ffffffff8110eb39>] fsstack_copy_attr_all+0x2/0x61 RSP <ffff8800bad71c10> CR2: 0000000000000000 ---[ end trace df9dba5f1ddb8565 ]---" If we create a file when we mount with ecryptfs_xattr_metadata option, we will encounter a crash in this path: ->ecryptfs_create ->ecryptfs_initialize_file ->ecryptfs_write_metadata ->ecryptfs_write_metadata_to_xattr ->ecryptfs_setxattr ->fsstack_copy_attr_all It's because our dentry->d_inode used in fsstack_copy_attr_all is NULL, and it will be initialized when ecryptfs_initialize_file finish. So we should skip copying attr from lower inode when the value of ->d_inode is invalid. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Fabio Estevam authored
commit d1e61eb4 upstream. Commit 78b81f46 ("ARM: dts: imx28-evk: Run I2C0 at 400kHz") caused issues when doing the following sequence in loop: - Boot the kernel - Perform audio playback - Reboot the system via 'reboot' command In many times the audio card cannot be probed, which causes playback to fail. After restoring to the original i2c0 frequency of 100kHz there is no such problem anymore. This reverts commit 78b81f46. Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com> Signed-off-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
klightspeed@killerwolves.net authored
commit ace85781 upstream. The bootloader on the Netgear ReadyNAS RN102 uses Hardware BCH ECC (strength = 4), while the pxa3xx NAND driver by default uses Hamming ECC (strength = 1). This patch changes the ECC mode on these machines to match that of the bootloader and of the stock firmware. That way, it is now possible to update the kernel from userland (e.g. using standard tools from mtd-utils package); u-boot will happily load and boot it. Fixes: 92beaccd ("ARM: mvebu: Enable NAND controller in ReadyNAS 102 .dts file") Signed-off-by: Ben Peddell <klightspeed@killerwolves.net> Acked-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Tested-by: Arnaud Ebalard <arno@natisbad.org> Link: https://lkml.kernel.org/r/1410339341-3372-1-git-send-email-klightspeed@killerwolves.netSigned-off-by: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Arnaud Ebalard authored
commit 500abb6c upstream. The bootloader on the Netgear ReadyNAS RN2120 uses Hardware BCH ECC (strength = 4), while the pxa3xx NAND driver by default uses Hamming ECC (strength = 1). This patch changes the ECC mode on these machines to match that of the bootloader and of the stock firmware. That way, it is now possible to update the kernel from userland (e.g. using standard tools from mtd-utils package); u-boot will happily load and boot it. The issue was initially reported and fixed by Ben Pedell for RN102. The RN2120 shares the same Hynix H27U1G8F2BTR NAND flash and setup. This patch is based on Ben's fix for RN102. Fixes: ad51eddd ("ARM: mvebu: Enable NAND controller in ReadyNAS 2120 .dts file") Signed-off-by: Arnaud Ebalard <arno@natisbad.org> Link: https://lkml.kernel.org/r/61f6a1b7ad0adc57a0e201b9680bc2e5f214a317.1410035142.git.arno@natisbad.orgSigned-off-by: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Arnaud Ebalard authored
commit 225b94cd upstream. The bootloader on the Netgear ReadyNAS RN104 uses Hardware BCH ECC (strength = 4), while the pxa3xx NAND driver by default uses Hamming ECC (strength = 1). This patch changes the ECC mode on these machines to match that of the bootloader and of the stock firmware. That way, it is now possible to update the kernel from userland (e.g. using standard tools from mtd-utils package); u-boot will happily load and boot it. The issue was initially reported and fixed by Ben Pedell for RN102. The RN104 shares the same Hynix H27U1G8F2BTR NAND flash and setup. This patch is based on Ben's fix for RN102. Fixes: 0373a558 ("ARM: mvebu: Enable NAND controller in ReadyNAS 104 .dts file") Signed-off-by: Arnaud Ebalard <arno@natisbad.org> Link: https://lkml.kernel.org/r/920c7e7169dc6aaaa3eb4bced2336d38e77b8864.1410035142.git.arno@natisbad.orgSigned-off-by: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andrew Lunn authored
commit 4f5e01e9 upstream. During the conversion of boards to use DT to instantiate Distributed Switch Architecture, nobody volunteered to test. As to be expected, the conversion was flawed. Testers and access to hardware has now become available, and this patch hopefully fixes the problems. dsa,mii-bus must be a phandle to the top level mdio node, not the port specific subnode of the mdio device. dsa,ethernet must be a phandle to the port subnode within the ethernet DT node, not the ethernet node. Don't pinctrl hog the card detect gpio for mvsdio. Rename the .dts files to make it clearer which file is for the Z0 stepping and which for the A0 or later stepping. Signed-off-by: Andrew Lunn <andrew@lunn.ch> Cc: seugene@marvell.com Tested-by: Eugene Sanivsky <seugene@marvell.com> Fixes: e2eaa339: ("ARM: Kirkwood: convert rd88f6281-setup.c to DT.") Fixes: e7c8f380: ("ARM: kirkwood: Convert mv88f6281gtw_ge switch setup to DT") Link: https://lkml.kernel.org/r/1409592941-22244-1-git-send-email-andrew@lunn.chSigned-off-by: Jason Cooper <jason@lakedaemon.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ludovic Desroches authored
commit cfa1950e upstream. When introducing support for sama5d3, the write to PMC_PCDR register has been accidentally removed. Reported-by: Nathalie Cyrille <nathalie.cyrille@atmel.com> Signed-off-by: Ludovic Desroches <ludovic.desroches@atmel.com> Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andreas Henriksson authored
commit b65e0fb3 upstream. As discovered on a custom board similar to at91sam9263ek and basing its devicetree on that one apparently the pin muxing doesn't get set up properly. This was discovered since the custom boards u-boot does funky stuff with the pin muxing and leaved it set to SPI which made the MMC driver not work under Linux. The fix is simply to define the given configuration as the default. This probably worked by pure luck before, but it's better to make the muxing explicitly set. Signed-off-by: Andreas Henriksson <andreas.henriksson@endian.se> Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com> Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Dueck authored
commit 0a51d644 upstream. Otherwise the clock for can0 will never get enabled. Signed-off-by: David Dueck <davidcdueck@googlemail.com> Signed-off-by: Anthony Harivel <anthony.harivel@emtrion.de> Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com> Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Henningsson authored
commit fb54a645 upstream. Without this terminating entry, the pin matching would continue across random memory until a zero or a non-matching entry was found. The result being that in some cases, the pin quirk would not be applied correctly. Signed-off-by: David Henningsson <david.henningsson@canonical.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Takashi Iwai authored
commit b1974f96 upstream. We implemented in a wrong way for mute LED on Lenovo Ideapad; the bit must be flipped. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=16373 Fixes: 3e887f37 ('ALSA: hda - Add mute LED support to Lenovo Ideapad') Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Anssi Hannula authored
commit 6acce400 upstream. The ELD ALSA control change event is sent by hdmi_present_sense() when eld_changed is true. Currently, it is only true when the ELD buffer contents have been modified. However, the user-visible ELD controls also change to a zero-length value and back when eld_valid is unset/set, and no event is currently sent in such cases (such as when unplugging or replugging a sink). Fix the code to always set eld_changed if eld_valid value is changed, and therefore to always send the change event when the user-visible value changes. Signed-off-by: Anssi Hannula <anssi.hannula@iki.fi> Cc: David Henningsson <david.henningsson@canonical.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vlad Catoi authored
commit f0b127fb upstream. Adding support for Steinberg UR22 USB interface via quirks table patch See Ubuntu bug report: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1317244 Also see threads: http://linux-audio.4202.n7.nabble.com/Support-for-Steinberg-UR22-Yamaha-USB-chipset-0499-1509-tc82888.html#a82917 http://www.steinberg.net/forums/viewtopic.php?t=62290 Tested by at least 4 people judging by the threads. Did not test MIDI interface, but audio output and capture both are functional. Built 3.17 kernel with this driver on Ubuntu 14.04 & tested with mpg123 Patch applied to 3.13 Ubuntu kernel works well enough for daily use. Signed-off-by: Vlad Catoi <vladcatoi@gmail.com> Acked-by: Clemens Ladisch <clemens@ladisch.de> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-