- 26 Oct, 2010 40 commits
-
-
Mel Gorman authored
There is strong evidence to indicate a lot of time is being spent in congestion_wait(), some of it unnecessarily. This patch adds a tracepoint for congestion_wait to record when congestion_wait() was called, how long the timeout was for and how long it actually slept. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mel Gorman authored
There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947b 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Shaohua Li authored
`priority' cannot be negative here. And the comment is obsolete. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Will Deacon authored
NODE_NOT_IN_PAGE_FLAGS is defined in mm.h when the node information is not stored in the page flags bitmap. Unfortunately, there's a typo in one of the checks for it. This patch fixes it (s/NODE_NOT_IN_PAGEFLAGS/NODE_NOT_IN_PAGE_FLAGS/). Since this has been around for ages, I doubt it's been causing any serious problems. Signed-off-by: Will Deacon <will.deacon@arm.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michael Rubin authored
The kernel already exposes the user desired thresholds in /proc/sys/vm with dirty_background_ratio and background_ratio. But the kernel may alter the number requested without giving the user any indication that is the case. Knowing the actual ratios the kernel is honoring can help app developers understand how their buffered IO will be sent to the disk. $ grep threshold /proc/vmstat nr_dirty_threshold 409111 nr_dirty_background_threshold 818223 Signed-off-by: Michael Rubin <mrubin@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michael Rubin authored
For NUMA node systems it is important to have visibility in memory characteristics. Two of the /proc/vmstat values "nr_written" and "nr_dirtied" are added here. # cat /sys/devices/system/node/node20/vmstat nr_written 0 nr_dirtied 0 Signed-off-by: Michael Rubin <mrubin@google.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michael Rubin authored
To help developers and applications gain visibility into writeback behaviour adding two entries to vm_stat_items and /proc/vmstat. This will allow us to track the "written" and "dirtied" counts. # grep nr_dirtied /proc/vmstat nr_dirtied 3747 # grep nr_written /proc/vmstat nr_written 3618 Signed-off-by: Michael Rubin <mrubin@google.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michael Rubin authored
To help developers and applications gain visibility into writeback behaviour this patch adds two counters to /proc/vmstat. # grep nr_dirtied /proc/vmstat nr_dirtied 3747 # grep nr_written /proc/vmstat nr_written 3618 These entries allow user apps to understand writeback behaviour over time and learn how it is impacting their performance. Currently there is no way to inspect dirty and writeback speed over time. It's not possible for nr_dirty/nr_writeback. These entries are necessary to give visibility into writeback behaviour. We have /proc/diskstats which lets us understand the io in the block layer. We have blktrace for more in depth understanding. We have e2fsprogs and debugsfs to give insight into the file systems behaviour, but we don't offer our users the ability understand what writeback is doing. There is no way to know how active it is over the whole system, if it's falling behind or to quantify it's efforts. With these values exported users can easily see how much data applications are sending through writeback and also at what rates writeback is processing this data. Comparing the rates of change between the two allow developers to see when writeback is not able to keep up with incoming traffic and the rate of dirty memory being sent to the IO back end. This allows folks to understand their io workloads and track kernel issues. Non kernel engineers at Google often use these counters to solve puzzling performance problems. Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written Patch #5 add writeback thresholds to /proc/vmstat Currently these values are in debugfs. But they should be promoted to /proc since they are useful for developers who are writing databases and file servers and are not debugging the kernel. The output is as below: # grep threshold /proc/vmstat nr_pages_dirty_threshold 409111 nr_pages_dirty_background_threshold 818223 This patch: This allows code outside of the mm core to safely manipulate page writeback state and not worry about the other accounting. Not using these routines means that some code will lose track of the accounting and we get bugs. Modify nilfs2 to use interface. Signed-off-by: Michael Rubin <mrubin@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Jiro SEKIBA <jir@unicus.jp> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vasiliy Kulikov authored
Function check_range may return ERR_PTR(...). Check for it. Signed-off-by: Vasiliy Kulikov <segooon@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Christoph Lameter <cl@linux.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Minchan Kim authored
Ying Han reported that backing aging of anon pages in no swap system causes unnecessary TLB flush. When I sent a patch(69c85481), I wanted this patch but Rik pointed out and allowed aging of anon pages to give a chance to promote from inactive to active LRU. It has a two problem. 1) non-swap system Never make sense to age anon pages. 2) swap configured but still doesn't swapon It doesn't make sense to age anon pages until swap-on time. But it's arguable. If we have aged anon pages by swapon, VM have moved anon pages from active to inactive. And in the time swapon by admin, the VM can't reclaim hot pages so we can protect hot pages swapout. But let's think about it. When does swap-on happen? It depends on admin. we can't expect it. Nonetheless, we have done aging of anon pages to protect hot pages swapout. It means we lost run time overhead when below high watermark but gain hot page swap-[in/out] overhead when VM decide swapout. Is it true? Let's think more detail. We don't promote anon pages in case of non-swap system. So even though VM does aging of anon pages, the pages would be in inactive LRU for a long time. It means many of pages in there would mark access bit again. So access bit hot/code separation would be pointless. This patch prevents unnecessary anon pages demotion in not-yet-swapon and non-configured swap system. Even, in non-configuared swap system inactive_anon_is_low can be compiled out. It could make side effect that hot anon pages could swap out when admin does swap on. But I think sooner or later it would be steady state. So it's not a big problem. We could lose someting but gain more thing(TLB flush and unnecessary function call to demote anon pages). Signed-off-by: Ying Han <yinghan@google.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KAMEZAWA Hiroyuki authored
Now, sysfs interface of memory hotplug shows whether the section is removable or not. But it checks only migrateype of pages and doesn't check details of cluster of pages. Next, memory hotplug's set_migratetype_isolate() has the same kind of check, too. This patch adds the function __count_unmovable_pages() and makes above 2 checks to use the same logic. Then, is_removable and hotremove code uses the same logic. No changes in the hotremove logic itself. TODO: need to find a way to check RECLAMABLE. But, considering bit, calling shrink_slab() against a range before starting memory hotremove sounds better. If so, this patch's logic doesn't need to be changed. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reported-by: Michal Hocko <mhocko@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KAMEZAWA Hiroyuki authored
Even if notifier cannot find any pages, it doesn't mean no pages are available...And, if there are no notifiers registered, this condition will be always true and memory hotplug will show -EBUSY. This is a bug but not critical. In most case, a pageblock which will be offlined is MIGRATE_MOVABLE This "notifier" is called only when the pageblock is _not_ MIGRATE_MOVABLE. But if not MIGRATE_MOVABLE, it's common case that memory hotplug will fail. So, no one notice this bug. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Minchan Kim authored
Presently update_nr_listpages() doesn't have a role. That's because lists passed is always empty just after calling migrate_pages. The migrate_pages cleans up page list which have failed to migrate before returning by aaa994b3. [PATCH] page migration: handle freeing of pages in migrate_pages() Do not leave pages on the lists passed to migrate_pages(). Seems that we will not need any postprocessing of pages. This will simplify the handling of pages by the callers of migrate_pages(). At that time, we thought we don't need any postprocessing of pages. But the situation is changed. The compaction need to know the number of failed to migrate for COMPACTPAGEFAILED stat This patch makes new rule for caller of migrate_pages to call putback_lru_pages. So caller need to clean up the lists so it has a chance to postprocess the pages. [suggested by Christoph Lameter] Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <andi@firstfloor.org> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Thadeu Lima de Souza Cascardo authored
Non-NUMA systems do never create these files anyway, since they are only created by driver subsystem when NUMA is configured. [akpm@linux-foundation.org: cleanup] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@holoscopio.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
zeal authored
The presently-unused macro was missing one parameter. Signed-off-by: zeal <zealcook@gmail.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
This removes more dead code that was somehow missed by commit 0d99519e (writeback: remove unused nonblocking and congestion checks). There are no behavior change except for the removal of two entries from one of the ext4 tracing interface. The nonblocking checks in ->writepages are no longer used because the flusher now prefer to block on get_request_wait() than to skip inodes on IO congestion. The latter will lead to more seeky IO. The nonblocking checks in ->writepage are no longer used because it's redundant with the WB_SYNC_NONE check. We no long set ->nonblocking in VM page out and page migration, because a) it's effectively redundant with WB_SYNC_NONE in current code b) it's old semantic of "Don't get stuck on request queues" is mis-behavior: that would skip some dirty inodes on congestion and page out others, which is unfair in terms of LRU age. Inspired by Christoph Hellwig. Thanks! Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: David Howells <dhowells@redhat.com> Cc: Sage Weil <sage@newdream.net> Cc: Steve French <sfrench@samba.org> Cc: Chris Mason <chris.mason@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
The locking order in oom_adjust_write() and oom_score_adj_write() for task->alloc_lock and task->sighand->siglock is reversed, and lockdep notices that irqs could encounter an ABBA scenario. This fixes the locking order so that we always take task_lock(task) prior to lock_task_sighand(task). Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
It's better to use proper error handling in oom_adjust_write() and oom_score_adj_write() instead of duplicating the locking order on various exit paths. Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
It's necessary to kill all threads that share an oom killed task's mm if the goal is to lead to future memory freeing. This patch reintroduces the code removed in 8c5cd6f3 (oom: oom_kill doesn't kill vfork parent (or child)) since it is obsoleted. It's now guaranteed that any task passed to oom_kill_task() does not share an mm with any thread that is unkillable. Thus, we're safe to issue a SIGKILL to any thread sharing the same mm. This is especially necessary to solve an mm->mmap_sem livelock issue whereas an oom killed thread must acquire the lock in the exit path while another thread is holding it in the page allocator while trying to allocate memory itself (and will preempt the oom killer since a task was already killed). Since tasks with pending fatal signals are now granted access to memory reserves, the thread holding the lock may quickly allocate and release the lock so that the oom killed task may exit. This mainly is for threads that are cloned with CLONE_VM but not CLONE_THREAD, so they are in a different thread group. Non-NPTL threads exist in the wild and this change is necessary to prevent the livelock in such cases. We care more about preventing the livelock than incurring the additional tasklist in the oom killer when a task has been killed. Systems that are sufficiently large to not want the tasklist scan in the oom killer in the first place already have the option of enabling /proc/sys/vm/oom_kill_allocating_task, which was designed specifically for that purpose. This code had existed in the oom killer for over eight years dating back to the 2.4 kernel. [akpm@linux-foundation.org: add nice comment] Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
The oom killer's goal is to kill a memory-hogging task so that it may exit, free its memory, and allow the current context to allocate the memory that triggered it in the first place. Thus, killing a task is pointless if other threads sharing its mm cannot be killed because of its /proc/pid/oom_adj or /proc/pid/oom_score_adj value. This patch checks whether any other thread sharing p->mm has an oom_score_adj of OOM_SCORE_ADJ_MIN. If so, the thread cannot be killed and oom_badness(p) returns 0, meaning it's unkillable. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Ying Han authored
It's pointless to kill a task if another thread sharing its mm cannot be killed to allow future memory freeing. A subsequent patch will prevent kills in such cases, but first it's necessary to have a way to flag a task that shares memory with an OOM_DISABLE task that doesn't incur an additional tasklist scan, which would make select_bad_process() an O(n^2) function. This patch adds an atomic counter to struct mm_struct that follows how many threads attached to it have an oom_score_adj of OOM_SCORE_ADJ_MIN. They cannot be killed by the kernel, so their memory cannot be freed in oom conditions. This only requires task_lock() on the task that we're operating on, it does not require mm->mmap_sem since task_lock() pins the mm and the operation is atomic. [rientjes@google.com: changelog and sys_unshare() code] [rientjes@google.com: protect oom_disable_count with task_lock in fork] [rientjes@google.com: use old_mm for oom_disable_count in exec] Signed-off-by: Ying Han <yinghan@google.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matt Mackall authored
Signed-off-by: Matt Mackall <mpm@selenic.com> Cc: Nikanth Karthikesan <knikanth@suse.de> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
WANG Cong authored
We use vmcore in our production kernel for a long time, it is pretty stable now. So I don't think we need to mark it as experimental any more. Signed-off-by: WANG Cong <xiyou.wangcong@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Richard Weinberger authored
Commit df9ee292 ("Fix IRQ flag handling naming") changed the IRQ flag handling naming scheme and broke UML: In file included from arch/um/include/asm/fixmap.h:5, from arch/um/include/shared/um_uaccess.h:10, from arch/um/include/asm/uaccess.h:41, from arch/um/include/asm/thread_info.h:13, from include/linux/thread_info.h:56, from include/linux/preempt.h:9, from include/linux/spinlock.h:50, from include/linux/seqlock.h:29, from include/linux/time.h:8, from include/linux/stat.h:60, from include/linux/module.h:10, from init/main.c:13: arch/um/include/asm/system.h:11:1: warning: "local_save_flags" redefined This patch brings the new scheme to UML and makes it work again. Signed-off-by: Richard Weinberger <richard@nod.at> Acked-by: David Howells <dhowells@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Masanori ITOH authored
WARNING: at lib/list_debug.c:26 __list_add+0x3f/0x81() Hardware name: Express5800/B120a [N8400-085] list_add corruption. next->prev should be prev (ffffffff81a7ea00), but was dead000000200200. (next=ffff88080b872d58). Modules linked in: aoe ipt_MASQUERADE iptable_nat nf_nat autofs4 sunrpc bridge 8021q garp stp llc ipv6 cpufreq_ondemand acpi_cpufreq freq_table dm_round_robin dm_multipath kvm_intel kvm uinput lpfc scsi_transport_fc igb ioatdma scsi_tgt i2c_i801 i2c_core dca iTCO_wdt iTCO_vendor_support pcspkr shpchp megaraid_sas [last unloaded: aoe] Pid: 54, comm: events/3 Tainted: G W 2.6.34-vanilla1 #1 Call Trace: [<ffffffff8104bd77>] warn_slowpath_common+0x7c/0x94 [<ffffffff8104bde6>] warn_slowpath_fmt+0x41/0x43 [<ffffffff8120fd2e>] __list_add+0x3f/0x81 [<ffffffff81212a12>] __percpu_counter_init+0x59/0x6b [<ffffffff810d8499>] bdi_init+0x118/0x17e [<ffffffff811f2c50>] blk_alloc_queue_node+0x79/0x143 [<ffffffff811f2d2b>] blk_alloc_queue+0x11/0x13 [<ffffffffa02a931d>] aoeblk_gdalloc+0x8e/0x1c9 [aoe] [<ffffffffa02aa655>] aoecmd_sleepwork+0x25/0xa8 [aoe] [<ffffffff8106186c>] worker_thread+0x1a9/0x237 [<ffffffffa02aa630>] ? aoecmd_sleepwork+0x0/0xa8 [aoe] [<ffffffff81065827>] ? autoremove_wake_function+0x0/0x39 [<ffffffff810616c3>] ? worker_thread+0x0/0x237 [<ffffffff810653ad>] kthread+0x7f/0x87 [<ffffffff8100aa24>] kernel_thread_helper+0x4/0x10 [<ffffffff8106532e>] ? kthread+0x0/0x87 [<ffffffff8100aa20>] ? kernel_thread_helper+0x0/0x10 It's because there is no initialization code for a list_head contained in the struct backing_dev_info under CONFIG_HOTPLUG_CPU, and the bug comes up when block device drivers calling blk_alloc_queue() are used. In case of me, I got them by using aoe. Signed-off-by: Masanori Itoh <itoumsn@nttdata.co.jp> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
This helper is wrong: it coerces signed values into unsigned ones, so code such as if (kfifo_alloc(...) < 0) { error } will fail to detect the error. So let's disable __kfifo_must_check_helper() for 2.6.36. Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefani Seibold <stefani@seibold.net> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Richard Weinberger authored
365b1818 ("add f_flags to struct statfs(64)") resized f_spare within struct statfs which caused a UML crash. There is no need to copy f_spare. Signed-off-by: Richard Weinberger <richard@nod.at> Reported-by: Toralf Förster <toralf.foerster@gmx.de> Tested-by: Toralf Förster <toralf.foerster@gmx.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Jeff Dike <jdike@addtoit.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Eric Dumazet authored
Unloading ipmi module can trigger following error. (if CONFIG_DEBUG_SPINLOCK=y) [ 9633.779590] BUG: spinlock bad magic on CPU#1, rmmod/7170 [ 9633.779606] lock: f41f5414, .magic: 00000000, .owner: <none>/-1, .owner_cpu: 0 [ 9633.779626] Pid: 7170, comm: rmmod Not tainted 2.6.36-rc7-11474-gb71eb1e-dirty #328 [ 9633.779644] Call Trace: [ 9633.779657] [<c13921cc>] ? printk+0x18/0x1c [ 9633.779672] [<c11a1f33>] spin_bug+0xa3/0xf0 [ 9633.779685] [<c11a1ffd>] do_raw_spin_lock+0x7d/0x160 [ 9633.779702] [<c1131537>] ? release_sysfs_dirent+0x47/0xb0 [ 9633.779718] [<c1131b78>] ? sysfs_addrm_finish+0xa8/0xd0 [ 9633.779734] [<c1394bac>] _raw_spin_lock_irqsave+0xc/0x20 [ 9633.779752] [<f99d93da>] cleanup_one_si+0x6a/0x200 [ipmi_si] [ 9633.779768] [<c11305b2>] ? sysfs_hash_and_remove+0x72/0x80 [ 9633.779786] [<f99dcf26>] ipmi_pnp_remove+0xd/0xf [ipmi_si] [ 9633.779802] [<c11f622b>] pnp_device_remove+0x1b/0x40 Fix this by initializing spinlocks in a smi_info_alloc() helper function, right after memory allocation and clearing. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: David Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Acked-by: Corey Minyard <cminyard@mvista.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michael Hennerich authored
This is a bug fix. Some SPI connected devices using 16/24 bit accesses, previously failed, now work. This typo slipped in after testing, during some restructuring. Signed-off-by: Michael Hennerich <michael.hennerich@analog.com> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Chris Verges <chrisv@cyberswitching.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Richard Weinberger authored
The linker script cleanup that I did in commit 5d150a97 ("um: Clean up linker script using standard macros.") (2.6.32) accidentally introduced an ALIGN(PAGE_SIZE) when converting to use INIT_TEXT_SECTION; Richard Weinberger reported that this causes the kernel to segfault with CONFIG_STATIC_LINK=y. I'm not certain why this extra alignment is a problem, but it seems likely it is because previously __init_begin = _stext = _text = _sinittext and with the extra ALIGN(PAGE_SIZE), _sinittext becomes different from the rest. So there is likely a bug here where something is assuming that _sinittext is the same as one of those other symbols. But reverting the accidental change fixes the regression, so it seems worth committing that now. Signed-off-by: Tim Abbott <tabbott@ksplice.com> Reported-by: Richard Weinberger <richard@nod.at> Cc: Jeff Dike <jdike@addtoit.com> Tested by: Antoine Martin <antoine@nagafix.co.uk> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Robin Holt authored
sgi-xp: incoming XPC channel messages can come in after the channel's partition structures have been torn down Under some workloads, some channel messages have been observed being delayed on the sending side past the point where the receiving side has been able to tear down its partition structures. This condition is already detected in xpc_handle_activate_IRQ_uv(), but that information is not given to xpc_handle_activate_mq_msg_uv(). As a result, xpc_handle_activate_mq_msg_uv() assumes the structures still exist and references them, causing a NULL-pointer deref. Signed-off-by: Robin Holt <holt@sgi.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Richard Weinberger authored
This fixes a issue which was introduced by fe2cc53e ("uml: track and make up lost ticks"). timeval_to_ns() returns long long and not int. Due to that UML's timer did not work properlt and caused timer freezes. Signed-off-by: Richard Weinberger <richard@nod.at> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mel Gorman authored
There is a bug in commit 6dda9d55 ("page allocator: reduce fragmentation in buddy allocator by adding buddies that are merging to the tail of the free lists") that means a buddy at order MAX_ORDER is checked for merging. A page of this order never exists so at times, an effectively random piece of memory is being checked. Alan Curry has reported that this is causing memory corruption in userspace data on a PPC32 platform (http://lkml.org/lkml/2010/10/9/32). It is not clear why this is happening. It could be a cache coherency problem where pages mapped in both user and kernel space are getting different cache lines due to the bad read from kernel space (http://lkml.org/lkml/2010/10/13/179). It could also be that there are some special registers being io-remapped at the end of the memmap array and that a read has special meaning on them. Compiler bugs have been ruled out because the assembly before and after the patch looks relatively harmless. This patch fixes the problem by ensuring we are not reading a possibly invalid location of memory. It's not clear why the read causes corruption but one way or the other it is a buggy read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Corrado Zoccolo <czoccolo@gmail.com> Reported-by: Alan Curry <pacman@kosh.dhis.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Rik van Riel <riel@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
This comment landed in the wrong place. Cc: Andi Kleen <andi@firstfloor.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Miller <davem@davemloft.net> Cc: Eric Paris <eparis@redhat.com> Cc: Jan Engelhardt <jengelh@medozas.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KAMEZAWA Hiroyuki authored
scan_lru_pages returns pfn. So, it's type should be "unsigned long" not "int". Note: I guess this has been work until now because memory hotplug tester's machine has not very big memory.... physical address < 32bit << PAGE_SHIFT. Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
git://git.infradead.org/battery-2.6Linus Torvalds authored
* git://git.infradead.org/battery-2.6: power_supply: Makefile cleanup bq27x00_battery: Add missing kfree(di->bus) in bq27x00_battery_remove() power_supply: Introduce maximum current property power_supply: Add types for USB chargers ds2782_battery: Fix units power_supply: Add driver for TWL4030/TPS65950 BCI charger bq20z75: Add support for more power supply properties wm831x_power: Add missing kfree(wm831x_power) in wm831x_power_remove() jz4740-battery: Add missing kfree(jz_battery) in jz_battery_remove() ds2760_battery: Add missing kfree(di) in ds2760_battery_remove() olpc_battery: Fix endian neutral breakage for s16 values ds2760_battery: Fix W1 and W1_SLAVE_DS2760 dependency pcf50633-charger: Add missing sysfs_remove_group() power_supply: Add driver for TI BQ20Z75 gas gauge IC wm831x_power: Remove duplicate chg mask omap: rx51: Add support for USB chargers power_supply: Add isp1704 charger detection driver
-
git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/i7coreLinus Torvalds authored
* 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/i7core: (34 commits) i7core_edac: return -ENODEV when devices were already probed i7core_edac: properly terminate pci_dev_table i7core_edac: Avoid PCI refcount to reach zero on successive load/reload i7core_edac: Fix refcount error at PCI devices i7core_edac: it is safe to i7core_unregister_mci() when mci=NULL i7core_edac: Fix an oops at i7core probe i7core_edac: Remove unused member channels in i7core_pvt i7core_edac: Remove unused arg csrow from get_dimm_config i7core_edac: Reduce args of i7core_register_mci i7core_edac: Introduce i7core_unregister_mci i7core_edac: Use saved pointers i7core_edac: Check probe counter in i7core_remove i7core_edac: Call pci_dev_put() when alloc_i7core_dev() failed i7core_edac: Fix error path of i7core_register_mci i7core_edac: Fix order of lines in i7core_register_mci i7core_edac: Always do get/put for all devices i7core_edac: Introduce i7core_pci_ctl_create/release i7core_edac: Introduce free_i7core_dev i7core_edac: Introduce alloc_i7core_dev i7core_edac: Reduce args of i7core_get_onedevice ...
-
git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6Linus Torvalds authored
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (22 commits) Add _addr_lsb field to ia64 siginfo Fix migration.c compilation on s390 HWPOISON: Remove retry loop for try_to_unmap HWPOISON: Turn addr_valid from bitfield into char HWPOISON: Disable DEBUG by default HWPOISON: Convert pr_debugs to pr_info HWPOISON: Improve comments in memory-failure.c x86: HWPOISON: Report correct address granuality for huge hwpoison faults Encode huge page size for VM_FAULT_HWPOISON errors Fix build error with !CONFIG_MIGRATION hugepage: move is_hugepage_on_freelist inside ifdef to avoid warning Clean up __page_set_anon_rmap HWPOISON, hugetlb: fix unpoison for hugepage HWPOISON, hugetlb: soft offlining for hugepage HWPOSION, hugetlb: recover from free hugepage error when !MF_COUNT_INCREASED hugetlb: move refcounting in hugepage allocation inside hugetlb_lock HWPOISON, hugetlb: add free check to dequeue_hwpoison_huge_page() hugetlb: hugepage migration core hugetlb: redefine hugepage copy functions hugetlb: add allocate function for hugepage migration ...
-
git://github.com/at91linux/linux-2.6-at91Linus Torvalds authored
* 'for_linus' of git://github.com/at91linux/linux-2.6-at91: AT91: rtc: enable built-in RTC in Kconfig for at91sam9g45 family at91/atmel-mci: inclusion of sd/mmc driver in at91sam9g45 chip and board AT91: pm: make sure that r0 is 0 when dealing with cache operations AT91: pm: use plain cpu_do_idle() for "wait for interrupt" AT91: reset: extend alternate reset procedure to several chips AT91: reset routine cleanup, remove not needed icache flush AT91: trivial: align comment of at91sam9g20_reset with one more tab AT91: Fix AT91SAM9G20 reset as per the errata in the data sheet AT91: add board support for Pcontrol_G20
-
git://gitorious.org/linux-omap-dss2/linuxLinus Torvalds authored
* 'for-linus' of git://gitorious.org/linux-omap-dss2/linux: OMAP: DSS2: don't power off a panel twice OMAP: DSS2: OMAPFB: Allow usage of def_vrfb only for omap2,3 OMAP: DSS2: OMAPFB: make VRFB depends on OMAP2,3 OMAP: DSS2: OMAPFB: Allow FB_OMAP2 to build without VRFB arm/omap: simplify conditional OMAP: DSS2: DSI: Remove extra iounmap in error path OMAP: DSS2: Use dss_features framework on DSS2 code OMAP: DSS2: Introduce dss_features files video/omap: remove mux.h include ARM: omap/fb: move get_fbmem_region() to .init.text ARM: omap/fb: move omapfb_reserve_sram to .init.text ARM: omap/fb: move omap_init_fb to .init.text OMAP: DSS2: OMAPFB: swap front and back porches for both hsync and vsync OMAP: DSS2: make filter coefficient tables human readable OMAP: DSS2: Add SPI dependency to Kconfig of ACX565AKM panel
-