- 06 Sep, 2018 20 commits
-
-
Ben Skeggs authored
Fixes eDP backlight issues on more recent laptops. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Ben Skeggs authored
If a HPD pulse signalling the need to retrain the link occurs between the KMS driver releasing the output and the supervisor interrupt that finishes the teardown, it was possible get a NULL-ptr deref. Avoid this by marking the link as inactive earlier. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Ben Skeggs authored
We need to do this earlier to prevent aux channel timeouts in resume paths on certain systems. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Ben Skeggs authored
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Ben Skeggs authored
This Falcon application doesn't appear to be present on some newer systems, so let's not fail init if we can't find it. TBD: is there a way to determine whether it *should* be there? Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Ben Skeggs authored
Fixes oopses in certain failure paths. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Ben Skeggs authored
The NV_ERROR macro requires drm->client to be initialised, which it may not be at this stage of the init process. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
It looks like that when we moved over to using drm_connector_for_each_possible_encoder() in nouveau, that one rather important part of this function got dropped by accident: /* Right v here */ for (i = 0; nv_encoder = NULL, i < DRM_CONNECTOR_MAX_ENCODER; i++) { int id = connector->encoder_ids[i]; if (id == 0) break; Since it's rather difficult to notice: the conditional in this loop is actually: nv_encoder = NULL, i < DRM_CONNECTOR_MAX_ENCODER Meaning that all early breaks result in nv_encoder keeping it's value, otherwise nv_encoder = NULL. Ugh. Since this got dropped, nouveau_connector_ddc_detect() now returns an encoder for every single connector, regardless of whether or not it's detected: [ 1780.056185] nouveau 0000:01:00.0: DRM: DDC responded, but no EDID for DP-2 So: fix this to ensure we only return an encoder if we actually found one, and clean up the rest of the function while we're at it since it's nearly impossible to read properly. Changes since v1: - Don't skip ddc probing for LVDS if we can't switch DDC through vga-switcheroo, just do the DDC probing without calling vga_switcheroo_lock_ddc() - skeggsb Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Fixes: ddba766d ("drm/nouveau: Use drm_connector_for_each_possible_encoder()") Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
Currently, there's nothing in nouveau that actually cancels this work struct. So, cancel it on suspend/unload. Otherwise, if we're unlucky enough hpd_work might try to keep running up until the system is suspended. Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
On most systems with ACPI hotplugging support, it seems that we always receive a hotplug event once we re-enable EC interrupts even if the GPU hasn't even been resumed yet. This can cause problems since even though we schedule hpd_work to handle connector reprobing for us, hpd_work synchronizes on pm_runtime_get_sync() to wait until the device is ready to perform reprobing. Since runtime suspend/resume callbacks are disabled before the PM core calls ->suspend(), any calls to pm_runtime_get_sync() during this period will grab a runtime PM ref and return immediately with -EACCES. Because we schedule hpd_work from our ACPI HPD handler, and hpd_work synchronizes on pm_runtime_get_sync(), this causes us to launch a connector reprobe immediately even if the GPU isn't actually resumed just yet. This causes various warnings in dmesg and occasionally, also prevents some displays connected to the dedicated GPU from coming back up after suspend. Example: usb 1-4: USB disconnect, device number 14 usb 1-4.1: USB disconnect, device number 15 WARNING: CPU: 0 PID: 838 at drivers/gpu/drm/nouveau/include/nvkm/subdev/i2c.h:170 nouveau_dp_detect+0x17e/0x370 [nouveau] CPU: 0 PID: 838 Comm: kworker/0:6 Not tainted 4.17.14-201.Lyude.bz1477182.V3.fc28.x86_64 #1 Hardware name: LENOVO 20EQS64N00/20EQS64N00, BIOS N1EET77W (1.50 ) 03/28/2018 Workqueue: events nouveau_display_hpd_work [nouveau] RIP: 0010:nouveau_dp_detect+0x17e/0x370 [nouveau] RSP: 0018:ffffa15143933cf0 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8cb4f656c400 RCX: 0000000000000000 RDX: ffffa1514500e4e4 RSI: ffffa1514500e4e4 RDI: 0000000001009002 RBP: ffff8cb4f4a8a800 R08: ffffa15143933cfd R09: ffffa15143933cfc R10: 0000000000000000 R11: 0000000000000000 R12: ffff8cb4fb57a000 R13: ffff8cb4fb57a000 R14: ffff8cb4f4a8f800 R15: ffff8cb4f656c418 FS: 0000000000000000(0000) GS:ffff8cb51f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f78ec938000 CR3: 000000073720a003 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? _cond_resched+0x15/0x30 nouveau_connector_detect+0x2ce/0x520 [nouveau] ? _cond_resched+0x15/0x30 ? ww_mutex_lock+0x12/0x40 drm_helper_probe_detect_ctx+0x8b/0xe0 [drm_kms_helper] drm_helper_hpd_irq_event+0xa8/0x120 [drm_kms_helper] nouveau_display_hpd_work+0x2a/0x60 [nouveau] process_one_work+0x187/0x340 worker_thread+0x2e/0x380 ? pwq_unbound_release_workfn+0xd0/0xd0 kthread+0x112/0x130 ? kthread_create_worker_on_cpu+0x70/0x70 ret_from_fork+0x35/0x40 Code: 4c 8d 44 24 0d b9 00 05 00 00 48 89 ef ba 09 00 00 00 be 01 00 00 00 e8 e1 09 f8 ff 85 c0 0f 85 b2 01 00 00 80 7c 24 0c 03 74 02 <0f> 0b 48 89 ef e8 b8 07 f8 ff f6 05 51 1b c8 ff 02 0f 84 72 ff ---[ end trace 55d811b38fc8e71a ]--- So, to fix this we attempt to grab a runtime PM reference in the ACPI handler itself asynchronously. If the GPU is already awake (it will have normal hotplugging at this point) or runtime PM callbacks are currently disabled on the device, we drop our reference without updating the autosuspend delay. We only schedule connector reprobes when we successfully managed to queue up a resume request with our asynchronous PM ref. This also has the added benefit of preventing redundant connector reprobes from ACPI while the GPU is runtime resumed! Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <kherbst@redhat.com> Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1477182#c41Signed-off-by: Lyude Paul <lyude@redhat.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
When probing a new MST device, it's not safe to make any assumptions about it's current state. While most well mannered MST hubs will just disable the branching unit on hotplug disconnects, this isn't enough to save us from various other scenarios that might have resulted in something writing to the MST branching unit before we got control of it. This could happen if a previous probe we tried failed, if we're booting in kexec context and the hub is still in the state the last kernel put it in, etc. Luckily; there is no reason we can't just reset the branching unit every time we enable a new topology. So, fix this by resetting it on enabling new topologies to ensure that we always start off with a clean, unmodified topology state on MST sinks. This fixes occasional hard-lockups on my P50's laptop dock (e.g. AUX times out all DPCD trasactions) observed after multiple docks, undocks, and module reloads. Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <karolherbst@gmail.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
Currently, nouveau will re-write the DP_MSTM_CTRL register for an MST hub every time it receives a long HPD pulse on DP. This isn't actually necessary and additionally, has some unintended side effects. With the P50 I've got here, rewriting DP_MSTM_CTRL constantly seems to make it rather likely (1 out of 5 times usually) that bringing up MST with it's ThinkPad dock will fail and result in sideband messages timing out in the middle. Afterwards, successive probes don't manage to get the dock to communicate properly over MST sideband properly. Many times sideband message timeouts from MST hubs are indicative of either the source or the sink dropping an ESI event, which can cause DRM's perspective of the topology's current state to go out of sync with reality. While it's tough to really know for sure what's happening to the dock, using userspace tools to write to DP_MSTM_CTRL in the middle of the MST link probing process does appear to make things flaky. It's possible that when we write to DP_MSTM_CTRL, the function that gets triggered to respond in the dock's firmware temporarily puts it in a state where it might end up not reporting an ESI to the source, or ends up dropping a sideband message we sent it. So, to fix this we make it so that when probing an MST topology, we respect it's current state. If the dock's already enabled, we simply read DP_MSTM_CTRL and disable the topology if it's value is not what we expected. Otherwise, we perform the normal MST probing dance. We avoid taking any action except if the state of the MST topology actually changes. This fixes MST sideband message timeouts and detection failures on my P50 with its ThinkPad dock. Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <karolherbst@gmail.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
Again, this doesn't do anything. drm_kms_helper_poll_enable() will have already been called in nouveau_display_init() Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
This won't do anything but potentially make us miss hotplugs. We already call drm_kms_helper_poll_disable() in nouveau_pmops_suspend()->nouveau_display_suspend()->nouveau_display_fini() Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
This doesn't do anything, drm_kms_helper_poll_enable() gets called in nouveau_pmops_resume()->nouveau_display_resume()->nouveau_display_init() already. Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
When we disable hotplugging on the GPU, we need to be able to synchronize with each connector's hotplug interrupt handler before the interrupt is finally disabled. This can be a problem however, since nouveau_connector_detect() currently grabs a runtime power reference when handling connector probing. This will deadlock the runtime suspend handler like so: [ 861.480896] INFO: task kworker/0:2:61 blocked for more than 120 seconds. [ 861.483290] Tainted: G O 4.18.0-rc6Lyude-Test+ #1 [ 861.485158] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 861.486332] kworker/0:2 D 0 61 2 0x80000000 [ 861.487044] Workqueue: events nouveau_display_hpd_work [nouveau] [ 861.487737] Call Trace: [ 861.488394] __schedule+0x322/0xaf0 [ 861.489070] schedule+0x33/0x90 [ 861.489744] rpm_resume+0x19c/0x850 [ 861.490392] ? finish_wait+0x90/0x90 [ 861.491068] __pm_runtime_resume+0x4e/0x90 [ 861.491753] nouveau_display_hpd_work+0x22/0x60 [nouveau] [ 861.492416] process_one_work+0x231/0x620 [ 861.493068] worker_thread+0x44/0x3a0 [ 861.493722] kthread+0x12b/0x150 [ 861.494342] ? wq_pool_ids_show+0x140/0x140 [ 861.494991] ? kthread_create_worker_on_cpu+0x70/0x70 [ 861.495648] ret_from_fork+0x3a/0x50 [ 861.496304] INFO: task kworker/6:2:320 blocked for more than 120 seconds. [ 861.496968] Tainted: G O 4.18.0-rc6Lyude-Test+ #1 [ 861.497654] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 861.498341] kworker/6:2 D 0 320 2 0x80000080 [ 861.499045] Workqueue: pm pm_runtime_work [ 861.499739] Call Trace: [ 861.500428] __schedule+0x322/0xaf0 [ 861.501134] ? wait_for_completion+0x104/0x190 [ 861.501851] schedule+0x33/0x90 [ 861.502564] schedule_timeout+0x3a5/0x590 [ 861.503284] ? mark_held_locks+0x58/0x80 [ 861.503988] ? _raw_spin_unlock_irq+0x2c/0x40 [ 861.504710] ? wait_for_completion+0x104/0x190 [ 861.505417] ? trace_hardirqs_on_caller+0xf4/0x190 [ 861.506136] ? wait_for_completion+0x104/0x190 [ 861.506845] wait_for_completion+0x12c/0x190 [ 861.507555] ? wake_up_q+0x80/0x80 [ 861.508268] flush_work+0x1c9/0x280 [ 861.508990] ? flush_workqueue_prep_pwqs+0x1b0/0x1b0 [ 861.509735] nvif_notify_put+0xb1/0xc0 [nouveau] [ 861.510482] nouveau_display_fini+0xbd/0x170 [nouveau] [ 861.511241] nouveau_display_suspend+0x67/0x120 [nouveau] [ 861.511969] nouveau_do_suspend+0x5e/0x2d0 [nouveau] [ 861.512715] nouveau_pmops_runtime_suspend+0x47/0xb0 [nouveau] [ 861.513435] pci_pm_runtime_suspend+0x6b/0x180 [ 861.514165] ? pci_has_legacy_pm_support+0x70/0x70 [ 861.514897] __rpm_callback+0x7a/0x1d0 [ 861.515618] ? pci_has_legacy_pm_support+0x70/0x70 [ 861.516313] rpm_callback+0x24/0x80 [ 861.517027] ? pci_has_legacy_pm_support+0x70/0x70 [ 861.517741] rpm_suspend+0x142/0x6b0 [ 861.518449] pm_runtime_work+0x97/0xc0 [ 861.519144] process_one_work+0x231/0x620 [ 861.519831] worker_thread+0x44/0x3a0 [ 861.520522] kthread+0x12b/0x150 [ 861.521220] ? wq_pool_ids_show+0x140/0x140 [ 861.521925] ? kthread_create_worker_on_cpu+0x70/0x70 [ 861.522622] ret_from_fork+0x3a/0x50 [ 861.523299] INFO: task kworker/6:0:1329 blocked for more than 120 seconds. [ 861.523977] Tainted: G O 4.18.0-rc6Lyude-Test+ #1 [ 861.524644] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 861.525349] kworker/6:0 D 0 1329 2 0x80000000 [ 861.526073] Workqueue: events nvif_notify_work [nouveau] [ 861.526751] Call Trace: [ 861.527411] __schedule+0x322/0xaf0 [ 861.528089] schedule+0x33/0x90 [ 861.528758] rpm_resume+0x19c/0x850 [ 861.529399] ? finish_wait+0x90/0x90 [ 861.530073] __pm_runtime_resume+0x4e/0x90 [ 861.530798] nouveau_connector_detect+0x7e/0x510 [nouveau] [ 861.531459] ? ww_mutex_lock+0x47/0x80 [ 861.532097] ? ww_mutex_lock+0x47/0x80 [ 861.532819] ? drm_modeset_lock+0x88/0x130 [drm] [ 861.533481] drm_helper_probe_detect_ctx+0xa0/0x100 [drm_kms_helper] [ 861.534127] drm_helper_hpd_irq_event+0xa4/0x120 [drm_kms_helper] [ 861.534940] nouveau_connector_hotplug+0x98/0x120 [nouveau] [ 861.535556] nvif_notify_work+0x2d/0xb0 [nouveau] [ 861.536221] process_one_work+0x231/0x620 [ 861.536994] worker_thread+0x44/0x3a0 [ 861.537757] kthread+0x12b/0x150 [ 861.538463] ? wq_pool_ids_show+0x140/0x140 [ 861.539102] ? kthread_create_worker_on_cpu+0x70/0x70 [ 861.539815] ret_from_fork+0x3a/0x50 [ 861.540521] Showing all locks held in the system: [ 861.541696] 2 locks held by kworker/0:2/61: [ 861.542406] #0: 000000002dbf8af5 ((wq_completion)"events"){+.+.}, at: process_one_work+0x1b3/0x620 [ 861.543071] #1: 0000000076868126 ((work_completion)(&drm->hpd_work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 861.543814] 1 lock held by khungtaskd/64: [ 861.544535] #0: 0000000059db4b53 (rcu_read_lock){....}, at: debug_show_all_locks+0x23/0x185 [ 861.545160] 3 locks held by kworker/6:2/320: [ 861.545896] #0: 00000000d9e1bc59 ((wq_completion)"pm"){+.+.}, at: process_one_work+0x1b3/0x620 [ 861.546702] #1: 00000000c9f92d84 ((work_completion)(&dev->power.work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 861.547443] #2: 000000004afc5de1 (drm_connector_list_iter){.+.+}, at: nouveau_display_fini+0x96/0x170 [nouveau] [ 861.548146] 1 lock held by dmesg/983: [ 861.548889] 2 locks held by zsh/1250: [ 861.549605] #0: 00000000348e3cf6 (&tty->ldisc_sem){++++}, at: ldsem_down_read+0x37/0x40 [ 861.550393] #1: 000000007009a7a8 (&ldata->atomic_read_lock){+.+.}, at: n_tty_read+0xc1/0x870 [ 861.551122] 6 locks held by kworker/6:0/1329: [ 861.551957] #0: 000000002dbf8af5 ((wq_completion)"events"){+.+.}, at: process_one_work+0x1b3/0x620 [ 861.552765] #1: 00000000ddb499ad ((work_completion)(¬ify->work)#2){+.+.}, at: process_one_work+0x1b3/0x620 [ 861.553582] #2: 000000006e013cbe (&dev->mode_config.mutex){+.+.}, at: drm_helper_hpd_irq_event+0x6c/0x120 [drm_kms_helper] [ 861.554357] #3: 000000004afc5de1 (drm_connector_list_iter){.+.+}, at: drm_helper_hpd_irq_event+0x78/0x120 [drm_kms_helper] [ 861.555227] #4: 0000000044f294d9 (crtc_ww_class_acquire){+.+.}, at: drm_helper_probe_detect_ctx+0x3d/0x100 [drm_kms_helper] [ 861.556133] #5: 00000000db193642 (crtc_ww_class_mutex){+.+.}, at: drm_modeset_lock+0x4b/0x130 [drm] [ 861.557864] ============================================= [ 861.559507] NMI backtrace for cpu 2 [ 861.560363] CPU: 2 PID: 64 Comm: khungtaskd Tainted: G O 4.18.0-rc6Lyude-Test+ #1 [ 861.561197] Hardware name: LENOVO 20EQS64N0B/20EQS64N0B, BIOS N1EET78W (1.51 ) 05/18/2018 [ 861.561948] Call Trace: [ 861.562757] dump_stack+0x8e/0xd3 [ 861.563516] nmi_cpu_backtrace.cold.3+0x14/0x5a [ 861.564269] ? lapic_can_unplug_cpu.cold.27+0x42/0x42 [ 861.565029] nmi_trigger_cpumask_backtrace+0xa1/0xae [ 861.565789] arch_trigger_cpumask_backtrace+0x19/0x20 [ 861.566558] watchdog+0x316/0x580 [ 861.567355] kthread+0x12b/0x150 [ 861.568114] ? reset_hung_task_detector+0x20/0x20 [ 861.568863] ? kthread_create_worker_on_cpu+0x70/0x70 [ 861.569598] ret_from_fork+0x3a/0x50 [ 861.570370] Sending NMI from CPU 2 to CPUs 0-1,3-7: [ 861.571426] NMI backtrace for cpu 6 skipped: idling at intel_idle+0x7f/0x120 [ 861.571429] NMI backtrace for cpu 7 skipped: idling at intel_idle+0x7f/0x120 [ 861.571432] NMI backtrace for cpu 3 skipped: idling at intel_idle+0x7f/0x120 [ 861.571464] NMI backtrace for cpu 5 skipped: idling at intel_idle+0x7f/0x120 [ 861.571467] NMI backtrace for cpu 0 skipped: idling at intel_idle+0x7f/0x120 [ 861.571469] NMI backtrace for cpu 4 skipped: idling at intel_idle+0x7f/0x120 [ 861.571472] NMI backtrace for cpu 1 skipped: idling at intel_idle+0x7f/0x120 [ 861.572428] Kernel panic - not syncing: hung_task: blocked tasks So: fix this by making it so that normal hotplug handling /only/ happens so long as the GPU is currently awake without any pending runtime PM requests. In the event that a hotplug occurs while the device is suspending or resuming, we can simply defer our response until the GPU is fully runtime resumed again. Changes since v4: - Use a new trick I came up with using pm_runtime_get() instead of the hackish junk we had before Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: stable@vger.kernel.org Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
It's true we can't resume the device from poll workers in nouveau_connector_detect(). We can however, prevent the autosuspend timer from elapsing immediately if it hasn't already without risking any sort of deadlock with the runtime suspend/resume operations. So do that instead of entirely avoiding grabbing a power reference. Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: stable@vger.kernel.org Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
Currently, nouveau uses the generic drm_fb_helper_output_poll_changed() function provided by DRM as it's output_poll_changed callback. Unfortunately however, this function doesn't grab runtime PM references early enough and even if it did-we can't block waiting for the device to resume in output_poll_changed() since it's very likely that we'll need to grab the fb_helper lock at some point during the runtime resume process. This currently results in deadlocking like so: [ 246.669625] INFO: task kworker/4:0:37 blocked for more than 120 seconds. [ 246.673398] Not tainted 4.18.0-rc5Lyude-Test+ #2 [ 246.675271] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 246.676527] kworker/4:0 D 0 37 2 0x80000000 [ 246.677580] Workqueue: events output_poll_execute [drm_kms_helper] [ 246.678704] Call Trace: [ 246.679753] __schedule+0x322/0xaf0 [ 246.680916] schedule+0x33/0x90 [ 246.681924] schedule_preempt_disabled+0x15/0x20 [ 246.683023] __mutex_lock+0x569/0x9a0 [ 246.684035] ? kobject_uevent_env+0x117/0x7b0 [ 246.685132] ? drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper] [ 246.686179] mutex_lock_nested+0x1b/0x20 [ 246.687278] ? mutex_lock_nested+0x1b/0x20 [ 246.688307] drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper] [ 246.689420] drm_fb_helper_output_poll_changed+0x23/0x30 [drm_kms_helper] [ 246.690462] drm_kms_helper_hotplug_event+0x2a/0x30 [drm_kms_helper] [ 246.691570] output_poll_execute+0x198/0x1c0 [drm_kms_helper] [ 246.692611] process_one_work+0x231/0x620 [ 246.693725] worker_thread+0x214/0x3a0 [ 246.694756] kthread+0x12b/0x150 [ 246.695856] ? wq_pool_ids_show+0x140/0x140 [ 246.696888] ? kthread_create_worker_on_cpu+0x70/0x70 [ 246.697998] ret_from_fork+0x3a/0x50 [ 246.699034] INFO: task kworker/0:1:60 blocked for more than 120 seconds. [ 246.700153] Not tainted 4.18.0-rc5Lyude-Test+ #2 [ 246.701182] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 246.702278] kworker/0:1 D 0 60 2 0x80000000 [ 246.703293] Workqueue: pm pm_runtime_work [ 246.704393] Call Trace: [ 246.705403] __schedule+0x322/0xaf0 [ 246.706439] ? wait_for_completion+0x104/0x190 [ 246.707393] schedule+0x33/0x90 [ 246.708375] schedule_timeout+0x3a5/0x590 [ 246.709289] ? mark_held_locks+0x58/0x80 [ 246.710208] ? _raw_spin_unlock_irq+0x2c/0x40 [ 246.711222] ? wait_for_completion+0x104/0x190 [ 246.712134] ? trace_hardirqs_on_caller+0xf4/0x190 [ 246.713094] ? wait_for_completion+0x104/0x190 [ 246.713964] wait_for_completion+0x12c/0x190 [ 246.714895] ? wake_up_q+0x80/0x80 [ 246.715727] ? get_work_pool+0x90/0x90 [ 246.716649] flush_work+0x1c9/0x280 [ 246.717483] ? flush_workqueue_prep_pwqs+0x1b0/0x1b0 [ 246.718442] __cancel_work_timer+0x146/0x1d0 [ 246.719247] cancel_delayed_work_sync+0x13/0x20 [ 246.720043] drm_kms_helper_poll_disable+0x1f/0x30 [drm_kms_helper] [ 246.721123] nouveau_pmops_runtime_suspend+0x3d/0xb0 [nouveau] [ 246.721897] pci_pm_runtime_suspend+0x6b/0x190 [ 246.722825] ? pci_has_legacy_pm_support+0x70/0x70 [ 246.723737] __rpm_callback+0x7a/0x1d0 [ 246.724721] ? pci_has_legacy_pm_support+0x70/0x70 [ 246.725607] rpm_callback+0x24/0x80 [ 246.726553] ? pci_has_legacy_pm_support+0x70/0x70 [ 246.727376] rpm_suspend+0x142/0x6b0 [ 246.728185] pm_runtime_work+0x97/0xc0 [ 246.728938] process_one_work+0x231/0x620 [ 246.729796] worker_thread+0x44/0x3a0 [ 246.730614] kthread+0x12b/0x150 [ 246.731395] ? wq_pool_ids_show+0x140/0x140 [ 246.732202] ? kthread_create_worker_on_cpu+0x70/0x70 [ 246.732878] ret_from_fork+0x3a/0x50 [ 246.733768] INFO: task kworker/4:2:422 blocked for more than 120 seconds. [ 246.734587] Not tainted 4.18.0-rc5Lyude-Test+ #2 [ 246.735393] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 246.736113] kworker/4:2 D 0 422 2 0x80000080 [ 246.736789] Workqueue: events_long drm_dp_mst_link_probe_work [drm_kms_helper] [ 246.737665] Call Trace: [ 246.738490] __schedule+0x322/0xaf0 [ 246.739250] schedule+0x33/0x90 [ 246.739908] rpm_resume+0x19c/0x850 [ 246.740750] ? finish_wait+0x90/0x90 [ 246.741541] __pm_runtime_resume+0x4e/0x90 [ 246.742370] nv50_disp_atomic_commit+0x31/0x210 [nouveau] [ 246.743124] drm_atomic_commit+0x4a/0x50 [drm] [ 246.743775] restore_fbdev_mode_atomic+0x1c8/0x240 [drm_kms_helper] [ 246.744603] restore_fbdev_mode+0x31/0x140 [drm_kms_helper] [ 246.745373] drm_fb_helper_restore_fbdev_mode_unlocked+0x54/0xb0 [drm_kms_helper] [ 246.746220] drm_fb_helper_set_par+0x2d/0x50 [drm_kms_helper] [ 246.746884] drm_fb_helper_hotplug_event.part.28+0x96/0xb0 [drm_kms_helper] [ 246.747675] drm_fb_helper_output_poll_changed+0x23/0x30 [drm_kms_helper] [ 246.748544] drm_kms_helper_hotplug_event+0x2a/0x30 [drm_kms_helper] [ 246.749439] nv50_mstm_hotplug+0x15/0x20 [nouveau] [ 246.750111] drm_dp_send_link_address+0x177/0x1c0 [drm_kms_helper] [ 246.750764] drm_dp_check_and_send_link_address+0xa8/0xd0 [drm_kms_helper] [ 246.751602] drm_dp_mst_link_probe_work+0x51/0x90 [drm_kms_helper] [ 246.752314] process_one_work+0x231/0x620 [ 246.752979] worker_thread+0x44/0x3a0 [ 246.753838] kthread+0x12b/0x150 [ 246.754619] ? wq_pool_ids_show+0x140/0x140 [ 246.755386] ? kthread_create_worker_on_cpu+0x70/0x70 [ 246.756162] ret_from_fork+0x3a/0x50 [ 246.756847] Showing all locks held in the system: [ 246.758261] 3 locks held by kworker/4:0/37: [ 246.759016] #0: 00000000f8df4d2d ((wq_completion)"events"){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.759856] #1: 00000000e6065461 ((work_completion)(&(&dev->mode_config.output_poll_work)->work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.760670] #2: 00000000cb66735f (&helper->lock){+.+.}, at: drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper] [ 246.761516] 2 locks held by kworker/0:1/60: [ 246.762274] #0: 00000000fff6be0f ((wq_completion)"pm"){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.762982] #1: 000000005ab44fb4 ((work_completion)(&dev->power.work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.763890] 1 lock held by khungtaskd/64: [ 246.764664] #0: 000000008cb8b5c3 (rcu_read_lock){....}, at: debug_show_all_locks+0x23/0x185 [ 246.765588] 5 locks held by kworker/4:2/422: [ 246.766440] #0: 00000000232f0959 ((wq_completion)"events_long"){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.767390] #1: 00000000bb59b134 ((work_completion)(&mgr->work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.768154] #2: 00000000cb66735f (&helper->lock){+.+.}, at: drm_fb_helper_restore_fbdev_mode_unlocked+0x4c/0xb0 [drm_kms_helper] [ 246.768966] #3: 000000004c8f0b6b (crtc_ww_class_acquire){+.+.}, at: restore_fbdev_mode_atomic+0x4b/0x240 [drm_kms_helper] [ 246.769921] #4: 000000004c34a296 (crtc_ww_class_mutex){+.+.}, at: drm_modeset_backoff+0x8a/0x1b0 [drm] [ 246.770839] 1 lock held by dmesg/1038: [ 246.771739] 2 locks held by zsh/1172: [ 246.772650] #0: 00000000836d0438 (&tty->ldisc_sem){++++}, at: ldsem_down_read+0x37/0x40 [ 246.773680] #1: 000000001f4f4d48 (&ldata->atomic_read_lock){+.+.}, at: n_tty_read+0xc1/0x870 [ 246.775522] ============================================= After trying dozens of different solutions, I found one very simple one that should also have the benefit of preventing us from having to fight locking for the rest of our lives. So, we work around these deadlocks by deferring all fbcon hotplug events that happen after the runtime suspend process starts until after the device is resumed again. Changes since v7: - Fixup commit message - Daniel Vetter Changes since v6: - Remove unused nouveau_fbcon_hotplugged_in_suspend() - Ilia Changes since v5: - Come up with the (hopefully final) solution for solving this dumb problem, one that is a lot less likely to cause issues with locking in the future. This should work around all deadlock conditions with fbcon brought up thus far. Changes since v4: - Add nouveau_fbcon_hotplugged_in_suspend() to workaround deadlock condition that Lukas described - Just move all of this out of drm_fb_helper. It seems that other DRM drivers have already figured out other workarounds for this. If other drivers do end up needing this in the future, we can just move this back into drm_fb_helper again. Changes since v3: - Actually check if fb_helper is NULL in both new helpers - Actually check drm_fbdev_emulation in both new helpers - Don't fire off a fb_helper hotplug unconditionally; only do it if the following conditions are true (as otherwise, calling this in the wrong spot will cause Bad Things to happen): - fb_helper hotplug handling was actually inhibited previously - fb_helper actually has a delayed hotplug pending - fb_helper is actually bound - fb_helper is actually initialized - Add __must_check to drm_fb_helper_suspend_hotplug(). There's no situation where a driver would actually want to use this without checking the return value, so enforce that - Rewrite and clarify the documentation for both helpers. - Make sure to return true in the drm_fb_helper_suspend_hotplug() stub that's provided in drm_fb_helper.h when CONFIG_DRM_FBDEV_EMULATION isn't enabled - Actually grab the toplevel fb_helper lock in drm_fb_helper_resume_hotplug(), since it's possible other activity (such as a hotplug) could be going on at the same time the driver calls drm_fb_helper_resume_hotplug(). We need this to check whether or not drm_fb_helper_hotplug_event() needs to be called anyway Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: stable@vger.kernel.org Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
Since actual hotplug notifications don't get disabled until nouveau_display_fini() is called, all this will do is cause any hotplugs that happen between this drm_kms_helper_poll_disable() call and the actual hotplug disablement to potentially be dropped if ACPI isn't around to help us. Signed-off-by: Lyude Paul <lyude@redhat.com> Acked-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: stable@vger.kernel.org Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
Lyude Paul authored
Turns out this part is my fault for not noticing when reviewing 9a2eba33 ("drm/nouveau: Fix drm poll_helper handling"). Currently we call drm_kms_helper_poll_enable() from nouveau_display_hpd_work(). This makes basically no sense however, because that means we're calling drm_kms_helper_poll_enable() every time we schedule the hotplug detection work. This is also against the advice mentioned in drm_kms_helper_poll_enable()'s documentation: Note that calls to enable and disable polling must be strictly ordered, which is automatically the case when they're only call from suspend/resume callbacks. Of course, hotplugs can't really be ordered. They could even happen immediately after we called drm_kms_helper_poll_disable() in nouveau_display_fini(), which can lead to all sorts of issues. Additionally; enabling polling /after/ we call drm_helper_hpd_irq_event() could also mean that we'd miss a hotplug event anyway, since drm_helper_hpd_irq_event() wouldn't bother trying to probe connectors so long as polling is disabled. So; simply move this back into nouveau_display_init() again. The race condition that both of these patches attempted to work around has already been fixed properly in d61a5c10 ("drm/nouveau: Fix deadlock on runtime suspend") Fixes: 9a2eba33 ("drm/nouveau: Fix drm poll_helper handling") Signed-off-by: Lyude Paul <lyude@redhat.com> Acked-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: Lukas Wunner <lukas@wunner.de> Cc: Peter Ujfalusi <peter.ujfalusi@ti.com> Cc: stable@vger.kernel.org Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
-
- 26 Aug, 2018 10 commits
-
-
Linus Torvalds authored
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull timer update from Thomas Gleixner: "New defines for the compat time* types so they can be shared between 32bit and 64bit builds. Not used yet, but merging them now allows the actual conversions to be merged through different maintainer trees without dependencies We still have compat interfaces for 32bit on 64bit even with the new 2038 safe timespec/val variants because pointer size is different. And for the old style timespec/val interfaces we need yet another 'compat' interface for both 32bit native and 32bit on 64bit" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: y2038: Provide aliases for compat helpers
-
git://git.infradead.org/users/willy/linux-daxLinus Torvalds authored
Pull IDA updates from Matthew Wilcox: "A better IDA API: id = ida_alloc(ida, GFP_xxx); ida_free(ida, id); rather than the cumbersome ida_simple_get(), ida_simple_remove(). The new IDA API is similar to ida_simple_get() but better named. The internal restructuring of the IDA code removes the bitmap preallocation nonsense. I hope the net -200 lines of code is convincing" * 'ida-4.19' of git://git.infradead.org/users/willy/linux-dax: (29 commits) ida: Change ida_get_new_above to return the id ida: Remove old API test_ida: check_ida_destroy and check_ida_alloc test_ida: Convert check_ida_conv to new API test_ida: Move ida_check_max test_ida: Move ida_check_leaf idr-test: Convert ida_check_nomem to new API ida: Start new test_ida module target/iscsi: Allocate session IDs from an IDA iscsi target: fix session creation failure handling drm/vmwgfx: Convert to new IDA API dmaengine: Convert to new IDA API ppc: Convert vas ID allocation to new IDA API media: Convert entity ID allocation to new IDA API ppc: Convert mmu context allocation to new IDA API Convert net_namespace to new IDA API cb710: Convert to new IDA API rsxx: Convert to new IDA API osd: Convert to new IDA API sd: Convert to new IDA API ...
-
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linuxLinus Torvalds authored
Pull gcc plugin fix from Kees Cook: "Lift gcc test into Kconfig. This is for better behavior when the kernel is built with Clang, reported by Stefan Agner" * tag 'gcc-plugins-v4.19-rc1-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: gcc-plugins: Disable when building under Clang
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull perf updates from Thomas Gleixner: "Kernel: - Improve kallsyms coverage - Add x86 entry trampolines to kcore - Fix ARM SPE handling - Correct PPC event post processing Tools: - Make the build system more robust - Small fixes and enhancements all over the place - Update kernel ABI header copies - Preparatory work for converting libtraceevnt to a shared library - License cleanups" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits) tools arch: Update arch/x86/lib/memcpy_64.S copy used in 'perf bench mem memcpy' tools arch x86: Update tools's copy of cpufeatures.h perf python: Fix pyrf_evlist__read_on_cpu() interface perf mmap: Store real cpu number in 'struct perf_mmap' perf tools: Remove ext from struct kmod_path perf tools: Add gzip_is_compressed function perf tools: Add lzma_is_compressed function perf tools: Add is_compressed callback to compressions array perf tools: Move the temp file processing into decompress_kmodule perf tools: Use compression id in decompress_kmodule() perf tools: Store compression id into struct dso perf tools: Add compression id into 'struct kmod_path' perf tools: Make is_supported_compression() static perf tools: Make decompress_to_file() function static perf tools: Get rid of dso__needs_decompress() call in __open_dso() perf tools: Get rid of dso__needs_decompress() call in symbol__disassemble() perf tools: Get rid of dso__needs_decompress() call in read_object_code() tools lib traceevent: Change to SPDX License format perf llvm: Allow passing options to llc in addition to clang perf parser: Improve error message for PMU address filters ...
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull x86 fixes from Thomas Gleixner: - Correct the L1TF fallout on 32bit and the off by one in the 'too much RAM for protection' calculation. - Add a helpful kernel message for the 'too much RAM' case - Unbreak the VDSO in case that the compiler desides to use indirect jumps/calls and emits retpolines which cannot be resolved because the kernel uses its own thunks, which does not work for the VDSO. Make it use the builtin thunks. - Re-export start_thread() which was unexported when the 32/64bit implementation was unified. start_thread() is required by modular binfmt handlers. - Trivial cleanups * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation/l1tf: Suggest what to do on systems with too much RAM x86/speculation/l1tf: Fix off-by-one error when warning that system has too much RAM x86/kvm/vmx: Remove duplicate l1d flush definitions x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bit x86/process: Re-export start_thread() x86/mce: Add notifier_block forward declaration x86/vdso: Fix vDSO build if a retpoline is emitted
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull irq update from Thomas Gleixner: "A small set of updats/fixes for the irq subsystem: - Allow GICv3 interrupts to be configured as wake-up sources to enable wakeup from suspend - Make the error handling of the STM32 irqchip init function work - A set of small cleanups and improvements" * 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: irqchip/gic-v3: Allow interrupt to be configured as wake-up sources irqchip/tango: Set irq handler and data in one go dt-bindings: irqchip: renesas-irqc: Document r8a774a1 support irqchip/s3c24xx: Remove unneeded comparison of unsigned long to 0 irqchip/stm32: Fix init error handling irqchip/bcm7038-l1: Hide cpu offline callback when building for !SMP
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull licking update from Thomas Gleixner: "Mark the switch cases which fall through to the next case with the proper comment so the fallthrough compiler checks can be enabled" * 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: futex: Mark expected switch fall-throughs
-
Linus Torvalds authored
Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm memory-failure update from Dave Jiang: "As it stands, memory_failure() gets thoroughly confused by dev_pagemap backed mappings. The recovery code has specific enabling for several possible page states and needs new enabling to handle poison in dax mappings. In order to support reliable reverse mapping of user space addresses: 1/ Add new locking in the memory_failure() rmap path to prevent races that would typically be handled by the page lock. 2/ Since dev_pagemap pages are hidden from the page allocator and the "compound page" accounting machinery, add a mechanism to determine the size of the mapping that encompasses a given poisoned pfn. 3/ Given pmem errors can be repaired, change the speculatively accessed poison protection, mce_unmap_kpfn(), to be reversible and otherwise allow ongoing access from the kernel. A side effect of this enabling is that MADV_HWPOISON becomes usable for dax mappings, however the primary motivation is to allow the system to survive userspace consumption of hardware-poison via dax. Specifically the current behavior is: mce: Uncorrected hardware memory error in user-access at af34214200 {1}[Hardware Error]: It has been corrected by h/w and requires no further action mce: [Hardware Error]: Machine check events logged {1}[Hardware Error]: event severity: corrected Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users [..] Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed mce: Memory error not recovered <reboot> ...and with these changes: Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000 Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption Memory failure: 0x20cb00: recovery action for dax page: Recovered Given all the cross dependencies I propose taking this through nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax folks" * tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm, pmem: Restore page attributes when clearing errors x86/memory_failure: Introduce {set, clear}_mce_nospec() x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses mm, memory_failure: Teach memory_failure() about dev_pagemap pages filesystem-dax: Introduce dax_lock_mapping_entry() mm, memory_failure: Collect mapping size in collect_procs() mm, madvise_inject_error: Let memory_failure() optionally take a page reference mm, dev_pagemap: Do not clear ->mapping on final put mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages filesystem-dax: Set page->index device-dax: Set page->index device-dax: Enable page_mapping() device-dax: Convert to vmf_insert_mixed and vm_fault_t
-
Linus Torvalds authored
Pull libnvdimm updates from Dave Jiang: "Collection of misc libnvdimm patches for 4.19 submission: - Adding support to read locked nvdimm capacity. - Change test code to make DSM failure code injection an override. - Add support for calculate maximum contiguous area for namespace. - Add support for queueing a short ARS when there is on going ARS for nvdimm. - Allow NULL to be passed in to ->direct_access() for kaddr and pfn params. - Improve smart injection support for nvdimm emulation testing. - Fix test code that supports for emulating controller temperature. - Fix hang on error before devm_memremap_pages() - Fix a bug that causes user memory corruption when data returned to user for ars_status. - Maintainer updates for Ross Zwisler emails and adding Jan Kara to fsdax" * tag 'libnvdimm-for-4.19_misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm: fix ars_status output length calculation device-dax: avoid hang on error before devm_memremap_pages() tools/testing/nvdimm: improve emulation of smart injection filesystem-dax: Do not request kaddr and pfn when not required md/dm-writecache: Don't request pointer dummy_addr when not required dax/super: Do not request a pointer kaddr when not required tools/testing/nvdimm: kaddr and pfn can be NULL to ->direct_access() s390, dcssblk: kaddr and pfn can be NULL to ->direct_access() libnvdimm, pmem: kaddr and pfn can be NULL to ->direct_access() acpi/nfit: queue issuing of ars when an uc error notification comes in libnvdimm: Export max available extent libnvdimm: Use max contiguous area for namespace size MAINTAINERS: Add Jan Kara for filesystem DAX MAINTAINERS: update Ross Zwisler's email address tools/testing/nvdimm: Fix support for emulating controller temperature tools/testing/nvdimm: Make DSM failure code injection an override acpi, nfit: Prefer _DSM over _LSR for namespace label reads libnvdimm: Introduce locked DIMM capacity support
-
- 25 Aug, 2018 8 commits
-
-
git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-socLinus Torvalds authored
Pull ARM SoC late updates from Olof Johansson: "A couple of late-merged changes that would be useful to get in this merge window: - Driver support for reset of audio complex on Meson platforms. The audio driver went in this merge window, and these changes have been in -next for a while (just not in our tree). - Power management fixes for IOMMU on Rockchip platforms, getting closer to kexec working on them, including Chromebooks. - Another pass updating "arm,psci" -> "psci" for some properties that have snuck in since last time it was done" * tag 'armsoc-late' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: iommu/rockchip: Move irq request past pm_runtime_enable iommu/rockchip: Handle errors returned from PM framework arm64: rockchip: Force CONFIG_PM on Rockchip systems ARM: rockchip: Force CONFIG_PM on Rockchip systems arm64: dts: Fix various entry-method properties to reflect documentation reset: imx7: Fix always writing bits as 0 reset: meson: add meson audio arb driver reset: meson: add dt-bindings for meson-axg audio arb
-
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuildLinus Torvalds authored
Pull more Kbuild updates from Masahiro Yamada: - add build_{menu,n,g,x}config targets for compile-testing Kconfig - fix and improve recursive dependency detection in Kconfig - fix parallel building of menuconfig/nconfig - fix syntax error in clang-version.sh - suppress distracting log from syncconfig - remove obsolete "rpm" target - remove VMLINUX_SYMBOL(_STR) macro entirely - fix microblaze build with CONFIG_DYNAMIC_FTRACE - move compiler test for dead code/data elimination to Kconfig - rename well-known LDFLAGS variable to KBUILD_LDFLAGS - misc fixes and cleanups * tag 'kbuild-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: kbuild: rename LDFLAGS to KBUILD_LDFLAGS kbuild: pass LDFLAGS to recordmcount.pl kbuild: test dead code/data elimination support in Kconfig initramfs: move gen_initramfs_list.sh from scripts/ to usr/ vmlinux.lds.h: remove stale <linux/export.h> include export.h: remove VMLINUX_SYMBOL() and VMLINUX_SYMBOL_STR() Coccinelle: remove pci_alloc_consistent semantic to detect in zalloc-simple.cocci kbuild: make sorting initramfs contents independent of locale kbuild: remove "rpm" target, which is alias of "rpm-pkg" kbuild: Fix LOADLIBES rename in Documentation/kbuild/makefiles.txt kconfig: suppress "configuration written to .config" for syncconfig kconfig: fix "Can't open ..." in parallel build kbuild: Add a space after `!` to prevent parsing as file pattern scripts: modpost: check memory allocation results kconfig: improve the recursive dependency report kconfig: report recursive dependency involving 'imply' kconfig: error out when seeing recursive dependency kconfig: add build-only configurator targets scripts/dtc: consolidate include path options in Makefile
-
git://git.kernel.dk/linux-blockLinus Torvalds authored
Pull block fixes from Jens Axboe: "A few small fixes for this merge window: - Locking imbalance fix for bcache (Shan Hai) - A few small fixes for wbt. One is a cleanup/prep, one is a fix for an existing issue, and the last two are fixes for changes that went into this merge window (me)" * tag 'for-linus-20180825' of git://git.kernel.dk/linux-block: blk-wbt: don't maintain inflight counts if disabled blk-wbt: fix has-sleeper queueing check blk-wbt: use wq_has_sleeper() for wq active check blk-wbt: move disable check into get_limit() bcache: release dc->writeback_lock properly in bch_writeback_thread()
-
git://git.infradead.org/linux-ubifsLinus Torvalds authored
Pull UBIFS fix from Richard Weinberger: "Remove an empty file from UBIFS source" * tag 'upstream-4.19-rc1-fix' of git://git.infradead.org/linux-ubifs: ubifs: Remove empty file.h
-
git://git.samba.org/sfrench/cifs-2.6Linus Torvalds authored
Pull cifs fixes from Steve French: "Three small SMB3 fixes, one for stable" * tag '4.19-rc-smb3' of git://git.samba.org/sfrench/cifs-2.6: cifs: update internal module version number for cifs.ko to 2.12 cifs: check kmalloc before use cifs: check if SMB2 PDU size has been padded and suppress the warning cifs: create a define for how many iovs we need for an SMB2_open()
-
Linus Torvalds authored
This is not normally noticeable, but repeated forks are unnecessarily expensive because they repeatedly dirty the parent page tables during the page table copy operation. It's trivial to just avoid write protecting the page table entry if it was already not writable. This patch was inspired by https://bugzilla.kernel.org/show_bug.cgi?id=200447 which points to an ancient "waste time re-doing fork" issue in the presence of lots of signals. That bug was fixed by Eric Biederman's signal handling series culminating in commit c3ad2c3b ("signal: Don't restart fork when signals come in"), but the unnecessary work for repeated forks is still work just fixing, particularly since the fix is trivial. Cc: Eric Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Colin Ian King authored
At the point where r is being checked for different values, r is always going to be equal to 2 as the previous if statements jump to end or end1 if r is not 2. Hence the assignment to err can be simplified to just err an assignment without any checks on the value or r. Detected by CoverityScan, CID#1226737 ("Logically dead code") Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jens Axboe authored
Tejun Heo wrote: > > I asked Jens whether he could take care of the libata tree and he > thankfully agreed, so, from now on, Jens will be the libata > maintainer. > > Thanks a lot! Thanks for your work in this area. I still remember the first linux storage summit we did in Vancouver 2001, Tejun was invited to talk about his libata error handling work. Before that, it was basically a crap shoot if we recovered properly or not... A lot of water has flown under the bridge since then! Here's an "official" patch. Linus, can you apply it? Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
- 24 Aug, 2018 2 commits
-
-
git://git.kernel.org/pub/scm/linux/kernel/git/tj/libataLinus Torvalds authored
Pull libata updates from Tejun Heo: "Nothing too interesting. Mostly ahci and ahci_platform changes, many around power management" * 'for-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata: (22 commits) ata: ahci_platform: enable to get and control reset ata: libahci_platform: add reset control support ata: add an extra argument to ahci_platform_get_resources() ata: sata_rcar: Add r8a77965 support ata: sata_rcar: exclude setting of PHY registers in Gen3 ata: sata_rcar: really mask all interrupts on Gen2 and later Revert "ata: ahci_platform: allow disabling of hotplug to save power" ata: libahci: Allow reconfigure of DEVSLP register ata: libahci: Correct setting of DEVSLP register ata: ahci: Enable DEVSLP by default on x86 with SLP_S0 ata: ahci: Support state with min power but Partial low power state Revert "ata: ahci_platform: convert kcalloc to devm_kcalloc" ata: sata_rcar: Add rudimentary Runtime PM support ata: sata_rcar: Provide a short-hand for &pdev->dev ata: Only output sg element mapped number in verbose debug ata: Guard ata_scsi_dump_cdb() by ATA_VERBOSE_DEBUG ata: ahci_platform: convert kcalloc to devm_kcalloc ata: ahci_platform: convert kzallloc to kcalloc ata: ahci_platform: correct parameter documentation for ahci_platform_shutdown libata: remove ata_sff_data_xfer_noirq() ...
-
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroupLinus Torvalds authored
Pull cgroup updates from Tejun Heo: "Just one commit from Steven to take out spin lock from trace event handlers" * 'for-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup/tracing: Move taking of spin lock out of trace event handlers
-