- 03 Mar, 2016 14 commits
-
-
Xiao Guangrong authored
Now, all non-leaf shadow page are page tracked, if gfn is not tracked there is no non-leaf shadow page of gfn is existed, we can directly make the shadow page of gfn to unsync Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
non-leaf shadow pages are always write protected, it can be the user of page track Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
Notifier list is introduced so that any node wants to receive the track event can register to the list Two APIs are introduced here: - kvm_page_track_register_notifier(): register the notifier to receive track event - kvm_page_track_unregister_notifier(): stop receiving track event by unregister the notifier The callback, node->track_write() is called when a write access on the write tracked page happens Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
If the page fault is caused by write access on write tracked page, the real shadow page walking is skipped, we lost the chance to clear write flooding for the page structure current vcpu is using Fix it by locklessly waking shadow page table to clear write flooding on the shadow page structure out of mmu-lock. So that we change the count to atomic_t Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
The page fault caused by write access on the write tracked page can not be fixed, it always need to be emulated. page_fault_handle_page_track() is the fast path we introduce here to skip holding mmu-lock and shadow page table walking However, if the page table is not present, it is worth making the page table entry present and readonly to make the read access happy mmu_need_write_protect() need to be cooked to avoid page becoming writable when making page table present or sync/prefetch shadow page table entries Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
These two functions are the user APIs: - kvm_slot_page_track_add_page(): add the page to the tracking pool after that later specified access on that page will be tracked - kvm_slot_page_track_remove_page(): remove the page from the tracking pool, the specified access on the page is not tracked after the last user is gone Both of these are called under the protection both of mmu-lock and kvm->srcu or kvm->slots_lock Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
The array, gfn_track[mode][gfn], is introduced in memory slot for every guest page, this is the tracking count for the gust page on different modes. If the page is tracked then the count is increased, the page is not tracked after the count reaches zero We use 'unsigned short' as the tracking count which should be enough as shadow page table only can use 2^14 (2^3 for level, 2^1 for cr4_pae, 2^2 for quadrant, 2^3 for access, 2^1 for nxe, 2^1 for cr0_wp, 2^1 for smep_andnot_wp, 2^1 for smap_andnot_wp, and 2^1 for smm) at most, there is enough room for other trackers Two callbacks, kvm_page_track_create_memslot() and kvm_page_track_free_memslot() are implemented in this patch, they are internally used to initialize and reclaim the memory of the array Currently, only write track mode is supported Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
Split rmap_write_protect() and introduce the function to abstract the write protection based on the slot This function will be used in the later patch Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
Abstract the common operations from account_shadowed() and unaccount_shadowed(), then introduce kvm_mmu_gfn_disallow_lpage() and kvm_mmu_gfn_allow_lpage() These two functions will be used by page tracking in the later patch Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiao Guangrong authored
kvm_lpage_info->write_count is used to detect if the large page mapping for the gfn on the specified level is allowed, rename it to disallow_lpage to reflect its purpose, also we rename has_wrprotected_page() to mmu_gfn_lpage_is_disallowed() to make the code more clearer Later we will extend this mechanism for page tracking: if the gfn is tracked then large mapping for that gfn on any level is not allowed. The new name is more straightforward Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Joerg Roedel authored
Using the vector stored at interrupt delivery makes the eoi matching safe agains irq migration in the ioapic. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Joerg Roedel authored
This allows backtracking later in case the rtc irq has been moved to another vcpu/vector. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Joerg Roedel authored
Currently this is a bitmap which tracks which CPUs we expect an EOI from. Move this bitmap to a struct so that we can track additional information there. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Merge branch 'kvm-ppc-next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD The highlights are: * Enable VFIO device on PowerPC, from David Gibson * Optimizations to speed up IPIs between vcpus in HV KVM, from Suresh Warrier (who is also Suresh E. Warrier) * In-kernel handling of IOMMU hypercalls, and support for dynamic DMA windows (DDW), from Alexey Kardashevskiy. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 01 Mar, 2016 4 commits
-
-
Alexey Kardashevskiy authored
The existing KVM_CREATE_SPAPR_TCE only supports 32bit windows which is not enough for directly mapped windows as the guest can get more than 4GB. This adds KVM_CREATE_SPAPR_TCE_64 ioctl and advertises it via KVM_CAP_SPAPR_TCE_64 capability. The table size is checked against the locked memory limit. Since 64bit windows are to support Dynamic DMA windows (DDW), let's add @bus_offset and @page_shift which are also required by DDW. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Alexey Kardashevskiy authored
This enables userspace view of TCE tables to start from non-zero offset on a bus. This will be used for huge DMA windows. This only changes the internal structure, the user interface needs to change in order to use an offset. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Alexey Kardashevskiy authored
At the moment the kvmppc_spapr_tce_table struct can only describe 4GB windows and handle fixed size (4K) pages. Dynamic DMA windows support more so these limits need to be extended. This replaces window_size (in bytes, 4GB max) with page_shift (32bit) and size (64bit, in pages). This should cause no behavioural change as this is changing the internal structures only - the user interface still only allows one to create a 32-bit table with 4KiB pages at this stage. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Alexey Kardashevskiy authored
This adds a capability number for 64-bit TCE tables support. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
- 29 Feb, 2016 9 commits
-
-
Suresh E. Warrier authored
Redirecting the wakeup of a VCPU from the H_IPI hypercall to a core running in the host is usually a good idea, most workloads seemed to benefit. However, in one heavily interrupt-driven SMT1 workload, some regression was observed. This patch adds a kvm_hv module parameter called h_ipi_redirect to control this feature. The default value for this tunable is 1 - that is enable the feature. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh E. Warrier authored
This patch adds support to real-mode KVM to search for a core running in the host partition and send it an IPI message with VCPU to be woken. This avoids having to switch to the host partition to complete an H_IPI hypercall when the VCPU which is the target of the the H_IPI is not loaded (is not running in the guest). The patch also includes the support in the IPI handler running in the host to do the wakeup by calling kvmppc_xics_ipi_action for the PPC_MSG_RM_HOST_ACTION message. When a guest is being destroyed, we need to ensure that there are no pending IPIs waiting to wake up a VCPU before we free the VCPUs of the guest. This is accomplished by: - Forces a PPC_MSG_CALL_FUNCTION IPI to be completed by all CPUs before freeing any VCPUs in kvm_arch_destroy_vm(). - Any PPC_MSG_RM_HOST_ACTION messages must be executed first before any other PPC_MSG_CALL_FUNCTION messages. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
This patch adds the support for the kick VCPU operation for kvmppc_host_rm_ops. The kvmppc_xics_ipi_action() function provides the function to be invoked for a host side operation when poked by the real mode KVM. This is initiated by KVM by sending an IPI to any free host core. KVM real mode must set the rm_action to XICS_RM_KICK_VCPU and rm_data to point to the VCPU to be woken up before sending the IPI. Note that we have allocated one kvmppc_host_rm_core structure per core. The above values need to be set in the structure corresponding to the core to which the IPI will be sent. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
The kvmppc_host_rm_ops structure keeps track of which cores are are in the host by maintaining a bitmask of active/runnable online CPUs that have not entered the guest. This patch adds support to manage the bitmask when a CPU is offlined or onlined in the host. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
Update the core host state in kvmppc_host_rm_ops whenever the primary thread of the core enters the guest or returns back. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
This patch defines the data structures to support the setting up of host side operations while running in real mode in the guest, and also the functions to allocate and free it. The operations are for now limited to virtual XICS operations. Currently, we have only defined one operation in the data structure: - Wake up a VCPU sleeping in the host when it receives a virtual interrupt The operations are assigned at the core level because PowerKVM requires that the host run in SMT off mode. For each core, we will need to manage its state atomically - where the state is defined by: 1. Is the core running in the host? 2. Is there a Real Mode (RM) operation pending on the host? Currently, core state is only managed at the whole-core level even when the system is in split-core mode. This just limits the number of free or "available" cores in the host to perform any host-side operations. The kvmppc_host_rm_core.rm_data allows any data to be passed by KVM in real mode to the host core along with the operation to be performed. The kvmppc_host_rm_ops structure is allocated the very first time a guest VM is started. Initial core state is also set - all online cores are in the host. This structure is never deleted, not even when there are no active guests. However, it needs to be freed when the module is unloaded because the kvmppc_host_rm_ops_hv can contain function pointers to kvm-hv.ko functions for the different supported host operations. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
Function to cause an IPI by directly updating the MFFR register in the XICS. The function is meant for real-mode callers since they cannot use the smp_ops->cause_ipi function which uses an ioremapped address. Normal usage is for the the KVM real mode code to set the IPI message using smp_muxed_ipi_message_pass and then invoke icp_native_cause_ipi_rm to cause the actual IPI. The function requires kvm_hstate.xics_phys to have been initialized with the physical address of XICS. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
smp_muxed_ipi_message_pass() invokes smp_ops->cause_ipi, which uses an ioremapped address to access registers on the XICS interrupt controller to cause the IPI. Because of this real mode callers cannot call smp_muxed_ipi_message_pass() for IPI messaging. This patch creates a separate function smp_muxed_ipi_set_message just to set the IPI message without the cause_ipi routine. After calling this function to set the IPI message, real mode callers must cause the IPI by writing to the XICS registers directly. As part of this, we also change smp_muxed_ipi_message_pass to call smp_muxed_ipi_set_message to set the message instead of doing it directly inside the routine. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
Suresh Warrier authored
This patch increases the number of demuxed messages for a controller with a single ipi to 8 for 64-bit systems. This is required because we want to use the IPI mechanism to send messages from a CPU running in KVM real mode in a guest to a CPU in the host to take some action. Currently, we only support 4 messages and all 4 are already taken. Define a fifth message PPC_MSG_RM_HOST_ACTION for this purpose. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
-
- 23 Feb, 2016 6 commits
-
-
Geliang Tang authored
To make the intention clearer, use list_first_entry instead of list_entry. Signed-off-by: Geliang Tang <geliangtang@163.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Geliang Tang authored
To make the intention clearer, use list_last_entry instead of list_entry. Signed-off-by: Geliang Tang <geliangtang@163.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Geliang Tang authored
Use list_for_each_entry*() instead of list_for_each*() to simplify the code. Signed-off-by: Geliang Tang <geliangtang@163.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Geliang Tang authored
Use list_for_each_entry_safe() instead of list_for_each_safe() to simplify the code. Signed-off-by: Geliang Tang <geliangtang@163.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Takuya Yoshikawa authored
Rather than placing a handle_mmio_page_fault() call in each vcpu->arch.mmu.page_fault() handler, moving it up to kvm_mmu_page_fault() makes the code better: - avoids code duplication - for kvm_arch_async_page_ready(), which is the other caller of vcpu->arch.mmu.page_fault(), removes an extra error_code check - avoids returning both RET_MMIO_PF_* values and raw integer values from vcpu->arch.mmu.page_fault() Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Takuya Yoshikawa authored
These two have only slight differences: - whether 'addr' is of type u64 or of type gva_t - whether they have 'direct' parameter or not Concerning the former, quickly_check_mmio_pf()'s u64 is better because 'addr' needs to be able to have both a guest physical address and a guest virtual address. The latter is just a stylistic issue as we can always calculate the mode from the 'vcpu' as is_mmio_page_fault() does. This patch keeps the parameter to make the following patch cleaner. In addition, the patch renames the function to mmio_info_in_cache() to make it clear what it actually checks for. Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 16 Feb, 2016 7 commits
-
-
Paolo Bonzini authored
Prepare for improving the precision in the next patch. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
The patch implements KVM_EXIT_HYPERV userspace exit functionality for Hyper-V VMBus hypercalls: HV_X64_HCALL_POST_MESSAGE, HV_X64_HCALL_SIGNAL_EVENT. Changes v3: * use vcpu->arch.complete_userspace_io to setup hypercall result Changes v2: * use KVM_EXIT_HYPERV for hypercalls Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Joerg Roedel <joro@8bytes.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
Currently we do not support Hyper-V hypercall continuation so reject it. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Joerg Roedel <joro@8bytes.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
Pass the return code from kvm_emulate_hypercall on to the caller, in order to allow it to indicate to the userspace that the hypercall has to be handled there. Also adjust all the existing code paths to return 1 to make sure the hypercall isn't passed to the userspace without setting kvm_run appropriately. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Joerg Roedel <joro@8bytes.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
VMBus hypercall codes inside Hyper-V UAPI header will be used by QEMU to implement VMBus host devices support. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Acked-by: K. Y. Srinivasan <kys@microsoft.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Joerg Roedel <joro@8bytes.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org [Do not rename the constant at the same time as moving it, as that would cause semantic conflicts with the Hyper-V tree. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
Rename HV_X64_HV_NOTIFY_LONG_SPIN_WAIT by HVCALL_NOTIFY_LONG_SPIN_WAIT, so the name is more consistent with the other hypercalls. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Joerg Roedel <joro@8bytes.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org [Change name, Andrey used HV_X64_HCALL_NOTIFY_LONG_SPIN_WAIT. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Sometimes when setting a breakpoint a process doesn't stop on it. This is because the debug registers are not loaded correctly on VCPU load. The following simple reproducer from Oleg Nesterov tries using debug registers in both the host and the guest, for example by running "./bp 0 1" on the host and "./bp 14 15" under QEMU. #include <unistd.h> #include <signal.h> #include <stdlib.h> #include <stdio.h> #include <sys/wait.h> #include <sys/ptrace.h> #include <sys/user.h> #include <asm/debugreg.h> #include <assert.h> #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) unsigned long encode_dr7(int drnum, int enable, unsigned int type, unsigned int len) { unsigned long dr7; dr7 = ((len | type) & 0xf) << (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE); if (enable) dr7 |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE)); return dr7; } int write_dr(int pid, int dr, unsigned long val) { return ptrace(PTRACE_POKEUSER, pid, offsetof (struct user, u_debugreg[dr]), val); } void set_bp(pid_t pid, void *addr) { unsigned long dr7; assert(write_dr(pid, 0, (long)addr) == 0); dr7 = encode_dr7(0, 1, DR_RW_EXECUTE, DR_LEN_1); assert(write_dr(pid, 7, dr7) == 0); } void *get_rip(int pid) { return (void*)ptrace(PTRACE_PEEKUSER, pid, offsetof(struct user, regs.rip), 0); } void test(int nr) { void *bp_addr = &&label + nr, *bp_hit; int pid; printf("test bp %d\n", nr); assert(nr < 16); // see 16 asm nops below pid = fork(); if (!pid) { assert(ptrace(PTRACE_TRACEME, 0,0,0) == 0); kill(getpid(), SIGSTOP); for (;;) { label: asm ( "nop; nop; nop; nop;" "nop; nop; nop; nop;" "nop; nop; nop; nop;" "nop; nop; nop; nop;" ); } } assert(pid == wait(NULL)); set_bp(pid, bp_addr); for (;;) { assert(ptrace(PTRACE_CONT, pid, 0, 0) == 0); assert(pid == wait(NULL)); bp_hit = get_rip(pid); if (bp_hit != bp_addr) fprintf(stderr, "ERR!! hit wrong bp %ld != %d\n", bp_hit - &&label, nr); } } int main(int argc, const char *argv[]) { while (--argc) { int nr = atoi(*++argv); if (!fork()) test(nr); } while (wait(NULL) > 0) ; return 0; } Cc: stable@vger.kernel.org Suggested-by: Nadadv Amit <namit@cs.technion.ac.il> Reported-by: Andrey Wagin <avagin@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-