- 29 Jun, 2021 40 commits
-
-
Waiman Long authored
Before the new slab memory controller with per object byte charging, charging and vmstat data update happen only when new slab pages are allocated or freed. Now they are done with every kmem_cache_alloc() and kmem_cache_free(). This causes additional overhead for workloads that generate a lot of alloc and free calls. The memcg_stock_pcp is used to cache byte charge for a specific obj_cgroup to reduce that overhead. To further reducing it, this patch makes the vmstat data cached in the memcg_stock_pcp structure as well until it accumulates a page size worth of update or when other cached data change. Caching the vmstat data in the per-cpu stock eliminates two writes to non-hot cachelines for memcg specific as well as memcg-lruvecs specific vmstat data by a write to a hot local stock cacheline. On a 2-socket Cascade Lake server with instrumentation enabled and this patch applied, it was found that about 20% (634400 out of 3243830) of the time when mod_objcg_state() is called leads to an actual call to __mod_objcg_state() after initial boot. When doing parallel kernel build, the figure was about 17% (24329265 out of 142512465). So caching the vmstat data reduces the number of calls to __mod_objcg_state() by more than 80%. Link: https://lkml.kernel.org/r/20210506150007.16288-3-longman@redhat.comSigned-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Chris Down <chris@chrisdown.name> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Waiman Long authored
Patch series "mm/memcg: Reduce kmemcache memory accounting overhead", v6. With the recent introduction of the new slab memory controller, we eliminate the need for having separate kmemcaches for each memory cgroup and reduce overall kernel memory usage. However, we also add additional memory accounting overhead to each call of kmem_cache_alloc() and kmem_cache_free(). For workloads that require a lot of kmemcache allocations and de-allocations, they may experience performance regression as illustrated in [1] and [2]. A simple kernel module that performs repeated loop of 100,000,000 kmem_cache_alloc() and kmem_cache_free() of either a small 32-byte object or a big 4k object at module init time with a batch size of 4 (4 kmalloc's followed by 4 kfree's) is used for benchmarking. The benchmarking tool was run on a kernel based on linux-next-20210419. The test was run on a CascadeLake server with turbo-boosting disable to reduce run-to-run variation. The small object test exercises mainly the object stock charging and vmstat update code paths. The large object test also exercises the refill_obj_stock() and __memcg_kmem_charge()/__memcg_kmem_uncharge() code paths. With memory accounting disabled, the run time was 3.130s with both small object big object tests. With memory accounting enabled, both cgroup v1 and v2 showed similar results in the small object test. The performance results of the large object test, however, differed between cgroup v1 and v2. The execution times with the application of various patches in the patchset were: Applied patches Run time Accounting overhead %age 1 %age 2 --------------- -------- ------------------- ------ ------ Small 32-byte object: None 11.634s 8.504s 100.0% 271.7% 1-2 9.425s 6.295s 74.0% 201.1% 1-3 9.708s 6.578s 77.4% 210.2% 1-4 8.062s 4.932s 58.0% 157.6% Large 4k object (v2): None 22.107s 18.977s 100.0% 606.3% 1-2 20.960s 17.830s 94.0% 569.6% 1-3 14.238s 11.108s 58.5% 354.9% 1-4 11.329s 8.199s 43.2% 261.9% Large 4k object (v1): None 36.807s 33.677s 100.0% 1075.9% 1-2 36.648s 33.518s 99.5% 1070.9% 1-3 22.345s 19.215s 57.1% 613.9% 1-4 18.662s 15.532s 46.1% 496.2% N.B. %age 1 = overhead/unpatched overhead %age 2 = overhead/accounting disabled time Patch 2 (vmstat data stock caching) helps in both the small object test and the large v2 object test. It doesn't help much in v1 big object test. Patch 3 (refill_obj_stock improvement) does help the small object test but offer significant performance improvement for the large object test (both v1 and v2). Patch 4 (eliminating irq disable/enable) helps in all test cases. To test for the extreme case, a multi-threaded kmalloc/kfree microbenchmark was run on the 2-socket 48-core 96-thread system with 96 testing threads in the same memcg doing kmalloc+kfree of a 4k object with accounting enabled for 10s. The total number of kmalloc+kfree done in kilo operations per second (kops/s) were as follows: Applied patches v1 kops/s v1 change v2 kops/s v2 change --------------- --------- --------- --------- --------- None 3,520 1.00X 6,242 1.00X 1-2 4,304 1.22X 8,478 1.36X 1-3 4,731 1.34X 418,142 66.99X 1-4 4,587 1.30X 438,838 70.30X With memory accounting disabled, the kmalloc/kfree rate was 1,481,291 kop/s. This test shows how significant the memory accouting overhead can be in some extreme situations. For this multithreaded test, the improvement from patch 2 mainly comes from the conditional atomic xchg of objcg->nr_charged_bytes in mod_objcg_state(). By using an unconditional xchg, the operation rates were similar to the unpatched kernel. Patch 3 elminates the single highly contended cacheline of objcg->nr_charged_bytes for cgroup v2 leading to a huge performance improvement. Cgroup v1, however, still has another highly contended cacheline in the shared page counter &memcg->kmem. So the improvement is only modest. Patch 4 helps in cgroup v2, but performs worse in cgroup v1 as eliminating the irq_disable/irq_enable overhead seems to aggravate the cacheline contention. [1] https://lore.kernel.org/linux-mm/20210408193948.vfktg3azh2wrt56t@gabell/T/#u [2] https://lore.kernel.org/lkml/20210114025151.GA22932@xsang-OptiPlex-9020/ This patch (of 4): mod_objcg_state() is moved from mm/slab.h to mm/memcontrol.c so that further optimization can be done to it in later patches without exposing unnecessary details to other mm components. Link: https://lkml.kernel.org/r/20210506150007.16288-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210506150007.16288-2-longman@redhat.comSigned-off-by: Waiman Long <longman@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Chris Down <chris@chrisdown.name> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Huang Ying authored
To check whether all pages and shadow entries in swap cache has been removed before swap cache is freed. Link: https://lkml.kernel.org/r/20210608005121.511140-1-ying.huang@intel.comSigned-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ilya Dryomov <idryomov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Huang Ying authored
With commit 09854ba9 ("mm: do_wp_page() simplification"), after COW, the idle swap cache page (neither the page nor the corresponding swap entry is mapped by any process) will be left in the LRU list, even if it's in the active list or the head of the inactive list. So, the page reclaimer may take quite some overhead to reclaim these actually unused pages. To help the page reclaiming, in this patch, after COW, the idle swap cache page will be tried to be freed. To avoid to introduce much overhead to the hot COW code path, a) there's almost zero overhead for non-swap case via checking PageSwapCache() firstly. b) the page lock is acquired via trylock only. To test the patch, we used pmbench memory accessing benchmark with working-set larger than available memory on a 2-socket Intel server with a NVMe SSD as swap device. Test results shows that the pmbench score increases up to 23.8% with the decreased size of swap cache and swapin throughput. Link: https://lkml.kernel.org/r/20210601053143.1380078-1-ying.huang@intel.comSigned-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> [use free_swap_cache()] Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Huang Ying authored
Before commit c10d38cc ("mm, swap: bounds check swap_info array accesses to avoid NULL derefs"), the typical code to reference the swap_info[] is as follows, type = swp_type(swp_entry); if (type >= nr_swapfiles) /* handle invalid swp_entry */; p = swap_info[type]; /* access fields of *p. OOPS! p may be NULL! */ Because the ordering isn't guaranteed, it's possible that swap_info[type] is read before "nr_swapfiles". And that may result in NULL pointer dereference. So after commit c10d38cc, the code becomes, struct swap_info_struct *swap_type_to_swap_info(int type) { if (type >= READ_ONCE(nr_swapfiles)) return NULL; smp_rmb(); return READ_ONCE(swap_info[type]); } /* users */ type = swp_type(swp_entry); p = swap_type_to_swap_info(type); if (!p) /* handle invalid swp_entry */; /* dereference p */ Where the value of swap_info[type] (that is, "p") is checked to be non-zero before being dereferenced. So, the NULL deferencing becomes impossible even if "nr_swapfiles" is read after swap_info[type]. Therefore, the "smp_rmb()" becomes unnecessary. And, we don't even need to read "nr_swapfiles" here. Because the non-zero checking for "p" is sufficient. We just need to make sure we will not access out of the boundary of the array. With the change, nr_swapfiles will only be accessed with swap_lock held, except in swapcache_free_entries(). Where the absolute correctness of the value isn't needed, as described in the comments. We still need to guarantee swap_info[type] is read before being dereferenced. That can be satisfied via the data dependency ordering enforced by READ_ONCE(swap_info[type]). This needs to be paired with proper write barriers. So smp_store_release() is used in alloc_swap_info() to guarantee the fields of *swap_info[type] is initialized before swap_info[type] itself being written. Note that the fields of *swap_info[type] is initialized to be 0 via kvzalloc() firstly. The assignment and deferencing of swap_info[type] is like rcu_assign_pointer() and rcu_dereference(). Link: https://lkml.kernel.org/r/20210520073301.1676294-1-ying.huang@intel.comSigned-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Omar Sandoval <osandov@fb.com> Cc: Paul McKenney <paulmck@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
deactivate_swap_slots_cache() and reactivate_swap_slots_cache() are only called below their implementations. So these forward declarations are meaningless and should be removed. Link: https://lkml.kernel.org/r/20210520134022.1370406-4-linmiaohe@huawei.comSigned-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
Since commit 55c653b71e8c ("mm: stop accounting shadow entries"), nr_shadows is not used anymore. Link: https://lkml.kernel.org/r/20210520134022.1370406-3-linmiaohe@huawei.comSigned-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
Patch series "Cleanups for swap", v2. This series contains just cleanups to remove some unused variables, delete meaningless forward declarations and so on. More details can be found in the respective changelogs. This patch (of 4): We should move get_swap_page_of_type() under CONFIG_HIBERNATION since the only caller of this function is now suspend routine. [linmiaohe@huawei.com: move scan_swap_map() under CONFIG_HIBERNATION] Link: https://lkml.kernel.org/r/20210521070855.2015094-1-linmiaohe@huawei.com [linmiaohe@huawei.com: fold scan_swap_map() into the only caller get_swap_page_of_type()] Link: https://lkml.kernel.org/r/20210527120328.3935132-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210520134022.1370406-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210520134022.1370406-2-linmiaohe@huawei.comSigned-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
When I was investigating the swap code, I found the below possible race window: CPU 1 CPU 2 ----- ----- shmem_swapin swap_cluster_readahead if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) { swapoff .. si->swap_file = NULL; .. struct inode *inode = si->swap_file->f_mapping->host;[oops!] Close this race window by using get/put_swap_device() to guard against concurrent swapoff. Link: https://lkml.kernel.org/r/20210426123316.806267-5-linmiaohe@huawei.com Fixes: 8fd2e0b5 ("mm: swap: check if swap backing device is congested or not") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alexs@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
The non_swap_entry() was used for working with VMA based swap readahead via commit ec560175 ("mm, swap: VMA based swap readahead"). At that time, the non_swap_entry() checking is necessary because the function is called before checking that in do_swap_page(). Then it's moved to swap_ra_info() since commit eaf649eb ("mm: swap: clean up swap readahead"). After that, the non_swap_entry() checking is unnecessary, because swap_ra_info() is called after non_swap_entry() has been checked already. The resulting code is confusing as the non_swap_entry() check looks racy now because while we released the pte lock, somebody else might have faulted in this pte. So we should check whether it's swap pte first to guard against such race or swap_type will be unexpected. But the race isn't important because it will not cause problem. We would have enough checking when we really operate the PTE entries later. So we remove the non_swap_entry() check here to avoid confusion. Link: https://lkml.kernel.org/r/20210426123316.806267-4-linmiaohe@huawei.comSigned-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Alex Shi <alexs@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
When I was investigating the swap code, I found the below possible race window: CPU 1 CPU 2 ----- ----- do_swap_page if (data_race(si->flags & SWP_SYNCHRONOUS_IO) swap_readpage if (data_race(sis->flags & SWP_FS_OPS)) { swapoff .. p->swap_file = NULL; .. struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping;[oops!] Note that for the pages that are swapped in through swap cache, this isn't an issue. Because the page is locked, and the swap entry will be marked with SWAP_HAS_CACHE, so swapoff() can not proceed until the page has been unlocked. Fix this race by using get/put_swap_device() to guard against concurrent swapoff. Link: https://lkml.kernel.org/r/20210426123316.806267-3-linmiaohe@huawei.com Fixes: 0bcac06f ("mm,swap: skip swapcache for swapin of synchronous device") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Alex Shi <alexs@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Miaohe Lin authored
Patch series "close various race windows for swap", v6. When I was investigating the swap code, I found some possible race windows. This series aims to fix all these races. But using current get/put_swap_device() to guard against concurrent swapoff for swap_readpage() looks terrible because swap_readpage() may take really long time. And to reduce the performance overhead on the hot-path as much as possible, it appears we can use the percpu_ref to close this race window(as suggested by Huang, Ying). The patch 1 adds percpu_ref support for swap and most of the remaining patches try to use this to close various race windows. More details can be found in the respective changelogs. This patch (of 4): Using current get/put_swap_device() to guard against concurrent swapoff for some swap ops, e.g. swap_readpage(), looks terrible because they might take really long time. This patch adds the percpu_ref support to serialize against concurrent swapoff(as suggested by Huang, Ying). Also we remove the SWP_VALID flag because it's used together with RCU solution. Link: https://lkml.kernel.org/r/20210426123316.806267-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210426123316.806267-2-linmiaohe@huawei.comSigned-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Alex Shi <alexs@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Christophe Leroy authored
Pagewalk ignores hugepd entries and walk down the tables as if it was traditionnal entries, leading to crazy result. Add walk_hugepd_range() and use it to walk hugepage tables. Link: https://lkml.kernel.org/r/38d04410700c8d02f28ba37e020b62c55d6f3d2c.1624597695.git.christophe.leroy@csgroup.euSigned-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Steven Price <steven.price@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Daniel Axtens <dja@axtens.net> Cc: "Oliver O'Halloran" <oohall@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrea Arcangeli authored
has_pinned 32bit can be packed in the MMF_HAS_PINNED bit as a noop cleanup. Any atomic_inc/dec to the mm cacheline shared by all threads in pin-fast would reintroduce a loss of SMP scalability to pin-fast, so there's no future potential usefulness to keep an atomic in the mm for this. set_bit(MMF_HAS_PINNED) will be theoretically a bit slower than WRITE_ONCE (atomic_set is equivalent to WRITE_ONCE), but the set_bit (just like atomic_set after this commit) has to be still issued only once per "mm", so the difference between the two will be lost in the noise. will-it-scale "mmap2" shows no change in performance with enterprise config as expected. will-it-scale "pin_fast" retains the > 4000% SMP scalability performance improvement against upstream as expected. This is a noop as far as overall performance and SMP scalability are concerned. [peterx@redhat.com: pack has_pinned in MMF_HAS_PINNED] Link: https://lkml.kernel.org/r/YJqWESqyxa8OZA+2@t490s [akpm@linux-foundation.org: coding style fixes] [peterx@redhat.com: fix build for task_mmu.c, introduce mm_set_has_pinned_flag, fix comments] Link: https://lkml.kernel.org/r/20210507150553.208763-4-peterx@redhat.comSigned-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrea Arcangeli authored
has_pinned cannot be written by each pin-fast or it won't scale in SMP. This isn't "false sharing" strictly speaking (it's more like "true non-sharing"), but it creates the same SMP scalability bottleneck of "false sharing". To verify the improvement, below test is done on 40 cpus host with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (must be with CONFIG_GUP_TEST=y): $ sudo chrt -f 1 ./gup_test -a -m 512 -j 40 Where we can get (average value for 40 threads): Old kernel: 477729.97 (+- 3.79%) New kernel: 89144.65 (+-11.76%) On a similar condition with 256 cpus, this commits increases the SMP scalability of pin_user_pages_fast() executed by different threads of the same process by more than 4000%. [peterx@redhat.com: rewrite commit message, add parentheses against "(A & B)"] Link: https://lkml.kernel.org/r/20210507150553.208763-3-peterx@redhat.comSigned-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Patch series "mm/gup: Fix pin page write cache bouncing on has_pinned", v2. This series contains 3 patches, the 1st one enables threading for gup_benchmark in the kselftest. The latter two patches are collected from Andrea's local branch which can fix write cache bouncing issue with pinning fast-gup. To be explicit on the latter two patches: - the 2nd patch fixes the perf degrade when introducing has_pinned, then - the last patch tries to remove the has_pinned with a bit in mm->flags For patch 3: originally I think we had a plan to reuse has_pinned into a counter very soon, however that's not happening at least until today, so maybe it proves that we can remove it until we really want such a counter for whatever reason. As the commit message stated, it saves 4 bytes for each mm without observable regressions. Regarding testing: we can reference to the commit message of patch 2 for some detailed testing with will-is-scale. Meanwhile I did patch 1 just because then we can even easily verify the patchset using the existing kselftest facilities or even regress test it in the future with the repo if we want. Below numbers are extra verification tests that I did besides commit message of patch 2 using the new gup_benchmark and 256 cpus. Below test is done on 40 cpus host with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, and I can get similar result (of course the write cache bouncing get severe with even more cores). After patch 1 applied (only test patch, so using old kernel): $ sudo chrt -f 1 ./gup_test -a -m 512 -j 40 PIN_FAST_BENCHMARK: Time: get:459632 put:5990 us PIN_FAST_BENCHMARK: Time: get:461967 put:5840 us PIN_FAST_BENCHMARK: Time: get:464521 put:6140 us PIN_FAST_BENCHMARK: Time: get:465176 put:7100 us PIN_FAST_BENCHMARK: Time: get:465960 put:6733 us PIN_FAST_BENCHMARK: Time: get:465324 put:6781 us PIN_FAST_BENCHMARK: Time: get:466018 put:7130 us PIN_FAST_BENCHMARK: Time: get:466362 put:7118 us PIN_FAST_BENCHMARK: Time: get:465118 put:6975 us PIN_FAST_BENCHMARK: Time: get:466422 put:6602 us PIN_FAST_BENCHMARK: Time: get:465791 put:6818 us PIN_FAST_BENCHMARK: Time: get:467091 put:6298 us PIN_FAST_BENCHMARK: Time: get:467694 put:5432 us PIN_FAST_BENCHMARK: Time: get:469575 put:5581 us PIN_FAST_BENCHMARK: Time: get:468124 put:6055 us PIN_FAST_BENCHMARK: Time: get:468877 put:6720 us PIN_FAST_BENCHMARK: Time: get:467212 put:4961 us PIN_FAST_BENCHMARK: Time: get:467834 put:6697 us PIN_FAST_BENCHMARK: Time: get:470778 put:6398 us PIN_FAST_BENCHMARK: Time: get:469788 put:6310 us PIN_FAST_BENCHMARK: Time: get:488277 put:7113 us PIN_FAST_BENCHMARK: Time: get:486613 put:7085 us PIN_FAST_BENCHMARK: Time: get:486940 put:7202 us PIN_FAST_BENCHMARK: Time: get:488728 put:7101 us PIN_FAST_BENCHMARK: Time: get:487570 put:7327 us PIN_FAST_BENCHMARK: Time: get:489260 put:7027 us PIN_FAST_BENCHMARK: Time: get:488846 put:6866 us PIN_FAST_BENCHMARK: Time: get:488521 put:6745 us PIN_FAST_BENCHMARK: Time: get:489950 put:6459 us PIN_FAST_BENCHMARK: Time: get:489777 put:6617 us PIN_FAST_BENCHMARK: Time: get:488224 put:6591 us PIN_FAST_BENCHMARK: Time: get:488644 put:6477 us PIN_FAST_BENCHMARK: Time: get:488754 put:6711 us PIN_FAST_BENCHMARK: Time: get:488875 put:6743 us PIN_FAST_BENCHMARK: Time: get:489290 put:6657 us PIN_FAST_BENCHMARK: Time: get:490264 put:6684 us PIN_FAST_BENCHMARK: Time: get:489631 put:6737 us PIN_FAST_BENCHMARK: Time: get:488434 put:6655 us PIN_FAST_BENCHMARK: Time: get:492213 put:6297 us PIN_FAST_BENCHMARK: Time: get:491124 put:6173 us After the whole series applied (new fixed kernel): $ sudo chrt -f 1 ./gup_test -a -m 512 -j 40 PIN_FAST_BENCHMARK: Time: get:82038 put:7041 us PIN_FAST_BENCHMARK: Time: get:82144 put:6817 us PIN_FAST_BENCHMARK: Time: get:83417 put:6674 us PIN_FAST_BENCHMARK: Time: get:82540 put:6594 us PIN_FAST_BENCHMARK: Time: get:83214 put:6681 us PIN_FAST_BENCHMARK: Time: get:83444 put:6889 us PIN_FAST_BENCHMARK: Time: get:83194 put:7499 us PIN_FAST_BENCHMARK: Time: get:84876 put:7369 us PIN_FAST_BENCHMARK: Time: get:86092 put:10289 us PIN_FAST_BENCHMARK: Time: get:86153 put:10415 us PIN_FAST_BENCHMARK: Time: get:85026 put:7751 us PIN_FAST_BENCHMARK: Time: get:85458 put:7944 us PIN_FAST_BENCHMARK: Time: get:85735 put:8154 us PIN_FAST_BENCHMARK: Time: get:85851 put:8299 us PIN_FAST_BENCHMARK: Time: get:86323 put:9617 us PIN_FAST_BENCHMARK: Time: get:86288 put:10496 us PIN_FAST_BENCHMARK: Time: get:87697 put:9346 us PIN_FAST_BENCHMARK: Time: get:87980 put:8382 us PIN_FAST_BENCHMARK: Time: get:88719 put:8400 us PIN_FAST_BENCHMARK: Time: get:87616 put:8588 us PIN_FAST_BENCHMARK: Time: get:86730 put:9563 us PIN_FAST_BENCHMARK: Time: get:88167 put:8673 us PIN_FAST_BENCHMARK: Time: get:86844 put:9777 us PIN_FAST_BENCHMARK: Time: get:88068 put:11774 us PIN_FAST_BENCHMARK: Time: get:86170 put:15676 us PIN_FAST_BENCHMARK: Time: get:87967 put:12827 us PIN_FAST_BENCHMARK: Time: get:95773 put:7652 us PIN_FAST_BENCHMARK: Time: get:87734 put:13650 us PIN_FAST_BENCHMARK: Time: get:89833 put:14237 us PIN_FAST_BENCHMARK: Time: get:96186 put:8029 us PIN_FAST_BENCHMARK: Time: get:95532 put:8886 us PIN_FAST_BENCHMARK: Time: get:95351 put:5826 us PIN_FAST_BENCHMARK: Time: get:96401 put:8407 us PIN_FAST_BENCHMARK: Time: get:96473 put:8287 us PIN_FAST_BENCHMARK: Time: get:97177 put:8430 us PIN_FAST_BENCHMARK: Time: get:98120 put:5263 us PIN_FAST_BENCHMARK: Time: get:96271 put:7757 us PIN_FAST_BENCHMARK: Time: get:99628 put:10467 us PIN_FAST_BENCHMARK: Time: get:99344 put:10045 us PIN_FAST_BENCHMARK: Time: get:94212 put:15485 us Summary: Old kernel: 477729.97 (+-3.79%) New kernel: 89144.65 (+-11.76%) This patch (of 3): Add a new parameter "-j N" to support concurrent gup test. Link: https://lkml.kernel.org/r/20210507150553.208763-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210507150553.208763-2-peterx@redhat.comSigned-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
These functions implement the address_space ->set_page_dirty operation and should live in pagemap.h, not mm.h so that the rest of the kernel doesn't get funny ideas about calling them directly. Link: https://lkml.kernel.org/r/20210615162342.1669332-7-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Use __set_page_dirty_no_writeback() instead. This will set the dirty bit on the page, which will be used to avoid calling set_page_dirty() in the future. It will have no effect on actually writing the page back, as the pages are not on any LRU lists. [akpm@linux-foundation.org: export __set_page_dirty_no_writeback() to modules] Link: https://lkml.kernel.org/r/20210615162342.1669332-6-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Use __set_page_dirty_no_writeback() instead. This will set the dirty bit on the page, which will be used to avoid calling set_page_dirty() in the future. It will have no effect on actually writing the page back, as the pages are not on any LRU lists. Link: https://lkml.kernel.org/r/20210615162342.1669332-5-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
The only difference between iomap_set_page_dirty() and __set_page_dirty_nobuffers() is that the latter includes a debugging check that a !Uptodate page has private data. Link: https://lkml.kernel.org/r/20210615162342.1669332-4-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
This is fundamentally the same code, so just call it instead of duplicating it. Link: https://lkml.kernel.org/r/20210615162342.1669332-3-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Patch series "Further set_page_dirty cleanups". Prompted by Christoph's recent patches, here are some more patches to improve the state of set_page_dirty(). They're all from the folio tree, so they've been tested to a certain extent. This patch (of 6): Nothing in __set_page_dirty() is specific to buffer_head, so move it to mm/page-writeback.c. That removes the only caller of account_page_dirtied() outside of page-writeback.c, so make it static. Link: https://lkml.kernel.org/r/20210615162342.1669332-1-willy@infradead.org Link: https://lkml.kernel.org/r/20210615162342.1669332-2-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Christoph Hellwig authored
Remove the CONFIG_BLOCK default to __set_page_dirty_buffers and just wire that method up for the missing instances. [hch@lst.de: ecryptfs: add a ->set_page_dirty cludge] Link: https://lkml.kernel.org/r/20210624125250.536369-1-hch@lst.de Link: https://lkml.kernel.org/r/20210614061512.3966143-4-hch@lst.deSigned-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Tyler Hicks <code@tyhicks.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Christoph Hellwig authored
Move the ramfs aops to libfs and reuse them for kernfs and configfs. Thosw two did not wire up ->set_page_dirty before and now get __set_page_dirty_no_writeback, which is the right one for no-writeback address_space usage. Drop the now unused exports of the libfs helpers only used for ramfs-style pagecache usage. Link: https://lkml.kernel.org/r/20210614061512.3966143-3-hch@lst.deSigned-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Christoph Hellwig authored
Patch series "remove the implicit .set_page_dirty default". This series cleans up a few lose ends around ->set_page_dirty, most importantly removes the default to the buffer head based on if no method is wired up. This patch (of 3): __set_page_dirty is only used by built-in code. Link: https://lkml.kernel.org/r/20210614061512.3966143-1-hch@lst.de Link: https://lkml.kernel.org/r/20210614061512.3966143-2-hch@lst.deSigned-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Asynchronously try to release dying cgwbs by switching attached inodes to the nearest living ancestor wb. It helps to get rid of per-cgroup writeback structures themselves and of pinned memory and block cgroups, which are significantly larger structures (mostly due to large per-cpu statistics data). This prevents memory waste and helps to avoid different scalability problems caused by large piles of dying cgroups. Reuse the existing mechanism of inode switching used for foreign inode detection. To speed things up batch up to 115 inode switching in a single operation (the maximum number is selected so that the resulting struct inode_switch_wbs_context can fit into 1024 bytes). Because every switching consists of two steps divided by an RCU grace period, it would be too slow without batching. Please note that the whole batch counts as a single operation (when increasing/decreasing isw_nr_in_flight). This allows to keep umounting working (flush the switching queue), however prevents cleanups from consuming the whole switching quota and effectively blocking the frn switching. A cgwb cleanup operation can fail due to different reasons (e.g. not enough memory, the cgwb has an in-flight/pending io, an attached inode in a wrong state, etc). In this case the next scheduled cleanup will make a new attempt. An attempt is made each time a new cgwb is offlined (in other words a memcg and/or a blkcg is deleted by a user). In the future an additional attempt scheduled by a timer can be implemented. [guro@fb.com: replace open-coded "115" with arithmetic] Link: https://lkml.kernel.org/r/YMEcSBcq/VXMiPPO@carbon.dhcp.thefacebook.com [guro@fb.com: add smp_mb() to inode_prepare_wbs_switch()] Link: https://lkml.kernel.org/r/YMFa+guFw7OFjf3X@carbon.dhcp.thefacebook.com [willy@infradead.org: fix documentation] Link: https://lkml.kernel.org/r/20210615200242.1716568-2-willy@infradead.org Link: https://lkml.kernel.org/r/20210608230225.2078447-9-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Currently only a single inode can be switched to another writeback structure at once. That means to switch an inode a separate inode_switch_wbs_context structure must be allocated, and a separate rcu callback and work must be scheduled. It's fine for the existing ad-hoc switching, which is not happening that often, but sub-optimal for massive switching required in order to release a writeback structure. To prepare for it, let's add a support for switching multiple inodes at once. Instead of containing a single inode pointer, inode_switch_wbs_context will contain a NULL-terminated array of inode pointers. inode_do_switch_wbs() will be called for each inode. To optimize the locking bdi->wb_switch_rwsem, old_wb's and new_wb's list_locks will be acquired and released only once altogether for all inodes. wb_wakeup() will be also be called only once. Instead of calling wb_put(old_wb) after each successful switch, wb_put_many() is introduced and used. Link: https://lkml.kernel.org/r/20210608230225.2078447-8-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Split out the functional part of the inode_switch_wbs_work_fn() function as inode_do switch_wbs() to reuse it later for switching inodes attached to dying cgwbs. This commit doesn't bring any functional changes. Link: https://lkml.kernel.org/r/20210608230225.2078447-7-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Currently there is no way to iterate over inodes attached to a specific cgwb structure. It limits the ability to efficiently reclaim the writeback structure itself and associated memory and block cgroup structures without scanning all inodes belonging to a sb, which can be prohibitively expensive. While dirty/in-active-writeback an inode belongs to one of the bdi_writeback's io lists: b_dirty, b_io, b_more_io and b_dirty_time. Once cleaned up, it's removed from all io lists. So the inode->i_io_list can be reused to maintain the list of inodes, attached to a bdi_writeback structure. This patch introduces a new wb->b_attached list, which contains all inodes which were dirty at least once and are attached to the given cgwb. Inodes attached to the root bdi_writeback structures are never placed on such list. The following patch will use this list to try to release cgwbs structures more efficiently. Link: https://lkml.kernel.org/r/20210608230225.2078447-6-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Inode's wb switching requires two steps divided by an RCU grace period. It's currently implemented as an RCU callback inode_switch_wbs_rcu_fn(), which schedules inode_switch_wbs_work_fn() as a work. Switching to the rcu_work API allows to do the same in a cleaner and slightly shorter form. Link: https://lkml.kernel.org/r/20210608230225.2078447-5-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
isw_nr_in_flight is used to determine whether the inode switch queue should be flushed from the umount path. Currently it's increased after grabbing an inode and even scheduling the switch work. It means the umount path can walk past cleanup_offline_cgwb() with active inode references, which can result in a "Busy inodes after unmount." message and use-after-free issues (with inode->i_sb which gets freed). Fix it by incrementing isw_nr_in_flight before doing anything with the inode and decrementing in the case when switching wasn't scheduled. The problem hasn't yet been seen in the real life and was discovered by Jan Kara by looking into the code. Link: https://lkml.kernel.org/r/20210608230225.2078447-4-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Jan Kara <jack@suse.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
A full memory barrier is required between clearing SB_ACTIVE flag in generic_shutdown_super() and checking isw_nr_in_flight in cgroup_writeback_umount(), otherwise a new switch operation might be scheduled after atomic_read(&isw_nr_in_flight) returned 0. This would result in a non-flushed isw_wq, and a potential crash. The problem hasn't yet been seen in the real life and was discovered by Jan Kara by looking into the code. Link: https://lkml.kernel.org/r/20210608230225.2078447-3-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Jan Kara <jack@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Patch series "cgroup, blkcg: prevent dirty inodes to pin dying memory cgroups", v9. When an inode is getting dirty for the first time it's associated with a wb structure (see __inode_attach_wb()). It can later be switched to another wb (if e.g. some other cgroup is writing a lot of data to the same inode), but otherwise stays attached to the original wb until being reclaimed. The problem is that the wb structure holds a reference to the original memory and blkcg cgroups. So if an inode has been dirty once and later is actively used in read-only mode, it has a good chance to pin down the original memory and blkcg cgroups forever. This is often the case with services bringing data for other services, e.g. updating some rpm packages. In the real life it becomes a problem due to a large size of the memcg structure, which can easily be 1000x larger than an inode. Also a really large number of dying cgroups can raise different scalability issues, e.g. making the memory reclaim costly and less effective. To solve the problem inodes should be eventually detached from the corresponding writeback structure. It's inefficient to do it after every writeback completion. Instead it can be done whenever the original memory cgroup is offlined and writeback structure is getting killed. Scanning over a (potentially long) list of inodes and detach them from the writeback structure can take quite some time. To avoid scanning all inodes, attached inodes are kept on a new list (b_attached). To make it less noticeable to a user, the scanning and switching is performed from a work context. Big thanks to Jan Kara, Dennis Zhou, Hillf Danton and Tejun Heo for their ideas and contribution to this patchset. This patch (of 8): If an inode's state has I_WILL_FREE flag set, the inode will be freed soon, so there is no point in trying to switch the inode to a different cgwb. I_WILL_FREE was ignored since the introduction of the inode switching, so it looks like it doesn't lead to any noticeable issues for a user. This is why the patch is not intended for a stable backport. Link: https://lkml.kernel.org/r/20210608230225.2078447-1-guro@fb.com Link: https://lkml.kernel.org/r/20210608230225.2078447-2-guro@fb.comSigned-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Jan Kara <jack@suse.cz> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chi Wu authored
As account_page_dirtied() was always protected by xa_lock_irqsave(), so using __this_cpu_inc() is better. Link: https://lkml.kernel.org/r/20210512144742.4764-1-wuchi.zero@gmail.comSigned-off-by: Chi Wu <wuchi.zero@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Howard Cochran <hcochran@kernelspring.com> Cc: Miklos Szeredi <mszeredi@redhat.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chi Wu authored
As the value of pos_ratio_polynom() clamp between 0 and 2LL << RATELIMIT_CALC_SHIFT, the global control line should be consistent with it. Link: https://lkml.kernel.org/r/20210511103606.3732-1-wuchi.zero@gmail.comSigned-off-by: Chi Wu <wuchi.zero@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@fb.com> Cc: Howard Cochran <hcochran@kernelspring.com> Cc: Miklos Szeredi <mszeredi@redhat.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chi Wu authored
Fix performance when BDI's share of ratio is 0. The issue is similar to commit 74d36944 ("writeback: Fix performance regression in wb_over_bg_thresh()"). Balance_dirty_pages and the writeback worker will also disagree on whether writeback when a BDI uses BDI_CAP_STRICTLIMIT and BDI's share of the thresh ratio is zero. For example, A thread on cpu0 writes 32 pages and then balance_dirty_pages, it will wake up background writeback and pauses because wb_dirty > wb->wb_thresh = 0 (share of thresh ratio is zero). A thread may runs on cpu0 again because scheduler prefers pre_cpu. Then writeback worker may runs on other cpus(1,2..) which causes the value of wb_stat(wb, WB_RECLAIMABLE) in wb_over_bg_thresh is 0 and does not writeback and returns. Thus, balance_dirty_pages keeps looping, sleeping and then waking up the worker who will do nothing. It remains stuck in this state until the writeback worker hit the right dirty cpu or the dirty pages expire. The fix that we should get the wb_stat_sum radically when thresh is low. Link: https://lkml.kernel.org/r/20210428225046.16301-1-wuchi.zero@gmail.comSigned-off-by: Chi Wu <wuchi.zero@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Miklos Szeredi <mszeredi@redhat.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Jens Axboe <axboe@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Kefeng Wang authored
The get_writeback_state() has gone since 2006, kill related comments. Link: https://lkml.kernel.org/r/20210508125026.56600-1-wangkefeng.wang@huawei.comSigned-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Gavin Shan authored
The page reporting won't be triggered if the freeing page can't come up with a free area, whose size is equal or bigger than the threshold (page reporting order). The default page reporting order, equal to @pageblock_order, is too huge on some architectures to trigger page reporting. One example is ARM64 when 64KB base page size is used. PAGE_SIZE: 64KB pageblock_order: 13 (512MB) MAX_ORDER: 14 This specifies the page reporting order to 5 (2MB) for this specific case so that page reporting can be triggered. Link: https://lkml.kernel.org/r/20210625014710.42954-5-gshan@redhat.comSigned-off-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Gavin Shan authored
The page reporting order (threshold) is sticky to @pageblock_order by default. The page reporting can never be triggered because the freeing page can't come up with a free area like that huge. The situation becomes worse when the system memory becomes heavily fragmented. For example, the following configurations are used on ARM64 when 64KB base page size is enabled. In this specific case, the page reporting won't be triggered until the freeing page comes up with a 512MB free area. That's hard to be met, especially when the system memory becomes heavily fragmented. PAGE_SIZE: 64KB HPAGE_SIZE: 512MB pageblock_order: 13 (512MB) MAX_ORDER: 14 This allows the drivers to specify the page reporting order when the page reporting device is registered. It falls back to @pageblock_order if it's not specified by the driver. The existing users (hv_balloon and virtio_balloon) don't specify it and @pageblock_order is still taken as their page reporting order. So this shouldn't introduce any functional changes. Link: https://lkml.kernel.org/r/20210625014710.42954-4-gshan@redhat.comSigned-off-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Gavin Shan authored
The macro PAGE_REPORTING_MIN_ORDER is defined as the page reporting threshold. It can't be adjusted at runtime. This introduces a variable (@page_reporting_order) to replace the marcro (PAGE_REPORTING_MIN_ORDER). MAX_ORDER is assigned to it initially, meaning the page reporting is disabled. It will be specified by driver if valid one is provided. Otherwise, it will fall back to @pageblock_order. It's also exported so that the page reporting order can be adjusted at runtime. Link: https://lkml.kernel.org/r/20210625014710.42954-3-gshan@redhat.comSigned-off-by: Gavin Shan <gshan@redhat.com> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-