- 06 May, 2015 40 commits
-
-
Huacai Chen authored
commit a843d00d upstream. We found that TLB mismatch not only happens after kernel resume, but also happens during snapshot restore. So move it to the beginning of swsusp_arch_suspend(). Signed-off-by: Huacai Chen <chenhc@lemote.com> Cc: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Patchwork: https://patchwork.linux-mips.org/patch/9621/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Huacai Chen authored
commit 0add9c2f upstream. HPET irq is routed to i8259 and then to MIPS CPU irq (cascade). After commit a3e6c1ef (MIPS: IRQ: Fix disable_irq on CPU IRQs), if without IRQF_NO_SUSPEND in cascade_irqaction, HPET interrupts will lost during suspend. The result is machine cannot be waken up. Signed-off-by: Huacai Chen <chenhc@lemote.com> Cc: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Patchwork: https://patchwork.linux-mips.org/patch/9528/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Markos Chandras authored
commit 6eae3548 upstream. When emulating a regular lh/lw/lhu/sh/sw we need to use the appropriate instruction if we are in EVA mode. This is necessary for userspace applications which trigger alignment exceptions. In such case, the userspace load/store instruction needs to be emulated with the correct eva/non-eva instruction by the kernel emulator. Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Fixes: c1771216 ("MIPS: kernel: unaligned: Handle unaligned accesses for EVA") Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9503/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Markos Chandras authored
commit 3563c32d upstream. It's best to surround such complex macros with do {} while statements so they can appear as independent logical blocks when used within other control blocks. Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9502/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Markos Chandras authored
commit eeb53895 upstream. Commit c1771216 ("MIPS: kernel: unaligned: Handle unaligned accesses for EVA") allowed unaligned accesses to be emulated for EVA. However, when emulating regular load/store unaligned accesses, we need to use the appropriate "address space" instructions for that. Previously, an unaligned load/store instruction in kernel space would have used the corresponding EVA instructions to emulate it which led to segmentation faults because of the address translation that happens with EVA instructions. This is now fixed by using the EVA instruction only when emulating EVA unaligned accesses. Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Fixes: c1771216 ("MIPS: kernel: unaligned: Handle unaligned accesses for EVA") Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9501/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Markos Chandras authored
commit 60cd7e08 upstream. Introduce new macros for kernel load/store variants which will be used to perform regular kernel space load/store operations in EVA mode. Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9500/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Markos Chandras authored
commit f7f8aea4 upstream. memsize denotes the amount of RAM we can access from kseg{0,1} and that should be up to 256M. In case the bootloader reports a value higher than that (perhaps reporting all the available RAM) it's best if we fix it ourselves and just warn the user about that. This is usually a problem with the bootloader and/or its environment. [ralf@linux-mips.org: Remove useless parens as suggested bei Sergei. Reformat long pr_warn statement to fit into 80 column limit.] Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9362/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
James Hogan authored
commit acaf6a97 upstream. The lose_fpu() function only disables the FPU in CP0_Status.CU1 if the FPU is in use and MSA isn't enabled. This isn't necessarily a problem because KSTK_STATUS(current), the version of CP0_Status stored on the kernel stack on entry from user mode, does always get updated and gets restored when returning to user mode, but I don't think it was intended, and it is inconsistent with the case of only the FPU being in use. Sometimes leaving the FPU enabled may also mask kernel bugs where FPU operations are executed when the FPU might not be enabled. So lets disable the FPU in the MSA case too. Fixes: 33c771ba ("MIPS: save/disable MSA in lose_fpu") Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9323/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
James Hogan authored
commit 98119ad5 upstream. Guest user mode can generate a guest MSA Disabled exception on an MSA capable core by simply trying to execute an MSA instruction. Since this exception is unknown to KVM it will be passed on to the guest kernel. However guest Linux kernels prior to v3.15 do not set up an exception handler for the MSA Disabled exception as they don't support any MSA capable cores. This results in a guest OS panic. Since an older processor ID may be being emulated, and MSA support is not advertised to the guest, the correct behaviour is to generate a Reserved Instruction exception in the guest kernel so it can send the guest process an illegal instruction signal (SIGILL), as would happen with a non-MSA-capable core. Fix this as minimally as reasonably possible by preventing kvm_mips_check_privilege() from relaying MSA Disabled exceptions from guest user mode to the guest kernel, and handling the MSA Disabled exception by emulating a Reserved Instruction exception in the guest, via a new handle_msa_disabled() KVM callback. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ben Serebrin authored
commit 085e68ee upstream. The host's decision to enable machine check exceptions should remain in force during non-root mode. KVM was writing 0 to cr4 on VCPU reset and passed a slightly-modified 0 to the vmcs.guest_cr4 value. Tested: Built. On earlier version, tested by injecting machine check while a guest is spinning. Before the change, if guest CR4.MCE==0, then the machine check is escalated to Catastrophic Error (CATERR) and the machine dies. If guest CR4.MCE==1, then the machine check causes VMEXIT and is handled normally by host Linux. After the change, injecting a machine check causes normal Linux machine check handling. Signed-off-by: Ben Serebrin <serebrin@google.com> Reviewed-by: Venkatesh Srinivas <venkateshs@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andre Przywara authored
commit fd1d0ddf upstream. When userland injects a SPI via the KVM_IRQ_LINE ioctl we currently only check it against a fixed limit, which historically is set to 127. With the new dynamic IRQ allocation the effective limit may actually be smaller (64). So when now a malicious or buggy userland injects a SPI in that range, we spill over on our VGIC bitmaps and bytemaps memory. I could trigger a host kernel NULL pointer dereference with current mainline by injecting some bogus IRQ number from a hacked kvmtool: ----------------- .... DEBUG: kvm_vgic_inject_irq(kvm, cpu=0, irq=114, level=1) DEBUG: vgic_update_irq_pending(kvm, cpu=0, irq=114, level=1) DEBUG: IRQ #114 still in the game, writing to bytemap now... Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = ffffffc07652e000 [00000000] *pgd=00000000f658b003, *pud=00000000f658b003, *pmd=0000000000000000 Internal error: Oops: 96000006 [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 1053 Comm: lkvm-msi-irqinj Not tainted 4.0.0-rc7+ #3027 Hardware name: FVP Base (DT) task: ffffffc0774e9680 ti: ffffffc0765a8000 task.ti: ffffffc0765a8000 PC is at kvm_vgic_inject_irq+0x234/0x310 LR is at kvm_vgic_inject_irq+0x30c/0x310 pc : [<ffffffc0000ae0a8>] lr : [<ffffffc0000ae180>] pstate: 80000145 ..... So this patch fixes this by checking the SPI number against the actual limit. Also we remove the former legacy hard limit of 127 in the ioctl code. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> [maz: wrap KVM_ARM_IRQ_GIC_MAX with #ifndef __KERNEL__, as suggested by Christopher Covington] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Radim Krčmář authored
commit ca3f0874 upstream. kvm_write_guest_cached() does not mark all written pages as dirty and code comments in kvm_gfn_to_hva_cache_init() talk about NULL memslot with cross page accesses. Fix all the easy way. The check is '<= 1' to have the same result for 'len = 0' cache anywhere in the page. (nr_pages_needed is 0 on page boundary.) Fixes: 8f964525 ("KVM: Allow cross page reads and writes from cached translations.") Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Message-Id: <20150408121648.GA3519@potion.brq.redhat.com> Reviewed-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Heiko Carstens authored
commit d7441949 upstream. Sebastian reported a crash caused by a jump label mismatch after resume. This happens because we do not save the kernel text section during suspend and therefore also do not restore it during resume, but use the kernel image that restores the old system. This means that after a suspend/resume cycle we lost all modifications done to the kernel text section. The reason for this is the pfn_is_nosave() function, which incorrectly returns that read-only pages don't need to be saved. This is incorrect since we mark the kernel text section read-only. We still need to make sure to not save and restore pages contained within NSS and DCSS segment. To fix this add an extra case for the kernel text section and only save those pages if they are not contained within an NSS segment. Fixes the following crash (and the above bugs as well): Jump label code mismatch at netif_receive_skb_internal+0x28/0xd0 Found: c0 04 00 00 00 00 Expected: c0 f4 00 00 00 11 New: c0 04 00 00 00 00 Kernel panic - not syncing: Corrupted kernel text CPU: 0 PID: 9 Comm: migration/0 Not tainted 3.19.0-01975-gb1b096e70f23 #4 Call Trace: [<0000000000113972>] show_stack+0x72/0xf0 [<000000000081f15e>] dump_stack+0x6e/0x90 [<000000000081c4e8>] panic+0x108/0x2b0 [<000000000081be64>] jump_label_bug.isra.2+0x104/0x108 [<0000000000112176>] __jump_label_transform+0x9e/0xd0 [<00000000001121e6>] __sm_arch_jump_label_transform+0x3e/0x50 [<00000000001d1136>] multi_cpu_stop+0x12e/0x170 [<00000000001d1472>] cpu_stopper_thread+0xb2/0x168 [<000000000015d2ac>] smpboot_thread_fn+0x134/0x1b0 [<0000000000158baa>] kthread+0x10a/0x110 [<0000000000824a86>] kernel_thread_starter+0x6/0xc Reported-and-tested-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jens Freimann authored
commit 94aa033e upstream. This fixes a bug introduced with commit c05c4186 ("KVM: s390: add floating irq controller"). get_all_floating_irqs() does copy_to_user() while holding a spin lock. Let's fix this by filling a temporary buffer first and copy it to userspace after giving up the lock. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ekaterina Tumanova authored
commit b75f4c9a upstream. s390 documentation requires words 0 and 10-15 to be reserved and stored as zeros. As we fill out all other fields, we can memset the full structure. Signed-off-by: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Hildenbrand authored
commit 15462e37 upstream. The reinjection of an I/O interrupt can fail if the list is at the limit and between the dequeue and the reinjection, another I/O interrupt is injected (e.g. if user space floods kvm with I/O interrupts). This patch avoids this memory leak and returns -EFAULT in this special case. This error is not recoverable, so let's fail hard. This can later be avoided by not dequeuing the interrupt but working directly on the locked list. Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Hildenbrand authored
commit 261520dc upstream. If the I/O interrupt could not be written to the guest provided area (e.g. access exception), a program exception was injected into the guest but "inti" wasn't freed, therefore resulting in a memory leak. In addition, the I/O interrupt wasn't reinjected. Therefore the dequeued interrupt is lost. This patch fixes the problem while cleaning up the function and making the cc and rc logic easier to handle. Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andrzej Pietrasiewicz authored
commit eb132ccb upstream. Function-specific setup requests should be handled in such a way, that apart from filling in the data buffer, the requests are also actually enqueued: if function-specific setup is called from composte_setup(), the "usb_ep_queue()" block of code in composite_setup() is skipped. The printer function lacks this part and it results in e.g. get device id requests failing: the host expects some response, the device prepares it but does not equeue it for sending to the host, so the host finally asserts timeout. This patch adds enqueueing the prepared responses. Fixes: 2e87edf4: "usb: gadget: make g_printer use composite" Signed-off-by: Andrzej Pietrasiewicz <andrzej.p@samsung.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Scott Wood authored
commit 50c6a665 upstream. Commit dc6c9a35 ("mm: account pmd page tables to the process") added a counter that is incremented whenever a PMD is allocated and decremented whenever a PMD is freed. For hugepages on PPC, common code is used to allocated PMDs, but arch-specific code is used to free PMDs. This results in kernel output such as "BUG: non-zero nr_pmds on freeing mm: 1" when using hugepages. Update the PPC hugepage PMD freeing code to decrement the count, just as the above commit did for free_pmd_range(). Fixes: dc6c9a35 ("mm: account pmd page tables to the process") Signed-off-by: Scott Wood <scottwood@freescale.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Gerald Schaefer authored
commit 97534127 upstream. Commit 61f77eda ("mm/hugetlb: reduce arch dependent code around follow_huge_*") broke follow_huge_pmd() on s390, where pmd and pte layout differ and using pte_page() on a huge pmd will return wrong results. Using pmd_page() instead fixes this. All architectures that were touched by that commit have pmd_page() defined, so this should not break anything on other architectures. Fixes: 61f77eda "mm/hugetlb: reduce arch dependent code around follow_huge_*" Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit 113e8283 upstream. If we pass a length of 0 to the extent_same ioctl, we end up locking an extent range with a start offset greater then its end offset (if the destination file's offset is greater than zero). This results in a warning from extent_io.c:insert_state through the following call chain: btrfs_extent_same() btrfs_double_lock() lock_extent_range() lock_extent(inode->io_tree, offset, offset + len - 1) lock_extent_bits() __set_extent_bit() insert_state() --> WARN_ON(end < start) This leads to an infinite loop when evicting the inode. This is the same problem that my previous patch titled "Btrfs: fix inode eviction infinite loop after cloning into it" addressed but for the extent_same ioctl instead of the clone ioctl. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit ccccf3d6 upstream. If we attempt to clone a 0 length region into a file we can end up inserting a range in the inode's extent_io tree with a start offset that is greater then the end offset, which triggers immediately the following warning: [ 3914.619057] WARNING: CPU: 17 PID: 4199 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]() [ 3914.620886] BTRFS: end < start 4095 4096 (...) [ 3914.638093] Call Trace: [ 3914.638636] [<ffffffff81425fd9>] dump_stack+0x4c/0x65 [ 3914.639620] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb [ 3914.640789] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs] [ 3914.642041] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48 [ 3914.643236] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs] [ 3914.644441] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs] [ 3914.645711] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs] [ 3914.646914] [<ffffffff8142b2fb>] ? _raw_spin_unlock+0x28/0x33 [ 3914.648058] [<ffffffffa03cbac4>] ? test_range_bit+0xcc/0xde [btrfs] [ 3914.650105] [<ffffffffa03cb3c3>] lock_extent+0x13/0x15 [btrfs] [ 3914.651361] [<ffffffffa03db39e>] lock_extent_range+0x3d/0xcd [btrfs] [ 3914.652761] [<ffffffffa03de1fe>] btrfs_ioctl_clone+0x278/0x388 [btrfs] [ 3914.654128] [<ffffffff811226dd>] ? might_fault+0x58/0xb5 [ 3914.655320] [<ffffffffa03e0909>] btrfs_ioctl+0xb51/0x2195 [btrfs] (...) [ 3914.669271] ---[ end trace 14843d3e2e622fc1 ]--- This later makes the inode eviction handler enter an infinite loop that keeps dumping the following warning over and over: [ 3915.117629] WARNING: CPU: 22 PID: 4228 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]() [ 3915.119913] BTRFS: end < start 4095 4096 (...) [ 3915.137394] Call Trace: [ 3915.137913] [<ffffffff81425fd9>] dump_stack+0x4c/0x65 [ 3915.139154] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb [ 3915.140316] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs] [ 3915.141505] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48 [ 3915.142709] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs] [ 3915.143849] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs] [ 3915.145120] [<ffffffffa038c1e3>] ? btrfs_kill_super+0x17/0x23 [btrfs] [ 3915.146352] [<ffffffff811548f6>] ? deactivate_locked_super+0x3b/0x50 [ 3915.147565] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs] [ 3915.148785] [<ffffffff8142b7e2>] ? _raw_write_unlock+0x28/0x33 [ 3915.149931] [<ffffffffa03bc325>] btrfs_evict_inode+0x196/0x482 [btrfs] [ 3915.151154] [<ffffffff81168904>] evict+0xa0/0x148 [ 3915.152094] [<ffffffff811689e5>] dispose_list+0x39/0x43 [ 3915.153081] [<ffffffff81169564>] evict_inodes+0xdc/0xeb [ 3915.154062] [<ffffffff81154418>] generic_shutdown_super+0x49/0xef [ 3915.155193] [<ffffffff811546d1>] kill_anon_super+0x13/0x1e [ 3915.156274] [<ffffffffa038c1e3>] btrfs_kill_super+0x17/0x23 [btrfs] (...) [ 3915.167404] ---[ end trace 14843d3e2e622fc2 ]--- So just bail out of the clone ioctl if the length of the region to clone is zero, without locking any extent range, in order to prevent this issue (same behaviour as a pwrite with a 0 length for example). This is trivial to reproduce. For example, the steps for the test I just made for fstests: mkfs.btrfs -f SCRATCH_DEV mount SCRATCH_DEV $SCRATCH_MNT touch $SCRATCH_MNT/foo touch $SCRATCH_MNT/bar $CLONER_PROG -s 0 -d 4096 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar umount $SCRATCH_MNT A test case for fstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Sterba authored
commit 3c3b04d1 upstream. Due to insufficient check in btrfs_is_valid_xattr, this unexpectedly works: $ touch file $ setfattr -n user. -v 1 file $ getfattr -d file user.="1" ie. the missing attribute name after the namespace. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=94291Reported-by: William Douglas <william.douglas@intel.com> Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit dcc82f47 upstream. While committing a transaction we free the log roots before we write the new super block. Freeing the log roots implies marking the disk location of every node/leaf (metadata extent) as pinned before the new super block is written. This is to prevent the disk location of log metadata extents from being reused before the new super block is written, otherwise we would have a corrupted log tree if before the new super block is written a crash/reboot happens and the location of any log tree metadata extent ended up being reused and rewritten. Even though we pinned the log tree's metadata extents, we were issuing a discard against them if the fs was mounted with the -o discard option, resulting in corruption of the log tree if a crash/reboot happened before writing the new super block - the next time the fs was mounted, during the log replay process we would find nodes/leafs of the log btree with a content full of zeroes, causing the process to fail and require the use of the tool btrfs-zero-log to wipeout the log tree (and all data previously fsynced becoming lost forever). Fix this by not doing a discard when pinning an extent. The discard will be done later when it's safe (after the new super block is committed) at extent-tree.c:btrfs_finish_extent_commit(). Fixes: e688b725 (Btrfs: fix extent pinning bugs in the tree log) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nadav Amit authored
commit 9e9c3fe4 upstream. kvm_init_msr_list is currently called before hardware_setup. As a result, vmx_mpx_supported always returns false when kvm_init_msr_list checks whether to save MSR_IA32_BNDCFGS. Move kvm_init_msr_list after vmx_hardware_setup is called to fix this issue. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Message-Id: <1428864435-4732-1-git-send-email-namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Linus Torvalds authored
commit d869844b upstream. Commit cae2a173 ("x86: clean up/fix 'copy_in_user()' tail zeroing") fixed the failure case tail zeroing of one special case of the x86-64 generic user-copy routine, namely when used for the user-to-user case ("copy_in_user()"). But in the process it broke an even more unusual case: using the user copy routine for kernel-to-kernel copying. Now, normally kernel-kernel copies are obviously done using memcpy(), but we have a couple of special cases when we use the user-copy functions. One is when we pass a kernel buffer to a regular user-buffer routine, using set_fs(KERNEL_DS). That's a "normal" case, and continued to work fine, because it never takes any faults (with the possible exception of a silent and successful vmalloc fault). But Jan Beulich pointed out another, very unusual, special case: when we use the user-copy routines not because it's a path that expects a user pointer, but for a couple of ftrace/kgdb cases that want to do a kernel copy, but do so using "unsafe" buffers, and use the user-copy routine to gracefully handle faults. IOW, for probe_kernel_write(). And that broke for the case of a faulting kernel destination, because we saw the kernel destination and wanted to try to clear the tail of the buffer. Which doesn't work, since that's what faults. This only triggers for things like kgdb and ftrace users (eg trying setting a breakpoint on read-only memory), but it's definitely a bug. The fix is to not compare against the kernel address start (TASK_SIZE), but instead use the same limits "access_ok()" uses. Reported-and-tested-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Peter Zijlstra authored
commit 517e6341 upstream. Ingo reported that cycles:pp didn't work for him on some machines. It turns out that in this commit: af4bdcf6 perf/x86/intel: Disallow flags for most Core2/Atom/Nehalem/Westmere events Andi forgot to explicitly allow that event when he disabled event flags for PEBS on those uarchs. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: af4bdcf6 ("perf/x86/intel: Disallow flags for most Core2/Atom/Nehalem/Westmere events") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mike Galbraith authored
commit f8e617f4 upstream. To fully take advantage of MWAIT, apparently the CLFLUSH instruction needs another quirk on certain CPUs: proper barriers around it on certain machines. On a Q6600 SMP system, pipe-test scheduling performance, cross core, improves significantly: 3.8.13 487.2 KHz 1.000 3.13.0-master 415.5 KHz .852 3.13.0-master+ 415.2 KHz .852 + restore mwait_idle 3.13.0-master++ 488.5 KHz 1.002 + restore mwait_idle + IPI fix Since X86_BUG_CLFLUSH_MONITOR is already a quirk, don't create a separate quirk for the extra smp_mb()s. Signed-off-by: Mike Galbraith <bitbucket@online.de> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1390061684.5566.4.camel@marge.simpson.net [ Ported to recent kernel, added comments about the quirk. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Len Brown authored
sched/idle/x86: Restore mwait_idle() to fix boot hangs, to improve power savings and to improve performance commit b253149b upstream. In Linux-3.9 we removed the mwait_idle() loop: 69fb3676 ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param") The reasoning was that modern machines should be sufficiently happy during the boot process using the default_idle() HALT loop, until cpuidle loads and either acpi_idle or intel_idle invoke the newer MWAIT-with-hints idle loop. But two machines reported problems: 1. Certain Core2-era machines support MWAIT-C1 and HALT only. MWAIT-C1 is preferred for optimal power and performance. But if they support just C1, cpuidle never loads and so they use the boot-time default idle loop forever. 2. Some laptops will boot-hang if HALT is used, but will boot successfully if MWAIT is used. This appears to be a hidden assumption in BIOS SMI, that is presumably valid on the proprietary OS where the BIOS was validated. https://bugzilla.kernel.org/show_bug.cgi?id=60770 So here we effectively revert the patch above, restoring the mwait_idle() loop. However, we don't bother restoring the idle=mwait cmdline parameter, since it appears to add no value. Maintainer notes: For 3.9, simply revert 69fb3676 for 3.10, patch -F3 applies, fuzz needed due to __cpuinit use in context For 3.11, 3.12, 3.13, this patch applies cleanly Tested-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Len Brown <len.brown@intel.com> Acked-by: Mike Galbraith <bitbucket@online.de> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/345254a551eb5a6a866e048d7ab570fd2193aca4.1389763084.git.len.brown@intel.com [ Ported to recent kernels. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Radim Krčmář authored
commit 80f7fdb1 upstream. If we were migrated right after __getcpu, but before reading the migration_count, we wouldn't notice that we read TSC of a different VCPU, nor that KVM's bug made pvti invalid, as only migration_count on source VCPU is increased. Change vdso instead of updating migration_count on destination. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Fixes: 0a4e6be9 ("x86: kvm: Revert "remove sched notifier for cross-cpu migrations"") Message-Id: <1428000263-11892-1-git-send-email-rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marcelo Tosatti authored
commit 0a4e6be9 upstream. The following point: 2. per-CPU pvclock time info is updated if the underlying CPU changes. Is not true anymore since "KVM: x86: update pvclock area conditionally, on cpu migration". Add task migration notification back. Problem noticed by Andy Lutomirski. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit 91e5ed49 upstream. x86 instructions cannot exceed 15 bytes, and the instruction decoder should enforce that. Prior to 6ba48ff4, the instruction length limit was implicitly set to 16, which was an approximation of 15, but there is currently no limit at all. Fix MAX_INSN_SIZE (it should be 15, not 16), and fix the decoder to reject instructions that exceed MAX_INSN_SIZE. Other than potentially confusing some of the decoder sanity checks, I'm not aware of any actual problems that omitting this check would cause, nor am I aware of any practical problems caused by the MAX_INSN_SIZE error. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Fixes: 6ba48ff4 ("x86: Remove arbitrary instruction size limit ... Link: http://lkml.kernel.org/r/f8f0bc9b8c58cfd6830f7d88400bf1396cbdcd0f.1422403511.git.luto@amacapital.netSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Gu Zheng authored
commit 74672d06 upstream. Simon reported the md io stats accounting issue: " I'm seeing "iostat -x -k 1" print this after a RAID1 rebuild on 4.0-rc5. It's not abnormal other than it's 3-disk, with one being SSD (sdc) and the other two being write-mostly: Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sdc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 345.00 0.00 0.00 0.00 0.00 100.00 md2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 58779.00 0.00 0.00 0.00 0.00 100.00 md1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 100.00 " The cause is commit "18c0b223" uses the generic_start_io_acct to account the disk stats rather than the open code, but it also introduced the increase to .in_flight[rw] which is needless to md. So we re-use the open code here to fix it. Reported-by: Simon Kirby <sim@hostway.ca> Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Amir Vadai authored
[ Upstream commit b3706909 ] mlx4_en_check_rxfh_func() was checking for hardware support before setting a known RSS hash function, but didn't do any check before setting unknown RSS hash function. Need to make it fail on such values. In this occasion, moved the actual setting of the new value from the check function into mlx4_en_set_rxfh(). Fixes: 947cbb0a ("net/mlx4_en: Support for configurable RSS hash function") Signed-off-by: Amir Vadai <amirv@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit a31196b0 ] Commit 567e4b79 ("net: rfs: add hash collision detection") had one mistake : RPS_NO_CPU is no longer the marker for invalid cpu in set_rps_cpu() and get_rps_cpu(), as @next_cpu was the result of an AND with rps_cpu_mask This bug showed up on a host with 72 cpus : next_cpu was 0x7f, and the code was trying to access percpu data of an non existent cpu. In a follow up patch, we might get rid of compares against nr_cpu_ids, if we init the tables with 0. This is silly to test for a very unlikely condition that exists only shortly after table initialization, as we got rid of rps_reset_sock_flow() and similar functions that were writing this RPS_NO_CPU magic value at flow dismantle : When table is old enough, it never contains this value anymore. Fixes: 567e4b79 ("net: rfs: add hash collision detection") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <tom@herbertland.com> Cc: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexey Khoroshilov authored
[ Upstream commit 0e03fd3e ] Commit 43d3ddf8 ("net: pxa168_eth: add device tree support") starts to use managed resources by adding devm_clk_get() and devm_ioremap_resource(), but it leaves explicit iounmap() and clock_put() in pxa168_eth_remove() and in failure handling code of pxa168_eth_probe(). As a result double free can happen. The patch removes explicit resource deallocation. Also it converts clk_disable() to clk_disable_unprepare() to make it symmetrical with clk_prepare_enable(). Found by Linux Driver Verification project (linuxtesting.org). Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 2ea2f62c ] When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f58 ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 79930f58 ] build_skb() should look at the page pfmemalloc status. If set, this means page allocator allocated this page in the expectation it would help to free other pages. Networking stack can do that only if skb->pfmemalloc is also set. Also, we must refrain using high order pages from the pfmemalloc reserve, so __page_frag_refill() must also use __GFP_NOMEMALLOC for them. Under memory pressure, using order-0 pages is probably the best strategy. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 845704a5 ] Presence of an unbound loop in tcp_send_fin() had always been hard to explain when analyzing crash dumps involving gigantic dying processes with millions of sockets. Lets try a different strategy : In case of memory pressure, try to add the FIN flag to last packet in write queue, even if packet was already sent. TCP stack will be able to deliver this FIN after a timeout event. Note that this FIN being delivered by a retransmit, it also carries a Push flag given our current implementation. By checking sk_under_memory_pressure(), we anticipate that cooking many FIN packets might deplete tcp memory. In the case we could not allocate a packet, even with __GFP_WAIT allocation, then not sending a FIN seems quite reasonable if it allows to get rid of this socket, free memory, and not block the process from eventually doing other useful work. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit d83769a5 ] Using sk_stream_alloc_skb() in tcp_send_fin() is dangerous in case a huge process is killed by OOM, and tcp_mem[2] is hit. To be able to free memory we need to make progress, so this patch allows FIN packets to not care about tcp_mem[2], if skb allocation succeeded. In a follow-up patch, we might abort tcp_send_fin() infinite loop in case TIF_MEMDIE is set on this thread, as memory allocator did its best getting extra memory already. This patch reverts d22e1537 ("tcp: fix tcp fin memory accounting") Fixes: d22e1537 ("tcp: fix tcp fin memory accounting") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-