- 17 May, 2015 17 commits
-
-
James Hogan authored
[ Upstream commit 98119ad5 ] Guest user mode can generate a guest MSA Disabled exception on an MSA capable core by simply trying to execute an MSA instruction. Since this exception is unknown to KVM it will be passed on to the guest kernel. However guest Linux kernels prior to v3.15 do not set up an exception handler for the MSA Disabled exception as they don't support any MSA capable cores. This results in a guest OS panic. Since an older processor ID may be being emulated, and MSA support is not advertised to the guest, the correct behaviour is to generate a Reserved Instruction exception in the guest kernel so it can send the guest process an illegal instruction signal (SIGILL), as would happen with a non-MSA-capable core. Fix this as minimally as reasonably possible by preventing kvm_mips_check_privilege() from relaying MSA Disabled exceptions from guest user mode to the guest kernel, and handling the MSA Disabled exception by emulating a Reserved Instruction exception in the guest, via a new handle_msa_disabled() KVM callback. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org Cc: <stable@vger.kernel.org> # v3.15+ Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Andre Przywara authored
[ Upstream commit fd1d0ddf ] When userland injects a SPI via the KVM_IRQ_LINE ioctl we currently only check it against a fixed limit, which historically is set to 127. With the new dynamic IRQ allocation the effective limit may actually be smaller (64). So when now a malicious or buggy userland injects a SPI in that range, we spill over on our VGIC bitmaps and bytemaps memory. I could trigger a host kernel NULL pointer dereference with current mainline by injecting some bogus IRQ number from a hacked kvmtool: ----------------- .... DEBUG: kvm_vgic_inject_irq(kvm, cpu=0, irq=114, level=1) DEBUG: vgic_update_irq_pending(kvm, cpu=0, irq=114, level=1) DEBUG: IRQ #114 still in the game, writing to bytemap now... Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = ffffffc07652e000 [00000000] *pgd=00000000f658b003, *pud=00000000f658b003, *pmd=0000000000000000 Internal error: Oops: 96000006 [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 1053 Comm: lkvm-msi-irqinj Not tainted 4.0.0-rc7+ #3027 Hardware name: FVP Base (DT) task: ffffffc0774e9680 ti: ffffffc0765a8000 task.ti: ffffffc0765a8000 PC is at kvm_vgic_inject_irq+0x234/0x310 LR is at kvm_vgic_inject_irq+0x30c/0x310 pc : [<ffffffc0000ae0a8>] lr : [<ffffffc0000ae180>] pstate: 80000145 ..... So this patch fixes this by checking the SPI number against the actual limit. Also we remove the former legacy hard limit of 127 in the ioctl code. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> CC: <stable@vger.kernel.org> # 4.0, 3.19, 3.18 [maz: wrap KVM_ARM_IRQ_GIC_MAX with #ifndef __KERNEL__, as suggested by Christopher Covington] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Radim Krčmář authored
[ Upstream commit ca3f0874 ] kvm_write_guest_cached() does not mark all written pages as dirty and code comments in kvm_gfn_to_hva_cache_init() talk about NULL memslot with cross page accesses. Fix all the easy way. The check is '<= 1' to have the same result for 'len = 0' cache anywhere in the page. (nr_pages_needed is 0 on page boundary.) Fixes: 8f964525 ("KVM: Allow cross page reads and writes from cached translations.") Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Message-Id: <20150408121648.GA3519@potion.brq.redhat.com> Reviewed-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Heiko Carstens authored
[ Upstream commit d7441949 ] Sebastian reported a crash caused by a jump label mismatch after resume. This happens because we do not save the kernel text section during suspend and therefore also do not restore it during resume, but use the kernel image that restores the old system. This means that after a suspend/resume cycle we lost all modifications done to the kernel text section. The reason for this is the pfn_is_nosave() function, which incorrectly returns that read-only pages don't need to be saved. This is incorrect since we mark the kernel text section read-only. We still need to make sure to not save and restore pages contained within NSS and DCSS segment. To fix this add an extra case for the kernel text section and only save those pages if they are not contained within an NSS segment. Fixes the following crash (and the above bugs as well): Jump label code mismatch at netif_receive_skb_internal+0x28/0xd0 Found: c0 04 00 00 00 00 Expected: c0 f4 00 00 00 11 New: c0 04 00 00 00 00 Kernel panic - not syncing: Corrupted kernel text CPU: 0 PID: 9 Comm: migration/0 Not tainted 3.19.0-01975-gb1b096e70f23 #4 Call Trace: [<0000000000113972>] show_stack+0x72/0xf0 [<000000000081f15e>] dump_stack+0x6e/0x90 [<000000000081c4e8>] panic+0x108/0x2b0 [<000000000081be64>] jump_label_bug.isra.2+0x104/0x108 [<0000000000112176>] __jump_label_transform+0x9e/0xd0 [<00000000001121e6>] __sm_arch_jump_label_transform+0x3e/0x50 [<00000000001d1136>] multi_cpu_stop+0x12e/0x170 [<00000000001d1472>] cpu_stopper_thread+0xb2/0x168 [<000000000015d2ac>] smpboot_thread_fn+0x134/0x1b0 [<0000000000158baa>] kthread+0x10a/0x110 [<0000000000824a86>] kernel_thread_starter+0x6/0xc Reported-and-tested-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: stable@vger.kernel.org Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jens Freimann authored
[ Upstream commit 94aa033e ] This fixes a bug introduced with commit c05c4186 ("KVM: s390: add floating irq controller"). get_all_floating_irqs() does copy_to_user() while holding a spin lock. Let's fix this by filling a temporary buffer first and copy it to userspace after giving up the lock. Cc: <stable@vger.kernel.org> # 3.18+: 69a8d456 KVM: s390: no need to hold... Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christian Borntraeger authored
[ Upstream commit 69a8d456 ] The kvm mutex was (probably) used to protect against cpu hotplug. The current code no longer needs to protect against that, as we only rely on CPU data structures that are guaranteed to be available if we can access the CPU. (e.g. vcpu_create will put the cpu in the array AFTER the cpu is ready). Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Ekaterina Tumanova authored
[ Upstream commit b75f4c9a ] s390 documentation requires words 0 and 10-15 to be reserved and stored as zeros. As we fill out all other fields, we can memset the full structure. Signed-off-by: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Cc: stable@vger.kernel.org Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Hildenbrand authored
[ Upstream commit 15462e37 ] The reinjection of an I/O interrupt can fail if the list is at the limit and between the dequeue and the reinjection, another I/O interrupt is injected (e.g. if user space floods kvm with I/O interrupts). This patch avoids this memory leak and returns -EFAULT in this special case. This error is not recoverable, so let's fail hard. This can later be avoided by not dequeuing the interrupt but working directly on the locked list. Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # 3.16+ Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Hildenbrand authored
[ Upstream commit 261520dc ] If the I/O interrupt could not be written to the guest provided area (e.g. access exception), a program exception was injected into the guest but "inti" wasn't freed, therefore resulting in a memory leak. In addition, the I/O interrupt wasn't reinjected. Therefore the dequeued interrupt is lost. This patch fixes the problem while cleaning up the function and making the cc and rc logic easier to handle. Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # 3.16+ Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Andrzej Pietrasiewicz authored
[ Upstream commit eb132ccb ] Function-specific setup requests should be handled in such a way, that apart from filling in the data buffer, the requests are also actually enqueued: if function-specific setup is called from composte_setup(), the "usb_ep_queue()" block of code in composite_setup() is skipped. The printer function lacks this part and it results in e.g. get device id requests failing: the host expects some response, the device prepares it but does not equeue it for sending to the host, so the host finally asserts timeout. This patch adds enqueueing the prepared responses. Cc: <stable@vger.kernel.org> # v3.4+ Fixes: 2e87edf4: "usb: gadget: make g_printer use composite" Signed-off-by: Andrzej Pietrasiewicz <andrzej.p@samsung.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Filipe Manana authored
[ Upstream commit HEAD ] commit 113e8283 upstream. If we pass a length of 0 to the extent_same ioctl, we end up locking an extent range with a start offset greater then its end offset (if the destination file's offset is greater than zero). This results in a warning from extent_io.c:insert_state through the following call chain: btrfs_extent_same() btrfs_double_lock() lock_extent_range() lock_extent(inode->io_tree, offset, offset + len - 1) lock_extent_bits() __set_extent_bit() insert_state() --> WARN_ON(end < start) This leads to an infinite loop when evicting the inode. This is the same problem that my previous patch titled "Btrfs: fix inode eviction infinite loop after cloning into it" addressed but for the extent_same ioctl instead of the clone ioctl. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> (cherry picked from commit 9dc10661) Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Filipe Manana authored
[ Upstream commit HEAD ] commit ccccf3d6 upstream. If we attempt to clone a 0 length region into a file we can end up inserting a range in the inode's extent_io tree with a start offset that is greater then the end offset, which triggers immediately the following warning: [ 3914.619057] WARNING: CPU: 17 PID: 4199 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]() [ 3914.620886] BTRFS: end < start 4095 4096 (...) [ 3914.638093] Call Trace: [ 3914.638636] [<ffffffff81425fd9>] dump_stack+0x4c/0x65 [ 3914.639620] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb [ 3914.640789] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs] [ 3914.642041] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48 [ 3914.643236] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs] [ 3914.644441] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs] [ 3914.645711] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs] [ 3914.646914] [<ffffffff8142b2fb>] ? _raw_spin_unlock+0x28/0x33 [ 3914.648058] [<ffffffffa03cbac4>] ? test_range_bit+0xcc/0xde [btrfs] [ 3914.650105] [<ffffffffa03cb3c3>] lock_extent+0x13/0x15 [btrfs] [ 3914.651361] [<ffffffffa03db39e>] lock_extent_range+0x3d/0xcd [btrfs] [ 3914.652761] [<ffffffffa03de1fe>] btrfs_ioctl_clone+0x278/0x388 [btrfs] [ 3914.654128] [<ffffffff811226dd>] ? might_fault+0x58/0xb5 [ 3914.655320] [<ffffffffa03e0909>] btrfs_ioctl+0xb51/0x2195 [btrfs] (...) [ 3914.669271] ---[ end trace 14843d3e2e622fc1 ]--- This later makes the inode eviction handler enter an infinite loop that keeps dumping the following warning over and over: [ 3915.117629] WARNING: CPU: 22 PID: 4228 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]() [ 3915.119913] BTRFS: end < start 4095 4096 (...) [ 3915.137394] Call Trace: [ 3915.137913] [<ffffffff81425fd9>] dump_stack+0x4c/0x65 [ 3915.139154] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb [ 3915.140316] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs] [ 3915.141505] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48 [ 3915.142709] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs] [ 3915.143849] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs] [ 3915.145120] [<ffffffffa038c1e3>] ? btrfs_kill_super+0x17/0x23 [btrfs] [ 3915.146352] [<ffffffff811548f6>] ? deactivate_locked_super+0x3b/0x50 [ 3915.147565] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs] [ 3915.148785] [<ffffffff8142b7e2>] ? _raw_write_unlock+0x28/0x33 [ 3915.149931] [<ffffffffa03bc325>] btrfs_evict_inode+0x196/0x482 [btrfs] [ 3915.151154] [<ffffffff81168904>] evict+0xa0/0x148 [ 3915.152094] [<ffffffff811689e5>] dispose_list+0x39/0x43 [ 3915.153081] [<ffffffff81169564>] evict_inodes+0xdc/0xeb [ 3915.154062] [<ffffffff81154418>] generic_shutdown_super+0x49/0xef [ 3915.155193] [<ffffffff811546d1>] kill_anon_super+0x13/0x1e [ 3915.156274] [<ffffffffa038c1e3>] btrfs_kill_super+0x17/0x23 [btrfs] (...) [ 3915.167404] ---[ end trace 14843d3e2e622fc2 ]--- So just bail out of the clone ioctl if the length of the region to clone is zero, without locking any extent range, in order to prevent this issue (same behaviour as a pwrite with a 0 length for example). This is trivial to reproduce. For example, the steps for the test I just made for fstests: mkfs.btrfs -f SCRATCH_DEV mount SCRATCH_DEV $SCRATCH_MNT touch $SCRATCH_MNT/foo touch $SCRATCH_MNT/bar $CLONER_PROG -s 0 -d 4096 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar umount $SCRATCH_MNT A test case for fstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> (cherry picked from commit 449b4627) Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David Sterba authored
[ Upstream commit HEAD ] commit 3c3b04d1 upstream. Due to insufficient check in btrfs_is_valid_xattr, this unexpectedly works: $ touch file $ setfattr -n user. -v 1 file $ getfattr -d file user.="1" ie. the missing attribute name after the namespace. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=94291Reported-by: William Douglas <william.douglas@intel.com> Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> (cherry picked from commit 1bb2835e) Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Filipe Manana authored
[ Upstream commit HEAD ] commit dcc82f47 upstream. While committing a transaction we free the log roots before we write the new super block. Freeing the log roots implies marking the disk location of every node/leaf (metadata extent) as pinned before the new super block is written. This is to prevent the disk location of log metadata extents from being reused before the new super block is written, otherwise we would have a corrupted log tree if before the new super block is written a crash/reboot happens and the location of any log tree metadata extent ended up being reused and rewritten. Even though we pinned the log tree's metadata extents, we were issuing a discard against them if the fs was mounted with the -o discard option, resulting in corruption of the log tree if a crash/reboot happened before writing the new super block - the next time the fs was mounted, during the log replay process we would find nodes/leafs of the log btree with a content full of zeroes, causing the process to fail and require the use of the tool btrfs-zero-log to wipeout the log tree (and all data previously fsynced becoming lost forever). Fix this by not doing a discard when pinning an extent. The discard will be done later when it's safe (after the new super block is committed) at extent-tree.c:btrfs_finish_extent_commit(). Fixes: e688b725 (Btrfs: fix extent pinning bugs in the tree log) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> (cherry picked from commit 3909e5a9) Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Nadav Amit authored
[ Upstream commit HEAD ] commit 9e9c3fe4 upstream. kvm_init_msr_list is currently called before hardware_setup. As a result, vmx_mpx_supported always returns false when kvm_init_msr_list checks whether to save MSR_IA32_BNDCFGS. Move kvm_init_msr_list after vmx_hardware_setup is called to fix this issue. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Message-Id: <1428864435-4732-1-git-send-email-namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> (cherry picked from commit 702a71cf) Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Mike Galbraith authored
[ Upstream commit f8e617f4 ] To fully take advantage of MWAIT, apparently the CLFLUSH instruction needs another quirk on certain CPUs: proper barriers around it on certain machines. On a Q6600 SMP system, pipe-test scheduling performance, cross core, improves significantly: 3.8.13 487.2 KHz 1.000 3.13.0-master 415.5 KHz .852 3.13.0-master+ 415.2 KHz .852 + restore mwait_idle 3.13.0-master++ 488.5 KHz 1.002 + restore mwait_idle + IPI fix Since X86_BUG_CLFLUSH_MONITOR is already a quirk, don't create a separate quirk for the extra smp_mb()s. Signed-off-by: Mike Galbraith <bitbucket@online.de> Cc: <stable@vger.kernel.org> # 3.10+ Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1390061684.5566.4.camel@marge.simpson.net [ Ported to recent kernel, added comments about the quirk. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Len Brown authored
sched/idle/x86: Restore mwait_idle() to fix boot hangs, to improve power savings and to improve performance [ Upstream commit b253149b ] In Linux-3.9 we removed the mwait_idle() loop: 69fb3676 ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param") The reasoning was that modern machines should be sufficiently happy during the boot process using the default_idle() HALT loop, until cpuidle loads and either acpi_idle or intel_idle invoke the newer MWAIT-with-hints idle loop. But two machines reported problems: 1. Certain Core2-era machines support MWAIT-C1 and HALT only. MWAIT-C1 is preferred for optimal power and performance. But if they support just C1, cpuidle never loads and so they use the boot-time default idle loop forever. 2. Some laptops will boot-hang if HALT is used, but will boot successfully if MWAIT is used. This appears to be a hidden assumption in BIOS SMI, that is presumably valid on the proprietary OS where the BIOS was validated. https://bugzilla.kernel.org/show_bug.cgi?id=60770 So here we effectively revert the patch above, restoring the mwait_idle() loop. However, we don't bother restoring the idle=mwait cmdline parameter, since it appears to add no value. Maintainer notes: For 3.9, simply revert 69fb3676 for 3.10, patch -F3 applies, fuzz needed due to __cpuinit use in context For 3.11, 3.12, 3.13, this patch applies cleanly Tested-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Len Brown <len.brown@intel.com> Acked-by: Mike Galbraith <bitbucket@online.de> Cc: <stable@vger.kernel.org> # 3.9+ Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/345254a551eb5a6a866e048d7ab570fd2193aca4.1389763084.git.len.brown@intel.com [ Ported to recent kernels. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
- 11 May, 2015 23 commits
-
-
Eric Dumazet authored
[ Upstream commit 2ea2f62c ] When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f58 ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Eric Dumazet authored
[ Upstream commit 79930f58 ] build_skb() should look at the page pfmemalloc status. If set, this means page allocator allocated this page in the expectation it would help to free other pages. Networking stack can do that only if skb->pfmemalloc is also set. Also, we must refrain using high order pages from the pfmemalloc reserve, so __page_frag_refill() must also use __GFP_NOMEMALLOC for them. Under memory pressure, using order-0 pages is probably the best strategy. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Eric Dumazet authored
[ Upstream commit 845704a5 ] Presence of an unbound loop in tcp_send_fin() had always been hard to explain when analyzing crash dumps involving gigantic dying processes with millions of sockets. Lets try a different strategy : In case of memory pressure, try to add the FIN flag to last packet in write queue, even if packet was already sent. TCP stack will be able to deliver this FIN after a timeout event. Note that this FIN being delivered by a retransmit, it also carries a Push flag given our current implementation. By checking sk_under_memory_pressure(), we anticipate that cooking many FIN packets might deplete tcp memory. In the case we could not allocate a packet, even with __GFP_WAIT allocation, then not sending a FIN seems quite reasonable if it allows to get rid of this socket, free memory, and not block the process from eventually doing other useful work. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Eric Dumazet authored
[ Upstream commit d83769a5 ] Using sk_stream_alloc_skb() in tcp_send_fin() is dangerous in case a huge process is killed by OOM, and tcp_mem[2] is hit. To be able to free memory we need to make progress, so this patch allows FIN packets to not care about tcp_mem[2], if skb allocation succeeded. In a follow-up patch, we might abort tcp_send_fin() infinite loop in case TIF_MEMDIE is set on this thread, as memory allocator did its best getting extra memory already. This patch reverts d22e1537 ("tcp: fix tcp fin memory accounting") Fixes: d22e1537 ("tcp: fix tcp fin memory accounting") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Tom Herbert authored
[ Upstream commit 3dfb0534 ] Call checksum_complete_unset in PPP receive to discard checksum-complete value. PPP does not pull checksum for headers and also modifies packet as in VJ compression. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Tom Herbert authored
[ Upstream commit 4e18b9ad ] This function changes ip_summed to CHECKSUM_NONE if CHECKSUM_COMPLETE is set. This is called to discard checksum-complete when packet is being modified and checksum is not pulled for headers in a layer. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Sebastian Pöhn authored
[ Upstream commit 2ab95749 ] Initial discussion was: [FYI] xfrm: Don't lookup sk_policy for timewait sockets Forwarded frames should not have a socket attached. Especially tw sockets will lead to panics later-on in the stack. This was observed with TPROXY assigning a tw socket and broken policy routing (misconfigured). As a result frame enters forwarding path instead of input. We cannot solve this in TPROXY as it cannot know that policy routing is broken. v2: Remove useless comment Signed-off-by: Sebastian Poehn <sebastian.poehn@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
[ Upstream commit a134f083 ] If we don't do that, then the poison value is left in the ->pprev backlink. This can cause crashes if we do a disconnect, followed by a connect(). Tested-by: Linus Torvalds <torvalds@linux-foundation.org> Reported-by: Wen Xu <hotdog3645@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Ido Shamay authored
[ Upstream commit 07841f9d ] When system is out of memory, refilling of RX buffers fails while the driver continue to pass the received packets to the kernel stack. At some point, when all RX buffers deplete, driver may fall into a sleep, and not recover when memory for new RX buffers is once again availible. This is because hardware does not have valid descriptors, so no interrupt will be generated for the driver to return to work in napi context. Fix it by schedule the napi poll function from stats_task delayed workqueue, as long as the allocations fail. Signed-off-by: Ido Shamay <idos@mellanox.com> Signed-off-by: Amir Vadai <amirv@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Benjamin Poirier authored
[ Upstream commit 42eab005 ] By default, the number of tx queues is limited by the number of online cpus in mlx4_en_get_profile(). However, this limit no longer holds after the ethtool .set_channels method has been called. In that situation, the driver may access invalid bits of certain cpumask variables when queue_index >= nr_cpu_ids. Signed-off-by: Benjamin Poirier <bpoirier@suse.de> Acked-by: Ido Shamay <idos@mellanox.com> Fixes: d03a68f8 ("net/mlx4_en: Configure the XPS queue mapping on driver load") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christoffer Dall authored
commit ae705930 upstream. There is an interesting bug in the vgic code, which manifests itself when the KVM run loop has a signal pending or needs a vmid generation rollover after having disabled interrupts but before actually switching to the guest. In this case, we flush the vgic as usual, but we sync back the vgic state and exit to userspace before entering the guest. The consequence is that we will be syncing the list registers back to the software model using the GICH_ELRSR and GICH_EISR from the last execution of the guest, potentially overwriting a list register containing an interrupt. This showed up during migration testing where we would capture a state where the VM has masked the arch timer but there were no interrupts, resulting in a hung test. Cc: Marc Zyngier <marc.zyngier@arm.com> Reported-by: Alex Bennee <alex.bennee@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marc Zyngier authored
commit 04b8dc85 upstream. The kernel's pgd_index macro is designed to index a normal, page sized array. KVM is a bit diffferent, as we can use concatenated pages to have a bigger address space (for example 40bit IPA with 4kB pages gives us an 8kB PGD. In the above case, the use of pgd_index will always return an index inside the first 4kB, which makes a guest that has memory above 0x8000000000 rather unhappy, as it spins forever in a page fault, whist the host happilly corrupts the lower pgd. The obvious fix is to get our own kvm_pgd_index that does the right thing(tm). Tested on X-Gene with a hacked kvmtool that put memory at a stupidly high address. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marc Zyngier authored
commit a987370f upstream. We're using __get_free_pages with to allocate the guest's stage-2 PGD. The standard behaviour of this function is to return a set of pages where only the head page has a valid refcount. This behaviour gets us into trouble when we're trying to increment the refcount on a non-head page: page:ffff7c00cfb693c0 count:0 mapcount:0 mapping: (null) index:0x0 flags: 0x4000000000000000() page dumped because: VM_BUG_ON_PAGE((*({ __attribute__((unused)) typeof((&page->_count)->counter) __var = ( typeof((&page->_count)->counter)) 0; (volatile typeof((&page->_count)->counter) *)&((&page->_count)->counter); })) <= 0) BUG: failure at include/linux/mm.h:548/get_page()! Kernel panic - not syncing: BUG! CPU: 1 PID: 1695 Comm: kvm-vcpu-0 Not tainted 4.0.0-rc1+ #3825 Hardware name: APM X-Gene Mustang board (DT) Call trace: [<ffff80000008a09c>] dump_backtrace+0x0/0x13c [<ffff80000008a1e8>] show_stack+0x10/0x1c [<ffff800000691da8>] dump_stack+0x74/0x94 [<ffff800000690d78>] panic+0x100/0x240 [<ffff8000000a0bc4>] stage2_get_pmd+0x17c/0x2bc [<ffff8000000a1dc4>] kvm_handle_guest_abort+0x4b4/0x6b0 [<ffff8000000a420c>] handle_exit+0x58/0x180 [<ffff80000009e7a4>] kvm_arch_vcpu_ioctl_run+0x114/0x45c [<ffff800000099df4>] kvm_vcpu_ioctl+0x2e0/0x754 [<ffff8000001c0a18>] do_vfs_ioctl+0x424/0x5c8 [<ffff8000001c0bfc>] SyS_ioctl+0x40/0x78 CPU0: stopping A possible approach for this is to split the compound page using split_page() at allocation time, and change the teardown path to free one page at a time. It turns out that alloc_pages_exact() and free_pages_exact() does exactly that. While we're at it, the PGD allocation code is reworked to reduce duplication. This has been tested on an X-Gene platform with a 4kB/48bit-VA host kernel, and kvmtool hacked to place memory in the second page of the hardware PGD (PUD for the host kernel). Also regression-tested on a Cubietruck (Cortex-A7). [ Reworked to use alloc_pages_exact() and free_pages_exact() and to return pointers directly instead of by reference as arguments - Christoffer ] Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Jan Kiszka authored
commit a050dfb2 upstream. The check is supposed to catch page-unaligned sizes, not the inverse. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marc Zyngier authored
commit 0d3e4d4f upstream. When handling a fault in stage-2, we need to resync I$ and D$, just to be sure we don't leave any old cache line behind. That's very good, except that we do so using the *user* address. Under heavy load (swapping like crazy), we may end up in a situation where the page gets mapped in stage-2 while being unmapped from userspace by another CPU. At that point, the DC/IC instructions can generate a fault, which we handle with kvm->mmu_lock held. The box quickly deadlocks, user is unhappy. Instead, perform this invalidation through the kernel mapping, which is guaranteed to be present. The box is much happier, and so am I. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marc Zyngier authored
commit 363ef89f upstream. Let's assume a guest has created an uncached mapping, and written to that page. Let's also assume that the host uses a cache-coherent IO subsystem. Let's finally assume that the host is under memory pressure and starts to swap things out. Before this "uncached" page is evicted, we need to make sure we invalidate potential speculated, clean cache lines that are sitting there, or the IO subsystem is going to swap out the cached view, loosing the data that has been written directly into memory. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marc Zyngier authored
commit 801f6772 upstream. Commit b856a591 (arm/arm64: KVM: Reset the HCR on each vcpu when resetting the vcpu) moved the init of the HCR register to happen later in the init of a vcpu, but left out the fixup done in kvm_reset_vcpu when preparing for a 32bit guest. As a result, the 32bit guest is run as a 64bit guest, but the rest of the kernel still manages it as a 32bit. Fun follows. Moving the fixup to vcpu_reset_hcr solves the problem for good. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Marc Zyngier authored
commit 55e858b7 upstream. It took about two years for someone to notice that the IPA passed to TLBI IPAS2E1IS must be shifted by 12 bits. Clearly our reviewing is not as good as it should be... Paper bag time for me. Reported-by: Mario Smarduch <m.smarduch@samsung.com> Tested-by: Mario Smarduch <m.smarduch@samsung.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Eric Auger authored
commit 66b030e4 upstream. To be more explicit on vgic initialization failure, -ENODEV is returned by vgic_init when no online vcpus can be found at init. Signed-off-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christoffer Dall authored
commit 05971120 upstream. It is curently possible to run a VM with architected timers support without creating an in-kernel VGIC, which will result in interrupts from the virtual timer going nowhere. To address this issue, move the architected timers initialization to the time when we run a VCPU for the first time, and then only initialize (and enable) the architected timers if we have a properly created and initialized in-kernel VGIC. When injecting interrupts from the virtual timer to the vgic, the current setup should ensure that this never calls an on-demand init of the VGIC, which is the only call path that could return an error from kvm_vgic_inject_irq(), so capture the return value and raise a warning if there's an error there. We also change the kvm_timer_init() function from returning an int to be a void function, since the function always succeeds. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christoffer Dall authored
commit ca7d9c82 upstream. Userspace assumes that it can wire up IRQ injections after having created all VCPUs and after having created the VGIC, but potentially before starting the first VCPU. This can currently lead to lost IRQs because the state of that IRQ injection is not stored anywhere and we don't return an error to userspace. We haven't seen this problem manifest itself yet, presumably because guests reset the devices on boot, but this could cause issues with migration and other non-standard startup configurations. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Shannon Zhao authored
commit 016ed39c upstream. When call kvm_vgic_inject_irq to inject interrupt, we can known which vcpu the interrupt for by the irq_num and the cpuid. So we should just kick this vcpu to avoid iterating through all. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <zhaoshenglong@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-
Christoffer Dall authored
commit 716139df upstream. When the vgic initializes its internal state it does so based on the number of VCPUs available at the time. If we allow KVM to create more VCPUs after the VGIC has been initialized, we are likely to error out in unfortunate ways later, perform buffer overflows etc. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
-