- 26 Sep, 2006 40 commits
-
-
Christoph Lameter authored
There are many places where we need to determine the node of a zone. Currently we use a difficult to read sequence of pointer dereferencing. Put that into an inline function and use throughout VM. Maybe we can find a way to optimize the lookup in the future. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
I found two location in hugetlb.c where we chase pointer instead of using page_to_nid(). Page_to_nid is more effective and can get the node directly from page flags. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Ram Gupta authored
Update the comments for __oom_kill_task() to reflect the code changes. Signed-off-by: Ram Gupta <r.gupta@astronautics.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Minor performance fix. If we reclaimed enough slab pages from a zone then we can avoid going off node with the current allocation. Take care of updating nr_reclaimed when reclaiming from the slab. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Currently one can enable slab reclaim by setting an explicit option in /proc/sys/vm/zone_reclaim_mode. Slab reclaim is then used as a final option if the freeing of unmapped file backed pages is not enough to free enough pages to allow a local allocation. However, that means that the slab can grow excessively and that most memory of a node may be used by slabs. We have had a case where a machine with 46GB of memory was using 40-42GB for slab. Zone reclaim was effective in dealing with pagecache pages. However, slab reclaim was only done during global reclaim (which is a bit rare on NUMA systems). This patch implements slab reclaim during zone reclaim. Zone reclaim occurs if there is a danger of an off node allocation. At that point we 1. Shrink the per node page cache if the number of pagecache pages is more than min_unmapped_ratio percent of pages in a zone. 2. Shrink the slab cache if the number of the nodes reclaimable slab pages (patch depends on earlier one that implements that counter) are more than min_slab_ratio (a new /proc/sys/vm tunable). The shrinking of the slab cache is a bit problematic since it is not node specific. So we simply calculate what point in the slab we want to reach (current per node slab use minus the number of pages that neeed to be allocated) and then repeately run the global reclaim until that is unsuccessful or we have reached the limit. I hope we will have zone based slab reclaim at some point which will make that easier. The default for the min_slab_ratio is 5% Also remove the slab option from /proc/sys/vm/zone_reclaim_mode. [akpm@osdl.org: cleanups] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Remove the atomic counter for slab_reclaim_pages and replace the counter and NR_SLAB with two ZVC counter that account for unreclaimable and reclaimable slab pages: NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE. Change the check in vmscan.c to refer to to NR_SLAB_RECLAIMABLE. The intend seems to be to check for slab pages that could be freed. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
*_pages is a better description of the role of the variable. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
The allocpercpu functions __alloc_percpu and __free_percpu() are heavily using the slab allocator. However, they are conceptually slab. This also simplifies SLOB (at this point slob may be broken in mm. This should fix it). Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
If a zone is unpopulated then we do not need to check for pages that are to be drained and also not for vm counters that may need to be updated. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Free one_page currently adds the page to a fake list and calls free_page_bulk. Fee_page_bulk takes it off again and then calles __free_one_page. Make free_one_page go directly to __free_one_page. Saves list on / off and a temporary list in free_one_page for higher ordered pages. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Dave McCracken authored
One of the changes necessary for shared page tables is to standardize the pxx_page macros. pte_page and pmd_page have always returned the struct page associated with their entry, while pte_page_kernel and pmd_page_kernel have returned the kernel virtual address. pud_page and pgd_page, on the other hand, return the kernel virtual address. Shared page tables needs pud_page and pgd_page to return the actual page structures. There are very few actual users of these functions, so it is simple to standardize their usage. Since this is basic cleanup, I am submitting these changes as a standalone patch. Per Hugh Dickins' comments about it, I am also changing the pxx_page_kernel macros to pxx_page_vaddr to clarify their meaning. Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Siddha, Suresh B authored
On High end systems (1024 or so cpus) this can potentially cause stack overflow. Fix the stack usage. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
In many places we will need to use the same combination of flags. Specify a single GFP_THISNODE definition for ease of use in gfp.h. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Profiling really suffers with off node buffers. Fail if no memory is available on the nodes. The profiling code can deal with these failures should they occur. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
There are frequent references to *z in get_page_from_freelist. Add an explicit zone variable that can be used in all these places. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
The uncached allocator manages per node pools. Specify __GFP_THISNODE in order to force allocation on the indicated node or fail. The uncached allocator has already logic to deal with failing allocations. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
If the user specified a node where we should move the page to then we really do not want any other node. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
[PATCH] Add __GFP_THISNODE to avoid fallback to other nodes and ignore cpuset/memory policy restrictions Add a new gfp flag __GFP_THISNODE to avoid fallback to other nodes. This flag is essential if a kernel component requires memory to be located on a certain node. It will be needed for alloc_pages_node() to force allocation on the indicated node and for alloc_pages() to force allocation on the current node. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Ravikiran G Thirumalai authored
Place the alien array cache locks of on slab malloc slab caches on a seperate lockdep class. This avoids false positives from lockdep [akpm@osdl.org: build fix] Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
It is fairly easy to get a system to oops by simply sizing a cache via /proc in such a way that one of the chaches (shared is easiest) becomes bigger than the maximum allowed slab allocation size. This occurs because enable_cpucache() fails if it cannot reallocate some caches. However, enable_cpucache() is used for multiple purposes: resizing caches, cache creation and bootstrap. If the slab is already up then we already have working caches. The resize can fail without a problem. We just need to return the proper error code. F.e. after this patch: # echo "size-64 10000 50 1000" >/proc/slabinfo -bash: echo: write error: Cannot allocate memory notice no OOPS. If we are doing a kmem_cache_create() then we also should not panic but return -ENOMEM. If on the other hand we do not have a fully bootstrapped slab allocator yet then we should indeed panic since we are unable to bring up the slab to its full functionality. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
The ability to free memory allocated to a slab cache is also useful if an error occurs during setup of a slab. So extract the function. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Hellwig authored
[akpm@osdl.org: export fix] Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Let's try to keep mm/ comments more useful and up to date. This is a start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Ravikiran G Thirumalai authored
Also, checks if we get a valid slabp_cache for off slab slab-descriptors. We should always get this. If we don't, then in that case we, will have to disable off-slab descriptors for this cache and do the calculations again. This is a rare case, so add a BUG_ON, for now, just in case. Signed-off-by: Alok N Kataria <alok.kataria@calsoftinc.com> Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Heiko Carstens authored
Introduce ARCH_LOW_ADDRESS_LIMIT which can be set per architecture to override the 4GB default limit used by the bootmem allocater within __alloc_bootmem_low() and __alloc_bootmem_low_node(). E.g. s390 needs a 2GB limit instead of 4GB. Acked-by: Ingo Molnar <mingo@elte.hu> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Print the name of the task invoking the OOM killer. Could make debugging easier. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Skip kernel threads, rather than having them return 0 from badness. Theoretically, badness might truncate all results to 0, thus a kernel thread might be picked first, causing an infinite loop. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
PF_SWAPOFF processes currently cause select_bad_process to return straight away. Instead, give them high priority, so we will kill them first, however we also first ensure no parallel OOM kills are happening at the same time. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Having the oomkilladj == OOM_DISABLE check before the releasing check means that oomkilladj == OOM_DISABLE tasks exiting will not stop the OOM killer. Moving the test down will give the desired behaviour. Also: it will allow them to "OOM-kill" themselves if they are exiting. As per the previous patch, this is required to prevent OOM killer deadlocks (and they don't actually get killed, because they're already exiting -- they're simply allowed access to memory reserves). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
If current *is* exiting, it should actually be allowed to access reserved memory rather than OOM kill something else. Can't do this via a straight check in page_alloc.c because that would allow multiple tasks to use up reserves. Instead cause current to OOM-kill itself which will mark it as TIF_MEMDIE. The current procedure of simply aborting the OOM-kill if a task is exiting can lead to OOM deadlocks. In the case of killing a PF_EXITING task, don't make a lot of noise about it. This becomes more important in future patches, where we can "kill" OOM_DISABLE tasks. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
cpuset_excl_nodes_overlap does not always indicate that killing a task will not free any memory we for us. For example, we may be asking for an allocation from _anywhere_ in the machine, or the task in question may be pinning memory that is outside its cpuset. Fix this by just causing cpuset_excl_nodes_overlap to reduce the badness rather than disallow it. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Potentially it takes several scans of the lru lists before we can even start reclaiming pages. mapped pages, with young ptes can take 2 passes on the active list + one on the inactive list. But reclaim_mapped may not always kick in instantly, so it could take even more than that. Raise the threshold for marking a zone as all_unreclaimable from a factor of 4 time the pages in the zone to 6. Introduce a mechanism to force reclaim_mapped if we've reached a factor 3 and still haven't made progress. Previously, a customer doing stress testing was able to easily OOM the box after using only a small fraction of its swap (~100MB). After the patches, it would only OOM after having used up all swap (~800MB). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
__alloc_pages currently starts shooting if page reclaim has failed to free up swap_cluster_max pages in one run through the priorities. This is not always a good indicator on its own, so make use of the all_unreclaimable logic as well: don't consider going OOM until all zones we're interested in are unreclaimable. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Peter Zijlstra authored
Currently we can silently drop data if the write to swap failed. It usually doesn't result in data-corruption because on page-in the process will receive SIGBUS (assuming write-failure implies read-failure). This assumption might or might not be valid. This patch will avoid the page being discarded after a failed write. But will print a warning the sysadmin _should_ take to heart, if a lot of swap space becomes un-writeable, OOM is not far off. Tested by making the write fail 'randomly' once every 50 writes or so. [akpm@osdl.org: printk warning fix] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Pekka Enberg authored
As explained by Heiko, on s390 (32-bit) ARCH_KMALLOC_MINALIGN is set to eight because their common I/O layer allocates data structures that need to have an eight byte alignment. This does not work when CONFIG_SLAB_DEBUG is enabled because kmem_cache_create will override alignment to BYTES_PER_WORD which is four. So change kmem_cache_create to ensure cache alignment is always at minimum what the architecture or caller mandates even if slab debugging is enabled. Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
lock_page needs the caller to have a reference on the page->mapping inode due to sync_page, ergo set_page_dirty_lock is obviously buggy according to its comments. Solve it by introducing a new lock_page_nosync which does not do a sync_page. akpm: unpleasant solution to an unpleasant problem. If it goes wrong it could cause great slowdowns while the lock_page() caller waits for kblockd to perform the unplug. And if a filesystem has special sync_page() requirements (none presently do), permanent hangs are possible. otoh, set_page_dirty_lock() is usually (always?) called against userspace pages. They are always up-to-date, so there shouldn't be any pending read I/O against these pages. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Nick Piggin authored
Some users of remove_mapping had been unsafe. Modify the remove_mapping precondition to ensure the caller has locked the page and obtained the correct mapping. Modify callers to ensure the mapping is the correct one. [hugh@veritas.com: swapper_space fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Rolf Eike Beer authored
These functions are already documented quite well with long comments. Now add kerneldoc style header to make this turn up in everyones favorite doc format. Signed-off-by: Rolf Eike Beer <eike-kernel@sf-tec.de> Cc: "Randy.Dunlap" <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Martin Peschke authored
This patch splits alloc_percpu() up into two phases. Likewise for free_percpu(). This allows clients to limit initial allocations to online cpu's, and to populate or depopulate per-cpu data at run time as needed: struct my_struct *obj; /* initial allocation for online cpu's */ obj = percpu_alloc(sizeof(struct my_struct), GFP_KERNEL); ... /* populate per-cpu data for cpu coming online */ ptr = percpu_populate(obj, sizeof(struct my_struct), GFP_KERNEL, cpu); ... /* access per-cpu object */ ptr = percpu_ptr(obj, smp_processor_id()); ... /* depopulate per-cpu data for cpu going offline */ percpu_depopulate(obj, cpu); ... /* final removal */ percpu_free(obj); Signed-off-by: Martin Peschke <mp3@de.ibm.com> Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Martin Schwidefsky authored
Add a notifer chain to the out of memory killer. If one of the registered callbacks could release some memory, do not kill the process but return and retry the allocation that forced the oom killer to run. The purpose of the notifier is to add a safety net in the presence of memory ballooners. If the resource manager inflated the balloon to a size where memory allocations can not be satisfied anymore, it is better to deflate the balloon a bit instead of killing processes. The implementation for the s390 ballooner is included. [akpm@osdl.org: cleanups] Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-