- 27 Feb, 2019 13 commits
-
-
Nathan Chancellor authored
[ Upstream commit 88385550 ] When building the kernel with Clang, the following section mismatch warning appears: WARNING: vmlinux.o(.text+0x3d84a3b): Section mismatch in reference from the function twl_probe() to the function .init.text:unprotect_pm_master() The function twl_probe() references the function __init unprotect_pm_master(). This is often because twl_probe lacks a __init annotation or the annotation of unprotect_pm_master is wrong. Remove the __init annotation on the *protect_pm_master functions so there is no more mismatch. Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Stefano Stabellini authored
[ Upstream commit e6587cdb ] When a connection is closing we receive on pvcalls_sk_state_change notification. Instead of setting the connection as closed immediately (-ENOTCONN), let's read one more time from it: pvcalls_conn_back_read will set the connection as closed when necessary. That way, we avoid races between pvcalls_sk_state_change and pvcalls_back_ioworker. Signed-off-by: Stefano Stabellini <stefanos@xilinx.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Vignesh R authored
[ Upstream commit b40ee006 ] Use PLATFORM_DEVID_AUTO to number mfd cells while registering, so that different instances are uniquely identified. This is required in order to support registering of multiple instances of same ti_am335x_tscadc IP. Signed-off-by: Vignesh R <vigneshr@ti.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Eric Biggers authored
commit a08bf91c upstream. If the sysctl 'kernel.keys.maxkeys' is set to some number n, then actually users can only add up to 'n - 1' keys. Likewise for 'kernel.keys.maxbytes' and the root_* versions of these sysctls. But these sysctls are apparently supposed to be *maximums*, as per their names and all documentation I could find -- the keyrings(7) man page, Documentation/security/keys/core.rst, and all the mentions of EDQUOT meaning that the key quota was *exceeded* (as opposed to reached). Thus, fix the code to allow reaching the quotas exactly. Fixes: 0b77f5bf ("keys: make the keyring quotas controllable through /proc/sys") Cc: stable@vger.kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.morris@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michal Hocko authored
commit b2b46993 upstream. Tetsuo has reported that creating a thousands of processes sharing MM without SIGHAND (aka alien threads) and setting /proc/<pid>/oom_score_adj will swamp the kernel log and takes ages [1] to finish. This is especially worrisome that all that printing is done under RCU lock and this can potentially trigger RCU stall or softlockup detector. The primary reason for the printk was to catch potential users who might depend on the behavior prior to 44a70ade ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj") but after more than 2 years without a single report I guess it is safe to simply remove the printk altogether. The next step should be moving oom_score_adj over to the mm struct and remove all the tasks crawling as suggested by [2] [1] http://lkml.kernel.org/r/97fce864-6f75-bca5-14bc-12c9f890e740@i-love.sakura.ne.jp [2] http://lkml.kernel.org/r/20190117155159.GA4087@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20190212102129.26288-1-mhocko@kernel.orgSigned-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Yong-Taek Lee <ytk.lee@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ralph Campbell authored
commit 050c17f2 upstream. The system call, get_mempolicy() [1], passes an unsigned long *nodemask pointer and an unsigned long maxnode argument which specifies the length of the user's nodemask array in bits (which is rounded up). The manual page says that if the maxnode value is too small, get_mempolicy will return EINVAL but there is no system call to return this minimum value. To determine this value, some programs search /proc/<pid>/status for a line starting with "Mems_allowed:" and use the number of digits in the mask to determine the minimum value. A recent change to the way this line is formatted [2] causes these programs to compute a value less than MAX_NUMNODES so get_mempolicy() returns EINVAL. Change get_mempolicy(), the older compat version of get_mempolicy(), and the copy_nodes_to_user() function to use nr_node_ids instead of MAX_NUMNODES, thus preserving the defacto method of computing the minimum size for the nodemask array and the maxnode argument. [1] http://man7.org/linux/man-pages/man2/get_mempolicy.2.html [2] https://lore.kernel.org/lkml/1545405631-6808-1-git-send-email-longman@redhat.com Link: http://lkml.kernel.org/r/20190211180245.22295-1-rcampbell@nvidia.com Fixes: 4fb8e5b89bcbbbb ("include/linux/nodemask.h: use nr_node_ids (not MAX_NUMNODES) in __nodemask_pr_numnodes()") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Suggested-by: Alexander Duyck <alexander.duyck@gmail.com> Cc: Waiman Long <longman@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Yan, Zheng authored
commit 04242ff3 upstream. Otherwise, mdsc->snap_flush_list may get corrupted. Cc: stable@vger.kernel.org Signed-off-by: "Yan, Zheng" <zyan@redhat.com> Reviewed-by: Ilya Dryomov <idryomov@gmail.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ilya Dryomov authored
commit 0fd3fd0a upstream. The authorize reply can be empty, for example when the ticket used to build the authorizer is too old and TAG_BADAUTHORIZER is returned from the service. Calling ->verify_authorizer_reply() results in an attempt to decrypt and validate (somewhat) random data in au->buf (most likely the signature block from calc_signature()), which fails and ends up in con_fault_finish() with !con->auth_retry. The ticket isn't invalidated and the connection is retried again and again until a new ticket is obtained from the monitor: libceph: osd2 192.168.122.1:6809 bad authorize reply libceph: osd2 192.168.122.1:6809 bad authorize reply libceph: osd2 192.168.122.1:6809 bad authorize reply libceph: osd2 192.168.122.1:6809 bad authorize reply Let TAG_BADAUTHORIZER handler kick in and increment con->auth_retry. Cc: stable@vger.kernel.org Fixes: 5c056fdc ("libceph: verify authorize reply on connect") Link: https://tracker.ceph.com/issues/20164Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Herbert Xu authored
commit 4ff3a9d1 upstream. When rhashtable insertion fails the mesh table code doesn't free the now-orphan mesh path object. This patch fixes that. Cc: stable@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Rakesh Pillai authored
commit 83e37e0b upstream. The starting of AP interface can fail due to invalid beacon interval, which does not match the minimum gcd requirement set by the wifi driver. In such case, the beacon interval of that interface gets updated with that invalid beacon interval. The next time that interface is brought up in AP mode, an interface combination check is performed and the beacon interval is taken from the previously set value. In a case where an invalid beacon interval, i.e. a beacon interval value which does not satisfy the minimum gcd criteria set by the driver, is set, all the subsequent trials to bring that interface in AP mode will fail, even if the subsequent trials have a valid beacon interval. To avoid this, in case of a failure in bringing up an interface in AP mode due to interface combination error, the interface beacon interval which is stored in bss conf, needs to be restored with the last working value of beacon interval. Tested on ath10k using WCN3990. Cc: stable@vger.kernel.org Fixes: 0c317a02 ("cfg80211: support virtual interfaces with different beacon intervals") Signed-off-by: Rakesh Pillai <pillair@codeaurora.org> Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Paul Burton authored
commit 13443154 upstream. The function prototype used to call JITed eBPF code (ie. the type of the struct bpf_prog bpf_func field) returns an unsigned int. The MIPS n64 ABI that MIPS64 kernels target defines that 32 bit integers should always be sign extended when passed in registers as either arguments or return values. This means that when returning any value which may not already be sign extended (ie. of type REG_64BIT or REG_32BIT_ZERO_EX) we need to perform that sign extension in order to comply with the n64 ABI. Without this we see strange looking test failures from test_bpf.ko, such as: test_bpf: #65 ALU64_MOV_X: dst = 4294967295 jited:1 ret -1 != -1 FAIL (1 times) Although the return value printed matches the expected value, this is only because printf is only examining the least significant 32 bits of the 64 bit register value we returned. The register holding the expected value is sign extended whilst the v0 register was set to a zero extended value by our JITed code, so when compared by a conditional branch instruction the values are not equal. We already handle this when the return value register is of type REG_32BIT_ZERO_EX, so simply extend this to also cover REG_64BIT. Signed-off-by: Paul Burton <paul.burton@mips.com> Fixes: b6bd53f9 ("MIPS: Add missing file for eBPF JIT.") Cc: stable@vger.kernel.org # v4.13+ Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Quentin Perret authored
commit 9e738215 upstream. The following commit 441dae8f ("tracing: Add support for display of tgid in trace output") removed the call to print_event_info() from print_func_help_header_irq() which results in the ftrace header not reporting the number of entries written in the buffer. As this wasn't the original intent of the patch, re-introduce the call to print_event_info() to restore the orginal behaviour. Link: http://lkml.kernel.org/r/20190214152950.4179-1-quentin.perret@arm.comAcked-by: Joel Fernandes <joelaf@google.com> Cc: stable@vger.kernel.org Fixes: 441dae8f ("tracing: Add support for display of tgid in trace output") Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mathieu Desnoyers authored
commit 0ac569bf upstream. commit e46daee5 ("ARM: 8806/1: kprobes: Fix false positive with FORTIFY_SOURCE") introduced a regression in optimized kprobes. It triggers "invalid instruction" oopses when using kprobes instrumentation through lttng and perf. This commit was introduced in kernel v4.20, and has been backported to stable kernels 4.19 and 4.14. This crash was also reported by Hongzhi Song on the redhat bugzilla where the patch was originally introduced. Link: https://bugzilla.redhat.com/show_bug.cgi?id=1639397 Link: https://bugs.lttng.org/issues/1174 Link: https://lore.kernel.org/lkml/342740659.2887.1549307721609.JavaMail.zimbra@efficios.com Fixes: e46daee5 ("ARM: 8806/1: kprobes: Fix false positive with FORTIFY_SOURCE") Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reported-by: Robert Berger <Robert.Berger@ReliableEmbeddedSystems.com> Tested-by: Robert Berger <Robert.Berger@ReliableEmbeddedSystems.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Robert Berger <Robert.Berger@ReliableEmbeddedSystems.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: William Cohen <wcohen@redhat.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: <stable@vger.kernel.org> # v4.14+ Cc: linux-arm-kernel@lists.infradead.org Cc: patches@armlinux.org.uk Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 23 Feb, 2019 23 commits
-
-
Greg Kroah-Hartman authored
-
Eric Dumazet authored
commit 63530aba upstream. syzbot found that ax25 routes where not properly protected against concurrent use [1]. In this particular report the bug happened while copying ax25->digipeat. Fix this problem by making sure we call ax25_get_route() while ax25_route_lock is held, so that no modification could happen while using the route. The current two ax25_get_route() callers do not sleep, so this change should be fine. Once we do that, ax25_get_route() no longer needs to grab a reference on the found route. [1] ax25_connect(): syz-executor0 uses autobind, please contact jreuter@yaina.de BUG: KASAN: use-after-free in memcpy include/linux/string.h:352 [inline] BUG: KASAN: use-after-free in kmemdup+0x42/0x60 mm/util.c:113 Read of size 66 at addr ffff888066641a80 by task syz-executor2/531 ax25_connect(): syz-executor0 uses autobind, please contact jreuter@yaina.de CPU: 1 PID: 531 Comm: syz-executor2 Not tainted 5.0.0-rc2+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1db/0x2d0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:187 kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 check_memory_region_inline mm/kasan/generic.c:185 [inline] check_memory_region+0x123/0x190 mm/kasan/generic.c:191 memcpy+0x24/0x50 mm/kasan/common.c:130 memcpy include/linux/string.h:352 [inline] kmemdup+0x42/0x60 mm/util.c:113 kmemdup include/linux/string.h:425 [inline] ax25_rt_autobind+0x25d/0x750 net/ax25/ax25_route.c:424 ax25_connect.cold+0x30/0xa4 net/ax25/af_ax25.c:1224 __sys_connect+0x357/0x490 net/socket.c:1664 __do_sys_connect net/socket.c:1675 [inline] __se_sys_connect net/socket.c:1672 [inline] __x64_sys_connect+0x73/0xb0 net/socket.c:1672 do_syscall_64+0x1a3/0x800 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x458099 Code: 6d b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 3b b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f870ee22c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 0000000000458099 RDX: 0000000000000048 RSI: 0000000020000080 RDI: 0000000000000005 RBP: 000000000073bf00 R08: 0000000000000000 R09: 0000000000000000 ax25_connect(): syz-executor4 uses autobind, please contact jreuter@yaina.de R10: 0000000000000000 R11: 0000000000000246 R12: 00007f870ee236d4 R13: 00000000004be48e R14: 00000000004ce9a8 R15: 00000000ffffffff Allocated by task 526: save_stack+0x45/0xd0 mm/kasan/common.c:73 set_track mm/kasan/common.c:85 [inline] __kasan_kmalloc mm/kasan/common.c:496 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:469 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:504 ax25_connect(): syz-executor5 uses autobind, please contact jreuter@yaina.de kmem_cache_alloc_trace+0x151/0x760 mm/slab.c:3609 kmalloc include/linux/slab.h:545 [inline] ax25_rt_add net/ax25/ax25_route.c:95 [inline] ax25_rt_ioctl+0x3b9/0x1270 net/ax25/ax25_route.c:233 ax25_ioctl+0x322/0x10b0 net/ax25/af_ax25.c:1763 sock_do_ioctl+0xe2/0x400 net/socket.c:950 sock_ioctl+0x32f/0x6c0 net/socket.c:1074 vfs_ioctl fs/ioctl.c:46 [inline] file_ioctl fs/ioctl.c:509 [inline] do_vfs_ioctl+0x107b/0x17d0 fs/ioctl.c:696 ksys_ioctl+0xab/0xd0 fs/ioctl.c:713 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0x1a3/0x800 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe ax25_connect(): syz-executor5 uses autobind, please contact jreuter@yaina.de Freed by task 550: save_stack+0x45/0xd0 mm/kasan/common.c:73 set_track mm/kasan/common.c:85 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:458 kasan_slab_free+0xe/0x10 mm/kasan/common.c:466 __cache_free mm/slab.c:3487 [inline] kfree+0xcf/0x230 mm/slab.c:3806 ax25_rt_add net/ax25/ax25_route.c:92 [inline] ax25_rt_ioctl+0x304/0x1270 net/ax25/ax25_route.c:233 ax25_ioctl+0x322/0x10b0 net/ax25/af_ax25.c:1763 sock_do_ioctl+0xe2/0x400 net/socket.c:950 sock_ioctl+0x32f/0x6c0 net/socket.c:1074 vfs_ioctl fs/ioctl.c:46 [inline] file_ioctl fs/ioctl.c:509 [inline] do_vfs_ioctl+0x107b/0x17d0 fs/ioctl.c:696 ksys_ioctl+0xab/0xd0 fs/ioctl.c:713 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0x1a3/0x800 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe The buggy address belongs to the object at ffff888066641a80 which belongs to the cache kmalloc-96 of size 96 The buggy address is located 0 bytes inside of 96-byte region [ffff888066641a80, ffff888066641ae0) The buggy address belongs to the page: page:ffffea0001999040 count:1 mapcount:0 mapping:ffff88812c3f04c0 index:0x0 flags: 0x1fffc0000000200(slab) ax25_connect(): syz-executor4 uses autobind, please contact jreuter@yaina.de raw: 01fffc0000000200 ffffea0001817948 ffffea0002341dc8 ffff88812c3f04c0 raw: 0000000000000000 ffff888066641000 0000000100000020 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888066641980: fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ffff888066641a00: 00 00 00 00 00 00 00 00 02 fc fc fc fc fc fc fc >ffff888066641a80: fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ^ ffff888066641b00: fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ffff888066641b80: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ralf Baechle <ralf@linux-mips.org> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
commit bdcc5bc2 upstream. Since mISDN_close() uses dev->pending to iterate over active timers, there is a chance that one timer got removed from the ->pending list in dev_expire_timer() but that the thread has not called yet wake_up_interruptible() So mISDN_close() could miss this and free dev before completion of at least one dev_expire_timer() syzbot was able to catch this race : BUG: KASAN: use-after-free in register_lock_class+0x140c/0x1bf0 kernel/locking/lockdep.c:827 Write of size 8 at addr ffff88809fc18948 by task syz-executor1/24769 CPU: 1 PID: 24769 Comm: syz-executor1 Not tainted 5.0.0-rc5 #60 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:187 kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 __asan_report_store8_noabort+0x17/0x20 mm/kasan/generic_report.c:140 register_lock_class+0x140c/0x1bf0 kernel/locking/lockdep.c:827 __lock_acquire+0x11f/0x4700 kernel/locking/lockdep.c:3224 lock_acquire+0x16f/0x3f0 kernel/locking/lockdep.c:3841 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0x95/0xcd kernel/locking/spinlock.c:152 __wake_up_common_lock+0xc7/0x190 kernel/sched/wait.c:120 __wake_up+0xe/0x10 kernel/sched/wait.c:145 dev_expire_timer+0xe4/0x3b0 drivers/isdn/mISDN/timerdev.c:174 call_timer_fn+0x190/0x720 kernel/time/timer.c:1325 protocol 88fb is buggy, dev hsr_slave_0 protocol 88fb is buggy, dev hsr_slave_1 expire_timers kernel/time/timer.c:1362 [inline] __run_timers kernel/time/timer.c:1681 [inline] __run_timers kernel/time/timer.c:1649 [inline] run_timer_softirq+0x652/0x1700 kernel/time/timer.c:1694 __do_softirq+0x266/0x95a kernel/softirq.c:292 invoke_softirq kernel/softirq.c:373 [inline] irq_exit+0x180/0x1d0 kernel/softirq.c:413 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0x14a/0x570 arch/x86/kernel/apic/apic.c:1062 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:807 </IRQ> RIP: 0010:__sanitizer_cov_trace_pc+0x26/0x50 kernel/kcov.c:101 Code: 90 90 90 90 55 48 89 e5 48 8b 75 08 65 48 8b 04 25 40 ee 01 00 65 8b 15 98 12 92 7e 81 e2 00 01 1f 00 75 2b 8b 90 d8 12 00 00 <83> fa 02 75 20 48 8b 88 e0 12 00 00 8b 80 dc 12 00 00 48 8b 11 48 RSP: 0018:ffff8880589b7a60 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13 RAX: ffff888087ce25c0 RBX: 0000000000000001 RCX: ffffffff818f8ca3 RDX: 0000000000000000 RSI: ffffffff818f8b48 RDI: 0000000000000001 RBP: ffff8880589b7a60 R08: ffff888087ce25c0 R09: ffffed1015d25bd0 R10: ffffed1015d25bcf R11: ffff8880ae92de7b R12: ffffea0001ae4680 R13: ffffea0001ae4688 R14: 0000000000000000 R15: ffffea0001b41648 PageIdle include/linux/page-flags.h:398 [inline] page_is_idle include/linux/page_idle.h:29 [inline] mark_page_accessed+0x618/0x1140 mm/swap.c:398 touch_buffer fs/buffer.c:59 [inline] __find_get_block+0x312/0xcc0 fs/buffer.c:1298 sb_find_get_block include/linux/buffer_head.h:338 [inline] recently_deleted fs/ext4/ialloc.c:682 [inline] find_inode_bit.isra.0+0x202/0x510 fs/ext4/ialloc.c:722 __ext4_new_inode+0x14ad/0x52c0 fs/ext4/ialloc.c:914 ext4_symlink+0x3f8/0xbe0 fs/ext4/namei.c:3096 vfs_symlink fs/namei.c:4126 [inline] vfs_symlink+0x378/0x5d0 fs/namei.c:4112 do_symlinkat+0x22b/0x290 fs/namei.c:4153 __do_sys_symlink fs/namei.c:4172 [inline] __se_sys_symlink fs/namei.c:4170 [inline] __x64_sys_symlink+0x59/0x80 fs/namei.c:4170 do_syscall_64+0x103/0x610 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x457b67 Code: 0f 1f 00 b8 5c 00 00 00 0f 05 48 3d 01 f0 ff ff 0f 83 6d bb fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 b8 58 00 00 00 0f 05 <48> 3d 01 f0 ff ff 0f 83 4d bb fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fff045ce0f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000058 RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 0000000000457b67 RDX: 00007fff045ce173 RSI: 00000000004bd63f RDI: 00007fff045ce160 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000013 R10: 0000000000000075 R11: 0000000000000202 R12: 0000000000000000 R13: 0000000000000001 R14: 000000000000029b R15: 0000000000000001 Allocated by task 24763: save_stack+0x45/0xd0 mm/kasan/common.c:73 set_track mm/kasan/common.c:85 [inline] __kasan_kmalloc mm/kasan/common.c:496 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:469 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:504 kmem_cache_alloc_trace+0x151/0x760 mm/slab.c:3609 kmalloc include/linux/slab.h:545 [inline] mISDN_open+0x9a/0x270 drivers/isdn/mISDN/timerdev.c:59 misc_open+0x398/0x4c0 drivers/char/misc.c:141 chrdev_open+0x247/0x6b0 fs/char_dev.c:417 do_dentry_open+0x47d/0x1130 fs/open.c:771 vfs_open+0xa0/0xd0 fs/open.c:880 do_last fs/namei.c:3418 [inline] path_openat+0x10d7/0x4690 fs/namei.c:3534 do_filp_open+0x1a1/0x280 fs/namei.c:3564 do_sys_open+0x3fe/0x5d0 fs/open.c:1063 __do_sys_openat fs/open.c:1090 [inline] __se_sys_openat fs/open.c:1084 [inline] __x64_sys_openat+0x9d/0x100 fs/open.c:1084 do_syscall_64+0x103/0x610 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 24762: save_stack+0x45/0xd0 mm/kasan/common.c:73 set_track mm/kasan/common.c:85 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:458 kasan_slab_free+0xe/0x10 mm/kasan/common.c:466 __cache_free mm/slab.c:3487 [inline] kfree+0xcf/0x230 mm/slab.c:3806 mISDN_close+0x2a1/0x390 drivers/isdn/mISDN/timerdev.c:97 __fput+0x2df/0x8d0 fs/file_table.c:278 ____fput+0x16/0x20 fs/file_table.c:309 task_work_run+0x14a/0x1c0 kernel/task_work.c:113 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_usermode_loop+0x273/0x2c0 arch/x86/entry/common.c:166 prepare_exit_to_usermode arch/x86/entry/common.c:197 [inline] syscall_return_slowpath arch/x86/entry/common.c:268 [inline] do_syscall_64+0x52d/0x610 arch/x86/entry/common.c:293 entry_SYSCALL_64_after_hwframe+0x49/0xbe The buggy address belongs to the object at ffff88809fc18900 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 72 bytes inside of 192-byte region [ffff88809fc18900, ffff88809fc189c0) The buggy address belongs to the page: page:ffffea00027f0600 count:1 mapcount:0 mapping:ffff88812c3f0040 index:0xffff88809fc18000 flags: 0x1fffc0000000200(slab) raw: 01fffc0000000200 ffffea000269f648 ffffea00029f7408 ffff88812c3f0040 raw: ffff88809fc18000 ffff88809fc18000 000000010000000b 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88809fc18800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff88809fc18880: 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff88809fc18900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88809fc18980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff88809fc18a00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Karsten Keil <isdn@linux-pingi.de> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
commit cf657d22 upstream. Due to quadratic behavior of x25_new_lci(), syzbot was able to trigger an rcu stall. Fix this by not blocking BH for the whole duration of the function, and inserting a reschedule point when possible. If we care enough, using a bitmap could get rid of the quadratic behavior. syzbot report : rcu: INFO: rcu_preempt self-detected stall on CPU rcu: 0-...!: (10500 ticks this GP) idle=4fa/1/0x4000000000000002 softirq=283376/283376 fqs=0 rcu: (t=10501 jiffies g=383105 q=136) rcu: rcu_preempt kthread starved for 10502 jiffies! g383105 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=0 rcu: RCU grace-period kthread stack dump: rcu_preempt I28928 10 2 0x80000000 Call Trace: context_switch kernel/sched/core.c:2844 [inline] __schedule+0x817/0x1cc0 kernel/sched/core.c:3485 schedule+0x92/0x180 kernel/sched/core.c:3529 schedule_timeout+0x4db/0xfd0 kernel/time/timer.c:1803 rcu_gp_fqs_loop kernel/rcu/tree.c:1948 [inline] rcu_gp_kthread+0x956/0x17a0 kernel/rcu/tree.c:2105 kthread+0x357/0x430 kernel/kthread.c:246 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:352 NMI backtrace for cpu 0 CPU: 0 PID: 8759 Comm: syz-executor2 Not tainted 5.0.0-rc4+ #51 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 nmi_cpu_backtrace.cold+0x63/0xa4 lib/nmi_backtrace.c:101 nmi_trigger_cpumask_backtrace+0x1be/0x236 lib/nmi_backtrace.c:62 arch_trigger_cpumask_backtrace+0x14/0x20 arch/x86/kernel/apic/hw_nmi.c:38 trigger_single_cpu_backtrace include/linux/nmi.h:164 [inline] rcu_dump_cpu_stacks+0x183/0x1cf kernel/rcu/tree.c:1211 print_cpu_stall kernel/rcu/tree.c:1348 [inline] check_cpu_stall kernel/rcu/tree.c:1422 [inline] rcu_pending kernel/rcu/tree.c:3018 [inline] rcu_check_callbacks.cold+0x500/0xa4a kernel/rcu/tree.c:2521 update_process_times+0x32/0x80 kernel/time/timer.c:1635 tick_sched_handle+0xa2/0x190 kernel/time/tick-sched.c:161 tick_sched_timer+0x47/0x130 kernel/time/tick-sched.c:1271 __run_hrtimer kernel/time/hrtimer.c:1389 [inline] __hrtimer_run_queues+0x33e/0xde0 kernel/time/hrtimer.c:1451 hrtimer_interrupt+0x314/0x770 kernel/time/hrtimer.c:1509 local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1035 [inline] smp_apic_timer_interrupt+0x120/0x570 arch/x86/kernel/apic/apic.c:1060 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:807 </IRQ> RIP: 0010:__read_once_size include/linux/compiler.h:193 [inline] RIP: 0010:queued_write_lock_slowpath+0x13e/0x290 kernel/locking/qrwlock.c:86 Code: 00 00 fc ff df 4c 8d 2c 01 41 83 c7 03 41 0f b6 45 00 41 38 c7 7c 08 84 c0 0f 85 0c 01 00 00 8b 03 3d 00 01 00 00 74 1a f3 90 <41> 0f b6 55 00 41 38 d7 7c eb 84 d2 74 e7 48 89 df e8 6c 0f 4f 00 RSP: 0018:ffff88805f117bd8 EFLAGS: 00000206 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000300 RBX: ffffffff89413ba0 RCX: 1ffffffff1282774 RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffff89413ba0 RBP: ffff88805f117c70 R08: 1ffffffff1282774 R09: fffffbfff1282775 R10: fffffbfff1282774 R11: ffffffff89413ba3 R12: 00000000000000ff R13: fffffbfff1282774 R14: 1ffff1100be22f7d R15: 0000000000000003 queued_write_lock include/asm-generic/qrwlock.h:104 [inline] do_raw_write_lock+0x1d6/0x290 kernel/locking/spinlock_debug.c:203 __raw_write_lock_bh include/linux/rwlock_api_smp.h:204 [inline] _raw_write_lock_bh+0x3b/0x50 kernel/locking/spinlock.c:312 x25_insert_socket+0x21/0xe0 net/x25/af_x25.c:267 x25_bind+0x273/0x340 net/x25/af_x25.c:705 __sys_bind+0x23f/0x290 net/socket.c:1505 __do_sys_bind net/socket.c:1516 [inline] __se_sys_bind net/socket.c:1514 [inline] __x64_sys_bind+0x73/0xb0 net/socket.c:1514 do_syscall_64+0x103/0x610 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x457e39 Code: ad b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fafccd0dc78 EFLAGS: 00000246 ORIG_RAX: 0000000000000031 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 0000000000457e39 RDX: 0000000000000012 RSI: 0000000020000240 RDI: 0000000000000004 RBP: 000000000073bf00 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fafccd0e6d4 R13: 00000000004bdf8b R14: 00000000004ce4b8 R15: 00000000ffffffff Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 8752 Comm: syz-executor4 Not tainted 5.0.0-rc4+ #51 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__x25_find_socket+0x78/0x120 net/x25/af_x25.c:328 Code: 89 f8 48 c1 e8 03 80 3c 18 00 0f 85 a6 00 00 00 4d 8b 64 24 68 4d 85 e4 74 7f e8 03 97 3d fb 49 83 ec 68 74 74 e8 f8 96 3d fb <49> 8d bc 24 88 04 00 00 48 89 f8 48 c1 e8 03 0f b6 04 18 84 c0 74 RSP: 0018:ffff8880639efc58 EFLAGS: 00000246 RAX: 0000000000040000 RBX: dffffc0000000000 RCX: ffffc9000e677000 RDX: 0000000000040000 RSI: ffffffff863244b8 RDI: ffff88806a764628 RBP: ffff8880639efc80 R08: ffff8880a80d05c0 R09: fffffbfff1282775 R10: fffffbfff1282774 R11: ffffffff89413ba3 R12: ffff88806a7645c0 R13: 0000000000000001 R14: ffff88809f29ac00 R15: 0000000000000000 FS: 00007fe8d0c58700(0000) GS:ffff8880ae900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32823000 CR3: 00000000672eb000 CR4: 00000000001406e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: x25_new_lci net/x25/af_x25.c:357 [inline] x25_connect+0x374/0xdf0 net/x25/af_x25.c:786 __sys_connect+0x266/0x330 net/socket.c:1686 __do_sys_connect net/socket.c:1697 [inline] __se_sys_connect net/socket.c:1694 [inline] __x64_sys_connect+0x73/0xb0 net/socket.c:1694 do_syscall_64+0x103/0x610 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x457e39 Code: ad b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fe8d0c57c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 0000000000457e39 RDX: 0000000000000012 RSI: 0000000020000200 RDI: 0000000000000004 RBP: 000000000073bf00 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe8d0c586d4 R13: 00000000004be378 R14: 00000000004ceb00 R15: 00000000ffffffff Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Andrew Hendry <andrew.hendry@gmail.com> Cc: linux-x25@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Scott Mayhew authored
commit e7afe6c1 upstream. While trying to reproduce a reported kernel panic on arm64, I discovered that AUTH_GSS basically doesn't work at all with older enctypes on arm64 systems with CONFIG_VMAP_STACK enabled. It turns out there still a few places using stack memory with scatterlists, causing krb5_encrypt() and krb5_decrypt() to produce incorrect results (or a BUG if CONFIG_DEBUG_SG is enabled). Tested with cthon on v4.0/v4.1/v4.2 with krb5/krb5i/krb5p using des3-cbc-sha1 and arcfour-hmac-md5. Signed-off-by: Scott Mayhew <smayhew@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 04c03114 ] soukjin bae reported a crash in tcp_v4_err() handling ICMP_DEST_UNREACH after tcp_write_queue_head(sk) returned a NULL pointer. Current logic should have prevented this : if (seq != tp->snd_una || !icsk->icsk_retransmits || !icsk->icsk_backoff || fastopen) break; Problem is the write queue might have been purged and icsk_backoff has not been cleared. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: soukjin bae <soukjin.bae@samsung.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexander Duyck authored
[ Upstream commit 3bed3cc4 ] This patch addresses the fact that there are drivers, specifically tun, that will call into the network page fragment allocators with buffer sizes that are not cache aligned. Doing this could result in data alignment and DMA performance issues as these fragment pools are also shared with the skb allocator and any other devices that will use napi_alloc_frags or netdev_alloc_frags. Fixes: ffde7328 ("net: Split netdev_alloc_frag into __alloc_page_frag and add __napi_alloc_frag") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 2c4cc971 ] ICMP handlers are not very often stressed, we should make them more resilient to bugs that might surface in the future. If there is no packet in retransmit queue, we should avoid a NULL deref. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: soukjin bae <soukjin.bae@samsung.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 8681ef1f ] Fixes: 3b89ea9c ("net: Fix for_each_netdev_feature on Big endian") Suggested-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jason Wang authored
[ Upstream commit 816db766 ] When fail, translate_desc() returns negative value, otherwise the number of iovs. So we should fail when the return value is negative instead of a blindly check against zero. Detected by CoverityScan, CID# 1442593: Control flow issues (DEADCODE) Fixes: cc5e7107 ("vhost: log dirty page correctly") Acked-by: Michael S. Tsirkin <mst@redhat.com> Reported-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kai-Heng Feng authored
[ Upstream commit 1765f5dc ] Another platform requires even longer delay to make the device work correctly after S3. So increase the delay to 300ms. BugLink: https://bugs.launchpad.net/bugs/1798921Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexandre Torgue authored
[ Upstream commit 224babd62d6f19581757a6d8bae3bf9501fc10de ] GMAC IP is little-endian and used on several kind of CPU (big or little endian). Main callbacks functions of the stmmac drivers take care about it. It was not the case for dwmac4_get_timestamp function. Fixes: ba1ffd74 ("stmmac: fix PTP support for GMAC4") Signed-off-by: Alexandre Torgue <alexandre.torgue@st.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jose Abreu authored
[ Upstream commit 8a7493e5 ] We are saving the status of EEE even before we try to enable it. This leads to a race with XMIT function that tries to arm EEE timer before we set it up. Fix this by only saving the EEE parameters after all operations are performed with success. Signed-off-by: Jose Abreu <joabreu@synopsys.com> Fixes: d765955d ("stmmac: add the Energy Efficient Ethernet support") Cc: Joao Pinto <jpinto@synopsys.com> Cc: David S. Miller <davem@davemloft.net> Cc: Giuseppe Cavallaro <peppe.cavallaro@st.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Paul Kocialkowski authored
[ Upstream commit 197f9ab7 ] Some PHY drivers like the generic one do not provide a read_status callback on their own but rely on genphy_read_status being called directly. With the current code, this results in a NULL function pointer call. Call genphy_read_status instead when there is no specific callback. Fixes: f411a616 ("net: phy: Add gmiitorgmii converter support") Signed-off-by: Paul Kocialkowski <paul.kocialkowski@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hauke Mehrtens authored
[ Upstream commit 3b89ea9c ] The features attribute is of type u64 and stored in the native endianes on the system. The for_each_set_bit() macro takes a pointer to a 32 bit array and goes over the bits in this area. On little Endian systems this also works with an u64 as the most significant bit is on the highest address, but on big endian the words are swapped. When we expect bit 15 here we get bit 47 (15 + 32). This patch converts it more or less to its own for_each_set_bit() implementation which works on 64 bit integers directly. This is then completely in host endianness and should work like expected. Fixes: fd867d51 ("net/core: generic support for disabling netdev features down stack") Signed-off-by: Hauke Mehrtens <hauke.mehrtens@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mao Wenan authored
[ Upstream commit 9060cb71 ] KASAN has found use-after-free in sockfs_setattr. The existed commit 6d8c50dc ("socket: close race condition between sock_close() and sockfs_setattr()") is to fix this simillar issue, but it seems to ignore that crypto module forgets to set the sk to NULL after af_alg_release. KASAN report details as below: BUG: KASAN: use-after-free in sockfs_setattr+0x120/0x150 Write of size 4 at addr ffff88837b956128 by task syz-executor0/4186 CPU: 2 PID: 4186 Comm: syz-executor0 Not tainted xxx + #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Call Trace: dump_stack+0xca/0x13e print_address_description+0x79/0x330 ? vprintk_func+0x5e/0xf0 kasan_report+0x18a/0x2e0 ? sockfs_setattr+0x120/0x150 sockfs_setattr+0x120/0x150 ? sock_register+0x2d0/0x2d0 notify_change+0x90c/0xd40 ? chown_common+0x2ef/0x510 chown_common+0x2ef/0x510 ? chmod_common+0x3b0/0x3b0 ? __lock_is_held+0xbc/0x160 ? __sb_start_write+0x13d/0x2b0 ? __mnt_want_write+0x19a/0x250 do_fchownat+0x15c/0x190 ? __ia32_sys_chmod+0x80/0x80 ? trace_hardirqs_on_thunk+0x1a/0x1c __x64_sys_fchownat+0xbf/0x160 ? lockdep_hardirqs_on+0x39a/0x5e0 do_syscall_64+0xc8/0x580 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x462589 Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fb4b2c83c58 EFLAGS: 00000246 ORIG_RAX: 0000000000000104 RAX: ffffffffffffffda RBX: 000000000072bfa0 RCX: 0000000000462589 RDX: 0000000000000000 RSI: 00000000200000c0 RDI: 0000000000000007 RBP: 0000000000000005 R08: 0000000000001000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fb4b2c846bc R13: 00000000004bc733 R14: 00000000006f5138 R15: 00000000ffffffff Allocated by task 4185: kasan_kmalloc+0xa0/0xd0 __kmalloc+0x14a/0x350 sk_prot_alloc+0xf6/0x290 sk_alloc+0x3d/0xc00 af_alg_accept+0x9e/0x670 hash_accept+0x4a3/0x650 __sys_accept4+0x306/0x5c0 __x64_sys_accept4+0x98/0x100 do_syscall_64+0xc8/0x580 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 4184: __kasan_slab_free+0x12e/0x180 kfree+0xeb/0x2f0 __sk_destruct+0x4e6/0x6a0 sk_destruct+0x48/0x70 __sk_free+0xa9/0x270 sk_free+0x2a/0x30 af_alg_release+0x5c/0x70 __sock_release+0xd3/0x280 sock_close+0x1a/0x20 __fput+0x27f/0x7f0 task_work_run+0x136/0x1b0 exit_to_usermode_loop+0x1a7/0x1d0 do_syscall_64+0x461/0x580 entry_SYSCALL_64_after_hwframe+0x49/0xbe Syzkaller reproducer: r0 = perf_event_open(&(0x7f0000000000)={0x0, 0x70, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, @perf_config_ext}, 0x0, 0x0, 0xffffffffffffffff, 0x0) r1 = socket$alg(0x26, 0x5, 0x0) getrusage(0x0, 0x0) bind(r1, &(0x7f00000001c0)=@alg={0x26, 'hash\x00', 0x0, 0x0, 'sha256-ssse3\x00'}, 0x80) r2 = accept(r1, 0x0, 0x0) r3 = accept4$unix(r2, 0x0, 0x0, 0x0) r4 = dup3(r3, r0, 0x0) fchownat(r4, &(0x7f00000000c0)='\x00', 0x0, 0x0, 0x1000) Fixes: 6d8c50dc ("socket: close race condition between sock_close() and sockfs_setattr()") Signed-off-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Petr Machata authored
[ Upstream commit 28946040 ] The function-local variable "delay" enters the loop interpreted as delay in bits. However, inside the loop it gets overwritten by the result of mlxsw_sp_pg_buf_delay_get(), and thus leaves the loop as quantity in cells. Thus on second and further loop iterations, the headroom for a given priority is configured with a wrong size. Fix by introducing a loop-local variable, delay_cells. Rename thres to thres_cells for consistency. Fixes: f417f04d ("mlxsw: spectrum: Refactor port buffer configuration") Signed-off-by: Petr Machata <petrm@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Wei Yongjun authored
[ Upstream commit 07bd14cc ] Add the missing unlock before return from function set_fan_div() in the error handling case. Fixes: c9c63915 ("hwmon: (lm80) fix a missing check of the status of SMBus read") Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Eric Dumazet authored
[ Upstream commit 4179cb5a ] netif_rx() must be called under a strict contract. At device dismantle phase, core networking clears IFF_UP and flush_all_backlogs() is called after rcu grace period to make sure no incoming packet might be in a cpu backlog and still referencing the device. Most drivers call netif_rx() from their interrupt handler, and since the interrupts are disabled at device dismantle, netif_rx() does not have to check dev->flags & IFF_UP Virtual drivers do not have this guarantee, and must therefore make the check themselves. Otherwise we risk use-after-free and/or crashes. Note this patch also fixes a small issue that came with commit ce6502a8 ("vxlan: fix a use after free in vxlan_encap_bypass"), since the dev->stats.rx_dropped change was done on the wrong device. Fixes: d342894c ("vxlan: virtual extensible lan") Fixes: ce6502a8 ("vxlan: fix a use after free in vxlan_encap_bypass") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Petr Machata <petrm@mellanox.com> Cc: Ido Schimmel <idosch@mellanox.com> Cc: Roopa Prabhu <roopa@cumulusnetworks.com> Cc: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Paolo Abeni authored
[ Upstream commit 225d9464 ] In the unlikely event that the kmalloc call in vmci_transport_socket_init() fails, we end-up calling vmci_transport_destruct() with a NULL vmci_trans() and oopsing. This change addresses the above explicitly checking for zero vmci_trans() at destruction time. Reported-by: Xiumei Mu <xmu@redhat.com> Fixes: d021c344 ("VSOCK: Introduce VM Sockets") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Reviewed-by: Jorgen Hansen <jhansen@vmware.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Lorenzo Bianconi authored
[ Upstream commit c09551c6 ] According to the algorithm described in the comment block at the beginning of ip_rt_send_redirect, the host should try to send 'ip_rt_redirect_number' ICMP redirect packets with an exponential backoff and then stop sending them at all assuming that the destination ignores redirects. If the device has previously sent some ICMP error packets that are rate-limited (e.g TTL expired) and continues to receive traffic, the redirect packets will never be transmitted. This happens since peer->rate_tokens will be typically greater than 'ip_rt_redirect_number' and so it will never be reset even if the redirect silence timeout (ip_rt_redirect_silence) has elapsed without receiving any packet requiring redirects. Fix it by using a dedicated counter for the number of ICMP redirect packets that has been sent by the host I have not been able to identify a given commit that introduced the issue since ip_rt_send_redirect implements the same rate-limiting algorithm from commit 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Zhiqiang Liu authored
[ Upstream commit e75913c9 ] Follow those steps: # ip addr add 2001:123::1/32 dev eth0 # ip addr add 2001:123:456::2/64 dev eth0 # ip addr del 2001:123::1/32 dev eth0 # ip addr del 2001:123:456::2/64 dev eth0 and then prefix route of 2001:123::1/32 will still exist. This is because ipv6_prefix_equal in check_cleanup_prefix_route func does not check whether two IPv6 addresses have the same prefix length. If the prefix of one address starts with another shorter address prefix, even though their prefix lengths are different, the return value of ipv6_prefix_equal is true. Here I add a check of whether two addresses have the same prefix to decide whether their prefixes are equal. Fixes: 5b84efec ("ipv6 addrconf: don't cleanup prefix route for IFA_F_NOPREFIXROUTE") Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com> Reported-by: Wenhao Zhang <zhangwenhao8@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
John David Anglin authored
[ Upstream commit 7c0db24c ] The GPIO interrupt controller on the espressobin board only supports edge interrupts. If one enables the use of hardware interrupts in the device tree for the 88E6341, it is possible to miss an edge. When this happens, the INTn pin on the Marvell switch is stuck low and no further interrupts occur. I found after adding debug statements to mv88e6xxx_g1_irq_thread_work() that there is a race in handling device interrupts (e.g. PHY link interrupts). Some interrupts are directly cleared by reading the Global 1 status register. However, the device interrupt flag, for example, is not cleared until all the unmasked SERDES and PHY ports are serviced. This is done by reading the relevant SERDES and PHY status register. The code only services interrupts whose status bit is set at the time of reading its status register. If an interrupt event occurs after its status is read and before all interrupts are serviced, then this event will not be serviced and the INTn output pin will remain low. This is not a problem with polling or level interrupts since the handler will be called again to process the event. However, it's a big problem when using level interrupts. The fix presented here is to add a loop around the code servicing switch interrupts. If any pending interrupts remain after the current set has been handled, we loop and process the new set. If there are no pending interrupts after servicing, we are sure that INTn has gone high and we will get an edge when a new event occurs. Tested on espressobin board. Fixes: dc30c35b ("net: dsa: mv88e6xxx: Implement interrupt support.") Signed-off-by: John David Anglin <dave.anglin@bell.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
- 20 Feb, 2019 4 commits
-
-
Greg Kroah-Hartman authored
-
Hauke Mehrtens authored
commit da360299 upstream. This fixes a compile problem of some user space applications by not including linux/libc-compat.h in uapi/if_ether.h. linux/libc-compat.h checks which "features" the header files, included from the libc, provide to make the Linux kernel uapi header files only provide no conflicting structures and enums. If a user application mixes kernel headers and libc headers it could happen that linux/libc-compat.h gets included too early where not all other libc headers are included yet. Then the linux/libc-compat.h would not prevent all the redefinitions and we run into compile problems. This patch removes the include of linux/libc-compat.h from uapi/if_ether.h to fix the recently introduced case, but not all as this is more or less impossible. It is no problem to do the check directly in the if_ether.h file and not in libc-compat.h as this does not need any fancy glibc header detection as glibc never provided struct ethhdr and should define __UAPI_DEF_ETHHDR by them self when they will provide this. The following test program did not compile correctly any more: #include <linux/if_ether.h> #include <netinet/in.h> #include <linux/in.h> int main(void) { return 0; } Fixes: 6926e041 ("uapi/if_ether.h: prevent redefinition of struct ethhdr") Reported-by: Guillaume Nault <g.nault@alphalink.fr> Cc: <stable@vger.kernel.org> # 4.15 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Christian Lamparter authored
commit a86caa9b upstream. Sven Eckelmann reported an issue with the current IPQ4019 pinctrl. Setting up any gpio-hog in the device-tree for his device would "kill the bootup completely": | [ 0.477838] msm_serial 78af000.serial: could not find pctldev for node /soc/pinctrl@1000000/serial_pinmux, deferring probe | [ 0.499828] spi_qup 78b5000.spi: could not find pctldev for node /soc/pinctrl@1000000/spi_0_pinmux, deferring probe | [ 1.298883] requesting hog GPIO enable USB2 power (chip 1000000.pinctrl, offset 58) failed, -517 | [ 1.299609] gpiochip_add_data: GPIOs 0..99 (1000000.pinctrl) failed to register | [ 1.308589] ipq4019-pinctrl 1000000.pinctrl: Failed register gpiochip | [ 1.316586] msm_serial 78af000.serial: could not find pctldev for node /soc/pinctrl@1000000/serial_pinmux, deferring probe | [ 1.322415] spi_qup 78b5000.spi: could not find pctldev for node /soc/pinctrl@1000000/spi_0_pinmux, deferri This was also verified on a RT-AC58U (IPQ4018) which would no longer boot, if a gpio-hog was specified. (Tried forcing the USB LED PIN (GPIO0) to high.). The problem is that Pinctrl+GPIO registration is currently peformed in the following order in pinctrl-msm.c: 1. pinctrl_register() 2. gpiochip_add() 3. gpiochip_add_pin_range() The actual error code -517 == -EPROBE_DEFER is coming from pinctrl_get_device_gpio_range(), which is called through: gpiochip_add of_gpiochip_add of_gpiochip_scan_gpios gpiod_hog gpiochip_request_own_desc __gpiod_request chip->request gpiochip_generic_request pinctrl_gpio_request pinctrl_get_device_gpio_range pinctrl_get_device_gpio_range() is unable to find any valid pin ranges, since nothing has been added to the pinctrldev_list yet. so the range can't be found, and the operation fails with -EPROBE_DEFER. This patch fixes the issue by adding the "gpio-ranges" property to the pinctrl device node of all upstream Qcom SoC. The pin ranges are then added by the gpio core. In order to remain compatible with older, existing DTs (and ACPI) a check for the "gpio-ranges" property has been added to msm_gpio_init(). This prevents the driver of adding the same entry to the pinctrldev_list twice. Reported-by: Sven Eckelmann <sven.eckelmann@openmesh.com> Tested-by: Sven Eckelmann <sven.eckelmann@openmesh.com> [ipq4019] Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Christian Lamparter <chunkeey@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Amit Pundir <amit.pundir@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit da791a66 upstream. Stefan reported, that the glibc tst-robustpi4 test case fails occasionally. That case creates the following race between sys_exit() and sys_futex_lock_pi(): CPU0 CPU1 sys_exit() sys_futex() do_exit() futex_lock_pi() exit_signals(tsk) No waiters: tsk->flags |= PF_EXITING; *uaddr == 0x00000PID mm_release(tsk) Set waiter bit exit_robust_list(tsk) { *uaddr = 0x80000PID; Set owner died attach_to_pi_owner() { *uaddr = 0xC0000000; tsk = get_task(PID); } if (!tsk->flags & PF_EXITING) { ... attach(); tsk->flags |= PF_EXITPIDONE; } else { if (!(tsk->flags & PF_EXITPIDONE)) return -EAGAIN; return -ESRCH; <--- FAIL } ESRCH is returned all the way to user space, which triggers the glibc test case assert. Returning ESRCH unconditionally is wrong here because the user space value has been changed by the exiting task to 0xC0000000, i.e. the FUTEX_OWNER_DIED bit is set and the futex PID value has been cleared. This is a valid state and the kernel has to handle it, i.e. taking the futex. Cure it by rereading the user space value when PF_EXITING and PF_EXITPIDONE is set in the task which 'owns' the futex. If the value has changed, let the kernel retry the operation, which includes all regular sanity checks and correctly handles the FUTEX_OWNER_DIED case. If it hasn't changed, then return ESRCH as there is no way to distinguish this case from malfunctioning user space. This happens when the exiting task did not have a robust list, the robust list was corrupted or the user space value in the futex was simply bogus. Reported-by: Stefan Liebler <stli@linux.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: stable@vger.kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=200467 Link: https://lkml.kernel.org/r/20181210152311.986181245@linutronix.deSigned-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-