- 31 Jul, 2014 1 commit
-
-
Alexander Graf authored
We handle FSCR feature bits (well, TAR only really today) lazily when the guest starts using them. So when a guest activates the bit and later uses that feature we enable it for real in hardware. However, when the guest stops using that bit we don't stop setting it in hardware. That means we can potentially lose a trap that the guest expects to happen because it thinks a feature is not active. This patch adds support to drop TAR when then guest turns it off in FSCR. While at it it also restricts FSCR access to 64bit systems - 32bit ones don't have it. Signed-off-by: Alexander Graf <agraf@suse.de>
-
- 30 Jul, 2014 2 commits
-
-
Alexander Graf authored
Now that we have properly split load/store instruction emulation and generic instruction emulation, we can move the generic one from kvm.ko to kvm-pr.ko on book3s_64. This reduces the attack surface and amount of code loaded on HV KVM kernels. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
This are not specific to e500hv but applicable for bookehv (As per comment from Scott Wood on my patch "kvm: ppc: bookehv: Added wrapper macros for shadow registers") Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
- 28 Jul, 2014 37 commits
-
-
Alexander Graf authored
DCR handling was only needed for 440 KVM. Since we removed it, we can also remove handling of DCR accesses. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
We're going to implement guest code interpretation in KVM for some rare corner cases. This code needs to be able to inject data and instruction faults into the guest when it encounters them. Expose generic APIs to do this in a reasonably subarch agnostic fashion. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
Today the instruction emulator can get called via 2 separate code paths. It can either be called by MMIO emulation detection code or by privileged instruction traps. This is bad, as both code paths prepare the environment differently. For MMIO emulation we already know the virtual address we faulted on, so instructions there don't have to actually fetch that information. Split out the two separate use cases into separate files. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
We use kvmppc_ld and kvmppc_st to emulate load/store instructions that may as well access the magic page. Special case it out so that we can properly access it. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
We have a nice and handy helper to read from guest physical address space, so we should make use of it in kvmppc_ld as we already do for its counterpart in kvmppc_st. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
We have a proper define for invalid HVA numbers. Use those instead of the ppc specific kvmppc_bad_hva(). Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
We have enough common infrastructure now to resolve GVA->GPA mappings at runtime. With this we can move our book3s specific helpers to load / store in guest virtual address space to common code as well. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
We have a nice API to find the translated GPAs of a GVA including protection flags. So far we only use it on Book3S, but there's no reason the same shouldn't be used on BookE as well. Implement a kvmppc_xlate() version for BookE and clean it up to make it more readable in general. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Aneesh Kumar K.V authored
When calculating the lower bits of AVA field, use the shift count based on the base page size. Also add the missing segment size and remove stale comment. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
With Book3S KVM we can create both PR and HV VMs in parallel on the same machine. That gives us new challenges on the CAPs we return - both have different capabilities. When we get asked about CAPs on the kvm fd, there's nothing we can do. We can try to be smart and assume we're running HV if HV is available, PR otherwise. However with the newly added VM CHECK_EXTENSION we can now ask for capabilities directly on a VM which knows whether it's PR or HV. With this patch I can successfully expose KVM PVINFO data to user space in the PR case, fixing magic page mapping for PAPR guests. Signed-off-by: Alexander Graf <agraf@suse.de> Acked-by: Paolo Bonzini <pbonzini@redhat.com>
-
Alexander Graf authored
The KVM_CHECK_EXTENSION is only available on the kvm fd today. Unfortunately on PPC some of the capabilities change depending on the way a VM was created. So instead we need a way to expose capabilities as VM ioctl, so that we can see which VM type we're using (HV or PR). To enable this, add the KVM_CHECK_EXTENSION ioctl to our vm ioctl portfolio. Signed-off-by: Alexander Graf <agraf@suse.de> Acked-by: Paolo Bonzini <pbonzini@redhat.com>
-
Alexander Graf authored
In preparation to make the check_extension function available to VM scope we add a struct kvm * argument to the function header and rename the function accordingly. It will still be called from the /dev/kvm fd, but with a NULL argument for struct kvm *. Signed-off-by: Alexander Graf <agraf@suse.de> Acked-by: Paolo Bonzini <pbonzini@redhat.com>
-
Stewart Smith authored
The POWER8 processor has a Micro Partition Prefetch Engine, which is a fancy way of saying "has way to store and load contents of L2 or L2+MRU way of L3 cache". We initiate the storing of the log (list of addresses) using the logmpp instruction and start restore by writing to a SPR. The logmpp instruction takes parameters in a single 64bit register: - starting address of the table to store log of L2/L2+L3 cache contents - 32kb for L2 - 128kb for L2+L3 - Aligned relative to maximum size of the table (32kb or 128kb) - Log control (no-op, L2 only, L2 and L3, abort logout) We should abort any ongoing logging before initiating one. To initiate restore, we write to the MPPR SPR. The format of what to write to the SPR is similar to the logmpp instruction parameter: - starting address of the table to read from (same alignment requirements) - table size (no data, until end of table) - prefetch rate (from fastest possible to slower. about every 8, 16, 24 or 32 cycles) The idea behind loading and storing the contents of L2/L3 cache is to reduce memory latency in a system that is frequently swapping vcores on a physical CPU. The best case scenario for doing this is when some vcores are doing very cache heavy workloads. The worst case is when they have about 0 cache hits, so we just generate needless memory operations. This implementation just does L2 store/load. In my benchmarks this proves to be useful. Benchmark 1: - 16 core POWER8 - 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each - No split core/SMT - two guests running sysbench memory test. sysbench --test=memory --num-threads=8 run - one guest running apache bench (of default HTML page) ab -n 490000 -c 400 http://localhost/ This benchmark aims to measure performance of real world application (apache) where other guests are cache hot with their own workloads. The sysbench memory benchmark does pointer sized writes to a (small) memory buffer in a loop. In this benchmark with this patch I can see an improvement both in requests per second (~5%) and in mean and median response times (again, about 5%). The spread of minimum and maximum response times were largely unchanged. benchmark 2: - Same VM config as benchmark 1 - all three guests running sysbench memory benchmark This benchmark aims to see if there is a positive or negative affect to this cache heavy benchmark. Although due to the nature of the benchmark (stores) we may not see a difference in performance, but rather hopefully an improvement in consistency of performance (when vcore switched in, don't have to wait many times for cachelines to be pulled in) The results of this benchmark are improvements in consistency of performance rather than performance itself. With this patch, the few outliers in duration go away and we get more consistent performance in each guest. benchmark 3: - same 3 guests and CPU configuration as benchmark 1 and 2. - two idle guests - 1 guest running STREAM benchmark This scenario also saw performance improvement with this patch. On Copy and Scale workloads from STREAM, I got 5-6% improvement with this patch. For Add and triad, it was around 10% (or more). benchmark 4: - same 3 guests as previous benchmarks - two guests running sysbench --memory, distinctly different cache heavy workload - one guest running STREAM benchmark. Similar improvements to benchmark 3. benchmark 5: - 1 guest, 8 VCPUs, Ubuntu 14.04 - Host configured with split core (SMT8, subcores-per-core=4) - STREAM benchmark In this benchmark, we see a 10-20% performance improvement across the board of STREAM benchmark results with this patch. Based on preliminary investigation and microbenchmarks by Prerna Saxena <prerna@linux.vnet.ibm.com> Signed-off-by: Stewart Smith <stewart@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Stewart Smith authored
No code changes, just split it out to a function so that with the addition of micro partition prefetch buffer allocation (in subsequent patch) looks neater and doesn't require excessive indentation. Signed-off-by: Stewart Smith <stewart@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
At present, kvmppc_ld calls kvmppc_xlate, and if kvmppc_xlate returns any error indication, it returns -ENOENT, which is taken to mean an HPTE not found error. However, the error could have been a segment found (no SLB entry) or a permission error. Similarly, kvmppc_pte_to_hva currently does permission checking, but any error from it is taken by kvmppc_ld to mean that the access is an emulated MMIO access. Also, kvmppc_ld does no execute permission checking. This fixes these problems by (a) returning any error from kvmppc_xlate directly, (b) moving the permission check from kvmppc_pte_to_hva into kvmppc_ld, and (c) adding an execute permission check to kvmppc_ld. This is similar to what was done for kvmppc_st() by commit 82ff911317c3 ("KVM: PPC: Deflect page write faults properly in kvmppc_st"). Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
This does for PR KVM what c9438092 ("KVM: PPC: Book3S HV: Take SRCU read lock around kvm_read_guest() call") did for HV KVM, that is, eliminate a "suspicious rcu_dereference_check() usage!" warning by taking the SRCU lock around the call to kvmppc_rtas_hcall(). It also fixes a return of RESUME_HOST to return EMULATE_FAIL instead, since kvmppc_h_pr() is supposed to return EMULATE_* values. Signed-off-by: Paul Mackerras <paulus@samba.org> Cc: stable@vger.kernel.org Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexey Kardashevskiy authored
Unfortunately, the LPCR got defined as a 32-bit register in the one_reg interface. This is unfortunate because KVM allows userspace to control the DPFD (default prefetch depth) field, which is in the upper 32 bits. The result is that DPFD always get set to 0, which reduces performance in the guest. We can't just change KVM_REG_PPC_LPCR to be a 64-bit register ID, since that would break existing userspace binaries. Instead we define a new KVM_REG_PPC_LPCR_64 id which is 64-bit. Userspace can still use the old KVM_REG_PPC_LPCR id, but it now only modifies those fields in the bottom 32 bits that userspace can modify (ILE, TC and AIL). If userspace uses the new KVM_REG_PPC_LPCR_64 id, it can modify DPFD as well. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Cc: stable@vger.kernel.org Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
The 440 target hasn't been properly functioning for a few releases and before I was the only one who fixes a very serious bug that indicates to me that nobody used it before either. Furthermore KVM on 440 is slow to the extent of unusable. We don't have to carry along completely unused code. Remove 440 and give us one less thing to worry about. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
Scott Wood pointed out that We are no longer using SPRG1 for vcpu pointer, but using SPRN_SPRG_THREAD <=> SPRG3 (thread->vcpu). So this comment is not valid now. Note: SPRN_SPRG3R is not supported (do not see any need as of now), and if we want to support this in future then we have to shift to using SPRG1 for VCPU pointer. Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
We now support SPRG9 for guest, so also add a one reg interface for same Note: Changes are in bookehv code only as we do not have SPRG9 on booke-pr. Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
SPRN_SPRG is used by debug interrupt handler, so this is required for debug support. Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Mihai Caraman authored
On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Mihai Caraman authored
On book3e, guest last instruction is read on the exit path using load external pid (lwepx) dedicated instruction. This load operation may fail due to TLB eviction and execute-but-not-read entries. This patch lay down the path for an alternative solution to read the guest last instruction, by allowing kvmppc_get_lat_inst() function to fail. Architecture specific implmentations of kvmppc_load_last_inst() may read last guest instruction and instruct the emulation layer to re-execute the guest in case of failure. Make kvmppc_get_last_inst() definition common between architectures. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Mihai Caraman authored
In the context of replacing kvmppc_ld() function calls with a version of kvmppc_get_last_inst() which allow to fail, Alex Graf suggested this: "If we get EMULATE_AGAIN, we just have to make sure we go back into the guest. No need to inject an ISI into the guest - it'll do that all by itself. With an error returning kvmppc_get_last_inst we can just use completely get rid of kvmppc_read_inst() and only use kvmppc_get_last_inst() instead." As a intermediate step get rid of kvmppc_read_inst() and only use kvmppc_ld() instead. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Mihai Caraman authored
Add mising defines MAS0_GET_TLBSEL() and MAS1_GET_TSIZE() for Book3E. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Mihai Caraman authored
The commit 1d628af7 "add load inst fixup" made an attempt to handle failures generated by reading the guest current instruction. The fixup code that was added works by chance hiding the real issue. Load external pid (lwepx) instruction, used by KVM to read guest instructions, is executed in a subsituted guest translation context (EPLC[EGS] = 1). In consequence lwepx's TLB error and data storage interrupts need to be handled by KVM, even though these interrupts are generated from host context (MSR[GS] = 0) where lwepx is executed. Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. As a result, the host kernel handles lwepx faults searching the faulting guest data address (loaded in DEAR) in its own Logical Partition ID (LPID) 0 context. In case a host translation is found the execution returns to the lwepx instruction instead of the fixup, the host ending up in an infinite loop. Revert the commit "add load inst fixup". lwepx issue will be addressed in a subsequent patch without needing fixup code. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
kvmppc_set_epr() is already defined in asm/kvm_ppc.h, So rename and move get_epr helper function to same file. Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> [agraf: remove duplicate return] Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
Use kvmppc_set_sprg[0-7]() and kvmppc_get_sprg[0-7]() helper functions Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
Add and use kvmppc_set_esr() and kvmppc_get_esr() helper functions Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
Uses kvmppc_set_dar() and kvmppc_get_dar() helper functions Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
Use kvmppc_set_srr0/srr1() and kvmppc_get_srr0/srr1() helper functions Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Bharat Bhushan authored
There are shadow registers like, GSPRG[0-3], GSRR0, GSRR1 etc on BOOKE-HV and these shadow registers are guest accessible. So these shadow registers needs to be updated on BOOKE-HV. This patch adds new macro for get/set helper of shadow register . Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
The magic page is defined as a 4k page of per-vCPU data that is shared between the guest and the host to accelerate accesses to privileged registers. However, when the host is using 64k page size granularity we weren't quite as strict about that rule anymore. Instead, we partially treated all of the upper 64k as magic page and mapped only the uppermost 4k with the actual magic contents. This works well enough for Linux which doesn't use any memory in kernel space in the upper 64k, but Mac OS X got upset. So this patch makes magic page actually stay in a 4k range even on 64k page size hosts. This patch fixes magic page usage with Mac OS X (using MOL) on 64k PAGE_SIZE hosts for me. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
Today we handle split real mode by mapping both instruction and data faults into a special virtual address space that only exists during the split mode phase. This is good enough to catch 32bit Linux guests that use split real mode for copy_from/to_user. In this case we're always prefixed with 0xc0000000 for our instruction pointer and can map the user space process freely below there. However, that approach fails when we're running KVM inside of KVM. Here the 1st level last_inst reader may well be in the same virtual page as a 2nd level interrupt handler. It also fails when running Mac OS X guests. Here we have a 4G/4G split, so a kernel copy_from/to_user implementation can easily overlap with user space addresses. The architecturally correct way to fix this would be to implement an instruction interpreter in KVM that kicks in whenever we go into split real mode. This interpreter however would not receive a great amount of testing and be a lot of bloat for a reasonably isolated corner case. So I went back to the drawing board and tried to come up with a way to make split real mode work with a single flat address space. And then I realized that we could get away with the same trick that makes it work for Linux: Whenever we see an instruction address during split real mode that may collide, we just move it higher up the virtual address space to a place that hopefully does not collide (keep your fingers crossed!). That approach does work surprisingly well. I am able to successfully run Mac OS X guests with KVM and QEMU (no split real mode hacks like MOL) when I apply a tiny timing probe hack to QEMU. I'd say this is a win over even more broken split real mode :). Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
When a page lookup failed because we're not allowed to write to the page, we should not overwrite that value with another lookup on the second PTEG which will return "page not found". Instead, we should just tell the caller that we had a permission problem. This fixes Mac OS X guests looping endlessly in page lookup code for me. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
When we have a page that we're not allowed to write to, xlate() will already tell us -EPERM on lookup of that page. With the code as is we change it into a "page missing" error which a guest may get confused about. Instead, just tell the caller about the -EPERM directly. This fixes Mac OS X guests when run with DCBZ32 emulation. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
When building KVM with a lot of vcores (NR_CPUS is big), we can potentially get out of the ld immediate range for dereferences inside that struct. Move the array to the end of our kvm_arch struct. This fixes compilation issues with NR_CPUS=2048 for me. Signed-off-by: Alexander Graf <agraf@suse.de>
-