- 11 Jul, 2024 40 commits
-
-
Qu Wenruo authored
Since commit 2b2553f1 ("btrfs: stop setting PageError in the data I/O path") btrfs no longer utilizes subpage error bitmaps anymore, but the commit forgot to remove the error bitmap in btrfs_subpage_dump_bitmap(), resulting in possible meaningless result for the error bitmap. Fix it by just removing the error bitmap dumping. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] There is a bug report that a canceled checksum conversion (still experimental feature) results in unexpected super block flags: csum_type 0 (crc32c) csum_size 4 csum 0x14973811 [match] bytenr 65536 flags 0x1000000001 ( WRITTEN | CHANGING_FSID_V2 ) magic _BHRfS_M [match] While for a filesystem with ongoing checksum conversion it should have either CHANGING_DATA_CSUM or CHANGING_META_CSUM. [CAUSE] It turns out that, due to btrfs-progs keeps its own extra flags inside its own ctree.h headers, not the shared uapi headers, we have conflicting super flags: kernel-shared/uapi/btrfs_tree.h:#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) kernel-shared/uapi/btrfs_tree.h:#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) kernel-shared/uapi/btrfs_tree.h:#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) kernel-shared/ctree.h:#define BTRFS_SUPER_FLAG_CHANGING_DATA_CSUM (1ULL << 36) kernel-shared/ctree.h:#define BTRFS_SUPER_FLAG_CHANGING_META_CSUM (1ULL << 37) Note that CHANGING_FSID_V2 is conflicting with CHANGING_DATA_CSUM. [FIX] The proper fix would be done inside btrfs-progs, but to keep everything properly recorded, we should have everything inside the same uapi header. Copy all the new flags into uapi header, and change the value for CHANGING_DATA_CSUM and CHANGING_META_CSUM, while keep the value of CHANGING_BG_TREE untouched. Thankfully checksum change is still only experimental and all those CHANGING_* flags are transient (only for btrfs-progs to resume the conversion, and kernel will reject them all), the damage is still minor. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Snapshot delete has some complicated looking code that is weirdly subtle at times. I've cleaned it up the best I can without re-writing it, but there are still a lot of details that are non-obvious. Add a bunch of comments to the main parts of the code to help future developers better understand the mechanics of snapshot deletion. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
In walk_up_proc() we BUG_ON(ret) from btrfs_dec_ref(). This is incorrect, we have proper error handling here, return the error. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
In walk_up_proc() we have several sanity checks that should only trip if the programmer made a mistake. Convert these to ASSERT()'s instead of BUG_ON()'s. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
In reada we BUG_ON(refs == 0), which could be unkind since we aren't holding a lock on the extent leaf and thus could get a transient incorrect answer. In walk_down_proc we also BUG_ON(refs == 0), which could happen if we have extent tree corruption. Change that to return -EUCLEAN. In do_walk_down() we catch this case and handle it correctly, however we return -EIO, which -EUCLEAN is a more appropriate error code. Finally in walk_up_proc we have the same BUG_ON(refs == 0), so convert that to proper error handling. Also adjust the error message so we can actually do something with the information. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We have a couple of areas where we check to make sure the tree block is locked before looking up or messing with references. This is old code so it has this as BUG_ON(). Convert this to ASSERT() for developers. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We have blanket BUG_ON(ret) after every one of these reference mod attempts, which is just incorrect. If we encounter any errors during walk_down_tree() we will abort, so abort on any one of these failures. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We handle errors here properly, ENOMEM isn't fatal, return the error. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
This is a big chunk of code in do_walk_down() that will conditionally remove the reference for the child block we're currently evaluating. Extract it out into it's own helper and call that from do_walk_down() instead. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We currently duplicate the logic for walking into a node during snapshot delete. In one case it is during the actual delete, and in the other we use it for deciding if we should reada the block or not. Factor this code into it's own helper and comment fully what we're doing, and then update the two users to use the new helper. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We only set this if wc->refs[level - 1] > 1, and we check this way up above where we need it because the first thing we do before dropping our refs is reset wc->refs[level - 1] to 0. Reorder resetting of wc->refs to after our drop logic, and then remove the need_account variable and simply check wc->refs[level - 1] directly instead of using a variable. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
do_walk_down() already has a bunch of things going on, and there's a bit of code related to reading in the next eb if we decide we need it. Move this code off into it's own helper to clean up do_walk_down() a little bit. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Instead of using a flag we're passing around everywhere, add a field to walk_control that we're already passing around everywhere and use that instead. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Currently if our extent buffer isn't uptodate we will drop the lock, free it, and then call read_tree_block() for the bytenr. This is inefficient, we already have the extent buffer, we can simply call btrfs_read_extent_buffer(). Merge these two cases down into one if statement, if we are not uptodate we can drop the lock, trigger readahead, and do the read using btrfs_read_extent_buffer(), and carry on. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Currently we have a handful of btrfs_check_eb_owner() calls in various places and helpers that read extent buffers. However we call this in the endio handler for every metadata block, so these extra checks are unnecessary, simply remove them from everywhere except the endio handler. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We do find_extent_buffer(), and then if we don't find the eb in cache we call btrfs_find_create_tree_block(), which calls find_extent_buffer() first and then allocates the extent buffer. The reason we're doing this is because if we don't find the extent buffer in cache we set reada = 1. However this doesn't matter, because lower down we only trigger reada if !btrfs_buffer_uptodate(eb), which is what the case would be if we didn't find the extent buffer in cache and had to allocate it. Clean this up to simply call btrfs_find_create_tree_block(), and then use the fact that we're having to read the extent buffer off of disk to go ahead and kick off readahead. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
As of commit 1b53e51a ("btrfs: don't commit transaction for every subvol create") we started to make any fsync after creating a subvolume to fallback to a transaction commit if the fsync is performed in the same transaction that was used to create the subvolume. This happens with the following at ioctl.c:create_subvol(): $ cat fs/btrfs/ioctl.c (...) /* Tree log can't currently deal with an inode which is a new root. */ btrfs_set_log_full_commit(trans); (...) Note that the comment is misleading as the problem is not that fsync can not deal with the root inode of a new root, but that we can not log any inode that belongs to a root that was not yet persisted because that would make log replay fail since the root doesn't exist at log replay time. The above simply makes any fsync fallback to a full transaction commit if it happens in the same transaction used to create the subvolume - even if it's an inode that belongs to any other subvolume. This is a brute force solution and it doesn't necessarily improve performance for every workload out there - it just moves a full transaction commit from one place, the subvolume creation, to another - an fsync for any inode. Just improve on this by making the fallback to a transaction commit only for an fsync against an inode of the new subvolume, or for the directory that contains the dentry that points to the new subvolume (in case anyone attempts to fsync the directory in the same transaction). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When creating and deleting a subvolume, after starting a transaction we are explicitly calling btrfs_record_root_in_trans() for the root which we passed to btrfs_start_transaction(). This is pointless because at transaction.c:start_transaction() we end up doing that call, regardless of whether we actually start a new transaction or join an existing one, and if we were not it would mean the root item of that root would not be updated in the root tree when committing the transaction, leading to problems easy to spot with fstests for example. Remove these redundant calls. They were introduced with commit 74e97958 ("btrfs: qgroup: fix qgroup prealloc rsv leak in subvolume operations"). Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
All parameters passed into setup_relocation_extent_mapping() can be derived from 'struct reloc_control', so only pass in a 'struct reloc_control'. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
Pass a 'struct reloc_control' to prealloc_file_extent_cluster() instead of passing its members 'data_inode' and 'cluster' on their own. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
In describe_relocation() the fs_info is only needed for printing information via btrfs_info() and can easily be accessed via the passed in 'struct btrfs_block_group'. So we can safely remove the fs_info parameter. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
Pass a struct reloc_control to relocate_one_folio, instead of passing it's members data_inode and cluster as separate arguments to the function. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
Instead of passing in a reloc_control's data_inode and file_extent_cluster members, pass in the whole reloc_control structure. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
Pass a 'struct reloc_control' to relocate_data_extent() instead of it's data_inode and file_extent_cluster separately. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
During ordered extent splitting if we find a duplicated ordered extent when attempting to insert the new ordered extent we panic but with a message that has the "zoned:" prefix. This is because the splitting used to be exclusive for zoned filesystems, but as of commit b73a6fd1 ("btrfs: split partial dio bios before submit") it can also be done for non zoned filesystems during direct IO writes. So remove the "zoned:" prefix from the message and mention the split to make it more specific and different from the panic message at insert_ordered_extent(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
We never expect an ordered extent insertion to fail due to already having another ordered extent in the tree for the same file offset, since we always wait for existing ordered extents in a range to complete before writing into the range again. So mark the failure checks for the results of tree_insert() as unlikely, to make it clear it's never expected (save exceptional causes like bugs or memory corruptions) and to serve as a hint for the compiler to possibly generate better code. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
At btrfs_split_ordered_extent(), we are removing and re-inserting the ordered extent that we are trimming, but we don't need to since the trimming doesn't change its position in the red black tree because we don't have overlapping ordered extents (that would imply double allocation of extents) and we know the split length is smaller than the ordered extent's num_bytes field (we checked that early in the function). So drop the remove and re-insert code for the slit ordered extent. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
There are subtle details about why the root's ordered_extent_lock is held, so add a comment mentioning them. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
At btrfs_wait_ordered_extents(), there's no point in updating the counters after locking the root's ordered extent lock, as the counters are local. So change this to update the counters before taking the lock. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
At btrfs_wait_ordered_roots(), there's no point in decrementing the counter after locking fs_info->ordered_root_lock as the counter is local. So change this to decrement the counter before taking the lock. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
We can add const to many parameters, this is for clarity and minor addition to safety. There are some minor effects, in the assembly code and .ko measured on release config. This patch does not cover all possible conversions. Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There is already an error inside that header: #if !defined(__LINUX_SPINLOCK_TYPES_H) # error "Do not include directly, include spinlock_types.h" #endif Thankfully it never get triggered as some other headers have already included spinlock_types.h. However clangd would still do a proper warning on that if only extent_map.h is opened. Fix it by using spinlock_types.h instead. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
We have several headers that are including themselves, triggering clangd warnings. Such includes are caused by commit 602035d7 ("btrfs: add forward declarations and headers, part 2"). Just remove such unnecessary include. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Junchao Sun authored
Generic slab works fine allocating btrfs_qgroup_extent_record structures. It's not necessary to create a dedicated kmem cache that would be created but unused if quotas were not enabled. Let's delete the TODO line. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Junchao Sun <sunjunchao2870@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
When extent_write_locked_range() generated an inline extent, it would set and finish the writeback for the whole page. Although currently it's safe since subpage disables inline creation, for the sake of consistency, let it go with subpage helpers to set and clear the writeback flags. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] For subpage + zoned case, the following workload can lead to rsv data leak at unmount time: # mkfs.btrfs -f -s 4k $dev # mount $dev $mnt # fsstress -w -n 8 -d $mnt -s 1709539240 0/0: fiemap - no filename 0/1: copyrange read - no filename 0/2: write - no filename 0/3: rename - no source filename 0/4: creat f0 x:0 0 0 0/4: creat add id=0,parent=-1 0/5: writev f0[259 1 0 0 0 0] [778052,113,965] 0 0/6: ioctl(FIEMAP) f0[259 1 0 0 224 887097] [1294220,2291618343991484791,0x10000] -1 0/7: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 224 887097] return 25, fallback to stat() 0/7: dwrite f0[259 1 0 0 224 887097] [696320,102400] 0 # umount $mnt The dmesg includes the following rsv leak detection warning (all call trace skipped): ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8653 btrfs_destroy_inode+0x1e0/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8654 btrfs_destroy_inode+0x1a8/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8660 btrfs_destroy_inode+0x1a0/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): last unmount of filesystem 1b4abba9-de34-4f07-9e7f-157cf12a18d6 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): space_info DATA has 268218368 free, is not full BTRFS info (device sda): space_info total=268435456, used=204800, pinned=0, reserved=0, may_use=12288, readonly=0 zone_unusable=0 BTRFS info (device sda): global_block_rsv: size 0 reserved 0 BTRFS info (device sda): trans_block_rsv: size 0 reserved 0 BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): space_info METADATA has 267796480 free, is not full BTRFS info (device sda): space_info total=268435456, used=131072, pinned=0, reserved=0, may_use=262144, readonly=0 zone_unusable=245760 BTRFS info (device sda): global_block_rsv: size 0 reserved 0 BTRFS info (device sda): trans_block_rsv: size 0 reserved 0 BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0 Above $dev is a tcmu-runner emulated zoned HDD, which has a max zone append size of 64K, and the system has 64K page size. [CAUSE] I have added several trace_printk() to show the events (header skipped): > btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688 > btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288 > btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536 > btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864 The above lines show our buffered write has dirtied 3 pages of inode 259 of root 5: 704K 768K 832K 896K I |////I/////////////////I///////////| I 756K 868K |///| is the dirtied range using subpage bitmaps. and 'I' is the page boundary. Meanwhile all three pages (704K, 768K, 832K) have their PageDirty flag set. > btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400 Then direct IO write starts, since the range [680K, 780K) covers the beginning part of the above dirty range, we need to writeback the two pages at 704K and 768K. > cow_file_range: r/i=5/259 add ordered extent filepos=774144 len=65536 > extent_write_locked_range: r/i=5/259 locked page=720896 start=774144 len=65536 Now the above 2 lines show that we're writing back for dirty range [756K, 756K + 64K). We only writeback 64K because the zoned device has max zone append size as 64K. > extent_write_locked_range: r/i=5/259 clear dirty for page=786432 !!! The above line shows the root cause. !!! We're calling clear_page_dirty_for_io() inside extent_write_locked_range(), for the page 768K. This is because extent_write_locked_range() can go beyond the current locked page, here we hit the page at 768K and clear its page dirt. In fact this would lead to the desync between subpage dirty and page dirty flags. We have the page dirty flag cleared, but the subpage range [820K, 832K) is still dirty. After the writeback of range [756K, 820K), the dirty flags look like this, as page 768K no longer has dirty flag set. 704K 768K 832K 896K I I | I/////////////| I 820K 868K This means we will no longer writeback range [820K, 832K), thus the reserved data/metadata space would never be properly released. > extent_write_cache_pages: r/i=5/259 skip non-dirty folio=786432 Now even though we try to start writeback for page 768K, since the page is not dirty, we completely skip it at extent_write_cache_pages() time. > btrfs_direct_write: r/i=5/259 dio done filepos=696320 len=0 Now the direct IO finished. > cow_file_range: r/i=5/259 add ordered extent filepos=851968 len=36864 > extent_write_locked_range: r/i=5/259 locked page=851968 start=851968 len=36864 Now we writeback the remaining dirty range, which is [832K, 868K). Causing the range [820K, 832K) never to be submitted, thus leaking the reserved space. This bug only affects subpage and zoned case. For non-subpage and zoned case, we have exactly one sector for each page, thus no such partial dirty cases. For subpage and non-zoned case, we never go into run_delalloc_cow(), and normally all the dirty subpage ranges would be properly submitted inside __extent_writepage_io(). [FIX] Just do not clear the page dirty at all inside extent_write_locked_range(). As __extent_writepage_io() would do a more accurate, subpage compatible clear for page and subpage dirty flags anyway. Now the correct trace would look like this: > btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688 > btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288 > btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536 > btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864 The page dirty part is still the same 3 pages. > btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400 > cow_file_range: r/i=5/259 add ordered extent filepos=774144 len=65536 > extent_write_locked_range: r/i=5/259 locked page=720896 start=774144 len=65536 And the writeback for the first 64K is still correct. > cow_file_range: r/i=5/259 add ordered extent filepos=839680 len=49152 > extent_write_locked_range: r/i=5/259 locked page=786432 start=839680 len=49152 Now with the fix, we can properly writeback the range [820K, 832K), and properly release the reserved data/metadata space. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
If we have a subpage range like this for a 16K page with 4K sectorsize: 0 4K 8K 12K 16K |/////| |//////| | |/////| = dirty range Currently writepage_delalloc() would go through the following steps: - lock range [0, 4K) - run delalloc range for [0, 4K) - lock range [8K, 12K) - run delalloc range for [8K 12K) So far it's fine for regular subpage writeback, as btrfs_run_delalloc_range() can only go into one of run_delalloc_nocow(), cow_file_range() and run_delalloc_compressed(). But there is a special case for zoned subpage, where we will go through run_delalloc_cow(), which would create the ordered extent for the range and immediately submit the range. This would unlock the whole page range, causing all kinds of different ASSERT()s related to locked page. Address the page unlocking problem of run_delalloc_cow(), by changing the workflow to the following one: - lock range [0, 4K) - lock range [8K, 12K) - run delalloc range for [0, 4K) - run delalloc range for [8K, 12K) So that run_delalloc_cow() can only unlock the full page until the last lock user released. To do that: - Utilize subpage locked bitmap So for every delalloc range we found, call btrfs_folio_set_writer_lock() to populate the subpage locked bitmap, and later btrfs_folio_end_all_writers() if the page is fully unlocked. So we know there is a delalloc range that needs to be run later. - Save the @delalloc_end as @last_delalloc_end inside writepage_delalloc() Since subpage locked bitmap is only for ranges inside the page, meanwhile we can have delalloc range ends beyond our page boundary, we have to save the @last_delalloc_end just in case it's beyond our page boundary. Although there is one extra point to notice: - We need to handle errors in previous iteration Since we can have multiple locked delalloc ranges we have to call run_delalloc_ranges() multiple times. If we hit an error half way, we still need to unlock the remaining ranges. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Three new helpers are introduced for the incoming subpage delalloc locking change. - btrfs_folio_set_writer_lock() This is to mark specified range with subpage specific writer lock. After calling this, the subpage range can be proper unlocked by btrfs_folio_end_writer_lock() - btrfs_subpage_find_writer_locked() This is to find the writer locked subpage range in a page. With the help of btrfs_folio_set_writer_lock(), it can allow us to record and find previously locked subpage range without extra memory allocation. - btrfs_folio_end_all_writers() This is for the locked_page of __extent_writepage(), as there may be multiple subpage delalloc ranges locked. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Function __extent_writepage_io() is designed to find all dirty ranges of a page, and add the dirty ranges to the bio_ctrl for submission. It requires all the dirtied ranges to be covered by an ordered extent. It gets called in two locations, but one call site is not subpage aware: - __extent_writepage() It gets called when writepage_delalloc() returned 0, which means writepage_delalloc() has handled delalloc for all subpage sectors inside the page. So this call site is OK. - extent_write_locked_range() This call site is utilized by zoned support, and in this case, we may only run delalloc range for a subset of the page, like this: (64K page size) 0 16K 32K 48K 64K |/////| |///////| | In the above case, if extent_write_locked_range() is only triggered for range [0, 16K), __extent_writepage_io() would still try to submit the dirty range of [32K, 48K), then it would not find any ordered extent for it and triggers various ASSERT()s. Fix this problem by: - Introducing @start and @len parameters to specify the range For the first call site, we just pass the whole page, and the behavior is not touched, since run_delalloc_range() for the page should have created all ordered extents for the page. For the second call site, we avoid touching anything beyond the range, thus avoiding the dirty range which is not yet covered by any delalloc range. - Making btrfs_folio_assert_not_dirty() subpage aware The only caller is inside __extent_writepage_io(), and since that caller now accepts a subpage range, we should also check the subpage range other than the whole page. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-