- 03 Aug, 2018 11 commits
-
-
Brian Foster authored
The current semantics of xfs_defer_finish() require the caller to call xfs_defer_cancel() on error. This is slightly inconsistent with transaction commit error handling where a failed commit cleans up the transaction before returning. More significantly, the only requirement for exposure of ->dop_pending outside of xfs_defer_finish() is so that xfs_defer_cancel() can drain it on error. Since the only recourse of xfs_defer_finish() errors is cancellation, mirror the transaction logic and cancel remaining dfops before returning from xfs_defer_finish() with an error. Beside simplifying xfs_defer_finish() semantics, this ensures that xfs_defer_finish() always returns with an empty ->dop_pending and thus facilitates removal of the list from xfs_defer_ops. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
The dfops code still passes around the xfs_defer_ops pointer superfluously in a few places. Clean this up wherever the transaction will suffice. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
The dfops infrastructure ->finish_item() callback passes the transaction and dfops as separate parameters. Since dfops is always part of a transaction, the latter parameter is no longer necessary. Remove it from the various callbacks. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Inodes that are held across deferred operations are explicitly joined to the dfops structure to ensure appropriate relogging. While inodes are currently joined explicitly, we can detect the conditions that require relogging at dfops finish time by inspecting the transaction item list for inodes with ili_lock_flags == 0. Replace the xfs_defer_ijoin() infrastructure with such detection and automatic relogging of held inodes. This eliminates the need for the per-dfops inode list, replaced by an on-stack variant in xfs_defer_trans_roll(). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Buffers that are held across deferred operations are explicitly joined to the dfops structure to ensure appropriate relogging. While buffers are currently joined explicitly, we can detect the conditions that require relogging at dfops finish time by inspecting the transaction item list for held buffers. Replace the xfs_defer_bjoin() infrastructure with such detection and automatic relogging of held buffers. This eliminates the need for the per-dfops buffer list, replaced by an on-stack variant in xfs_defer_trans_roll(). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Log items that require relogging during deferred operations processing are explicitly joined to the associated dfops via the xfs_defer_*join() helpers. These calls imply that the associated object is "held" by the transaction such that when rolled, the item can be immediately joined to a follow up transaction. For buffers, this means the buffer remains locked and held after each roll. For inodes, this means that the inode remains locked. Failure to join a held item to the dfops structure means the associated object pins the tail of the log while dfops processing completes, because the item never relogs and is not unlocked or released until deferred processing completes. Currently, all buffers that are held in transactions (XFS_BLI_HOLD) with deferred operations are explicitly joined to the dfops. This is not the case for inodes, however, as various contexts defer operations to transactions with held inodes without explicit joins to the associated dfops (and thus not relogging). While this is not a catastrophic problem, it is not ideal. Given that we want to eventually relog such items automatically during dfops processing, start by explicitly adding these missing xfs_defer_ijoin() calls. A call is added everywhere an inode is joined to a transaction without transferring lock ownership and said transaction runs deferred operations. All xfs_defer_ijoin() calls will eventually be replaced by automatic dfops inode relogging. This patch essentially implements the behavior change that would otherwise occur due to automatic inode dfops relogging. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
The dop_low field enables the low free space allocation mode when a previous allocation has detected difficulty allocating blocks. It has historically been part of the xfs_defer_ops structure, which means if enabled, it remains enabled across a set of transactions until the deferred operations have completed and the dfops is reset. Now that the dfops is embedded in the transaction, we can save a bit more space by using a transaction flag rather than a standalone boolean. Drop the ->dop_low field and replace it with a transaction flag that is set at the same points, carried across rolling transactions and cleared on completion of deferred operations. This essentially emulates the behavior of ->dop_low and so should not change behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
All callers pass ->t_dfops of the associated transactions. Refactor the helpers to receive the transactions and facilitate further cleanups between xfs_defer_ops and xfs_trans. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
With no more external dfops users, there is no need for an xfs_defer_ops cancel wrapper. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Log intent recovery is the last user of an external (on-stack) dfops. The pattern exists because the dfops is used to collect additional deferred operations queued during the whole recovery sequence. The dfops is finished with a new transaction after intent recovery completes. We already have a mechanism to create an empty, container-like transaction to support the scrub infrastructure. We can reuse that mechanism here to drop the final user of external dfops. This facilitates folding dfops state (i.e., dop_low) into the transaction, the elimination of now unused external dfops support and also eliminates the only caller of __xfs_defer_cancel(). Replace the on-stack dfops with an empty transaction and pass it around to the various helpers that queue and finish deferred operations during intent recovery. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
The current transaction allocation code conditionally initializes the ->t_dfops indirection pointer. Transaction commit/cancel check the validity of the pointer to determine whether to finish/cancel the internal dfops. This disallows the ability to use the internal dfops list as a temporary container (via xfs_trans_alloc_empty()). Refactor transaction allocation to always initialize ->t_dfops and check permanent reservation state on transaction commit/cancel. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
- 01 Aug, 2018 3 commits
-
-
Darrick J. Wong authored
Before we start processing what we /think/ is a da3 node block, actually check the magic to make sure that we're looking at a node block. This way we won't blow the asserts in _node_hdr_from_disk on corrupted metadata. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
-
Darrick J. Wong authored
Use a local variable for the block magic number checks instead of abusing blk->magic. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
-
Darrick J. Wong authored
Add a predicate to decide if the log is actively in recovery and use that instead of open-coding a pagf_init check in the attr leaf verifier. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
-
- 31 Jul, 2018 8 commits
-
-
Darrick J. Wong authored
Move the per-AG busy extent tree initialization to the per-ag structure initialization since we don't want online repair to leak the old tree. We only deconstruct the tree at unmount time, so this should be safe. This also enables us to eliminate the commented out initialization in the xfsprogs libxfs. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
-
Christoph Hellwig authored
Used the per-fork sequence counter to avoid lookups in the writeback code unless the COW fork actually changed. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Christoph Hellwig authored
Add a simple 32-bit unsigned integer as the sequence count for modifications to the extent list in the inode fork. This will be used to optimize away extent list lookups in the writeback code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Darrick J. Wong authored
Make sure we never try to write the superblock with unknown feature bits set. We checked those at mount time, so if they're set now then memory is corrupt. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com>
-
Darrick J. Wong authored
Add a helper predicate to check the inode count for sanity, then use it in the superblock write verifier to inspect sb_icount. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com>
-
Bill O'Donnell authored
Current sb verifier doesn't check bounds on sb_fdblocks and sb_ifree. Add sanity checks for these parameters. Signed-off-by: Bill O'Donnell <billodo@redhat.com> [darrick: port to refactored sb validation predicates] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com>
-
Darrick J. Wong authored
Split the superblock verifier into the common checks, the read-time checks, and the write-time check functions. No functional changes, but we're setting up to add more write-only checks. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com>
-
Darrick J. Wong authored
As mentioned previously, the xrep_extent_list basically implements a bitmap with two functions: set and disjoint union. Rename all these functions to xfs_bitmap to shorten the name and make it more obvious what we're doing. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
-
- 30 Jul, 2018 6 commits
-
-
Christoph Hellwig authored
We have a few places that already check if an inode has actual data in the COW fork to avoid work on reflink inodes that do not actually have outstanding COW blocks. There are a few more places that can avoid working if doing the same check, so add a documented helper for this condition and use it in all places where it makes sense. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Christoph Hellwig authored
We only have a few more callers left, so seize the opportunity and kill it off. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Christoph Hellwig authored
Streamline the code and take advantage of the fact that kmem_realloc through krealloc will be have like a normal allocation if passing in a NULL old pointer. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Christoph Hellwig authored
The field is only used for asserts, and to track if we really need to do realloc when growing the inode fork data. But the krealloc function already performs this check internally, so there is no need to keep track of the real allocation size. This will free space in the inode fork for keeping a sequence counter of changes to the extent list. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Darrick J. Wong authored
Move the xrep_extent_list code into a separate file. Logically, this data structure is really just a clumsy bitmap, and in the next patch we'll make this more obvious. No functional changes. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
-
Darrick J. Wong authored
Pass a tranaction pointer through to all helpers that calculate the per-AG block reservation. Online repair will use this to reinitialize per-ag reservations while it still holds all the AG headers locked to the repair transaction. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
-
- 26 Jul, 2018 12 commits
-
-
Eric Sandeen authored
The barrier mount options have been no-ops and deprecated since 4cf4573d xfs: deprecate barrier/nobarrier mount option i.e. kernel 4.10 / December 2016, with a stated deprecation schedule after v4.15. Should be fair game to remove them now. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Darrick J. Wong authored
Replace the IRELE macro with a proper function so that we can do proper typechecking and so that we can stop open-coding iput in scrub, which means that we'll be able to ftrace inode lifetimes going through scrub correctly. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
-
Darrick J. Wong authored
Nobody uses this macro, get rid of it. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
-
Brian Foster authored
Once xfs_defer_finish() has completed all deferred operations, it checks the dirty state of the transaction and rolls it once more to return a clean transaction for the caller. This primarily to cover the case where repeated xfs_defer_finish() calls are made in a loop and we need to make sure that the caller starts the next iteration with a clean transaction. Otherwise we risk transaction reservation overrun. This final transaction roll is not required in the transaction commit path, however, because the transaction is immediately committed and freed after dfops completion. Refactor the final roll into a separate helper such that we can avoid it in the transaction commit path. Lift the dfops reset as well so dfops remains valid until after the last call to xfs_defer_trans_roll(). The reset is also unnecessary in the transaction commit path because the transaction is about to complete. This eliminates unnecessary regrants of transactions where the associated transaction roll can be replaced by a transaction commit. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Every caller of xfs_defer_finish() now passes the transaction and its associated ->t_dfops. The xfs_defer_ops parameter is therefore no longer necessary and can be removed. Since most xfs_defer_finish() callers also have to consider xfs_defer_cancel() on error, update the latter to also receive the transaction for consistency. The log recovery code contains an outlier case that cancels a dfops directly without an available transaction. Retain an internal wrapper to support this outlier case for the time being. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Each xfs_defer_init() call in the xattr code uses the internal dfops reference. In addition, a successful xfs_defer_finish() always returns with a reset xfs_defer_ops structure. Given that along with the fact that every xfs_defer_init() call in the xattr code is followed up by an xfs_defer_finish(), the former calls are no longer necessary and can be removed. Note that the xfs_defer_init() call in the remote value copy loop of xfs_attr_rmtval_set() is not followed by a finish, but the dfops is unused in this instance. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
At this point, the transaction subsystem completely manages deferred items internally such that the common and boilerplate xfs_trans_alloc() -> xfs_defer_init() -> xfs_defer_finish() -> xfs_trans_commit() sequence can be replaced with a simple transaction allocation and commit. Remove all such boilerplate deferred ops code. In doing so, we change each case over to use the dfops in the transaction and specifically eliminate: - The on-stack dfops and associated xfs_defer_init() call, as the internal dfops is initialized on transaction allocation. - xfs_bmap_finish() calls that precede a final xfs_trans_commit() of a transaction. - xfs_defer_cancel() calls in error handlers that precede a transaction cancel. The only deferred ops calls that remain are those that are non-deterministic with respect to the final commit of the associated transaction or are open-coded due to special handling. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
bmap and refcount intent processing associates a dfops from the caller with a local transaction to collect all deferred items for post-processing. Use the internal dfops in both of these functions and move the deferred items to the parent dfops before the transaction commits. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Remove the unnecessary on-stack dfops structure and use the internal transaction dfops instead. The lower level xattr code already appropriately accesses ->t_dfops throughout. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
All callers either explicitly initialize a dfops or pass a transaction with an internal dfops. Drop the hacky old dfops replacement logic and use the one associated with the transaction. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
The dfops structure used by multi-transaction operations is typically stored on the stack and carried around by the associated transaction. The lifecycle of dfops does not quite match that of the transaction, but they are tightly related in that the former depends on the latter. The relationship of these objects is tight enough that we can avoid the cumbersome boilerplate code required in most cases to manage them separately by just embedding an xfs_defer_ops in the transaction itself. This means that a transaction allocation returns with an initialized dfops, a transaction commit finishes pending deferred items before the tx commit, a transaction cancel cancels the dfops before the transaction and a transaction dup operation transfers the current dfops state to the new transaction. The dup operation is slightly complicated by the fact that we can no longer just copy a dfops pointer from the old transaction to the new transaction. This is solved through a dfops move helper that transfers the pending items and other dfops state across the transactions. This also requires that transaction rolling code always refer to the transaction for the current dfops reference. Finally, to facilitate incremental conversion to the internal dfops and continue to support the current external dfops mode of operation, create the new ->t_dfops_internal field with a layer of indirection. On allocation, ->t_dfops points to the internal dfops. This state is overridden by callers who re-init a local dfops on the transaction. Once ->t_dfops is overridden, the external dfops reference is maintained as the transaction rolls. This patch adds the fundamental ability to support an internal dfops. All codepaths that perform deferred processing continue to override the internal dfops until they are converted over in subsequent patches. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-
Brian Foster authored
Both structures have holes due to member alignment. Move dop_low to the end of xfs_defer ops to sanitize the cache line alignment and move t_flags to save 8 bytes in xfs_trans. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
-