- 28 May, 2018 40 commits
-
-
Omar Sandoval authored
Now that we don't keep long-standing reservations for orphan items, root->orphan_block_rsv isn't used. We can git rid of it, along with: - root->orphan_lock, which was used to protect root->orphan_block_rsv - root->orphan_inodes, which was used as a refcount for root->orphan_block_rsv - BTRFS_INODE_ORPHAN_META_RESERVED, which was used to track reservations in root->orphan_block_rsv - btrfs_orphan_commit_root(), which was the last user of any of these and does nothing else Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
Currently, we keep space reserved for all inode orphan items until the inode is evicted (i.e., all references to it are dropped). We hit an issue where an application would keep a bunch of deleted files open (by design) and thus keep a large amount of space reserved, causing ENOSPC errors when other operations tried to reserve space. This long-standing reservation isn't absolutely necessary for a couple of reasons: - We can almost always make the reservation we need or steal from the global reserve for the orphan item - If we can't, it's not the end of the world if we drop the orphan item on the floor and let the next mount clean it up So, get rid of persistent reservation and just reserve space in btrfs_evict_inode(). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
The truncate loop in btrfs_evict_inode() does two things at once: - It refills the temporary block reserve, potentially stealing from the global reserve or committing - It calls btrfs_truncate_inode_items() The tangle of continues hides the fact that these two steps are actually separate. Split the first step out into a separate function both for clarity and so that we can reuse it in a later patch. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
In btrfs_evict_inode(), if btrfs_truncate_inode_items() fails, the inode item will still be in the tree but we still return the ino to the ino cache. That will blow up later when someone tries to allocate that ino, so don't return it to the cache. Fixes: 581bb050 ("Btrfs: Cache free inode numbers in memory") Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
btrfs_orphan_commit_root() tries to delete an orphan item for a subvolume in the tree root, but we don't actually insert that item in the first place. See commit 0a0d4415 ("Btrfs: delete dead code in btrfs_orphan_add()"). We can get rid of it. Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
Now that we don't add orphan items for truncate, there can't be races on adding or deleting an orphan item, so this bit is unnecessary. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
Currently, we insert an orphan item during a truncate so that if there's a crash, we don't leak extents past the on-disk i_size. However, since commit 7f4f6e0a ("Btrfs: only update disk_i_size as we remove extents"), we keep disk_i_size in sync with the extent items as we truncate, so orphan cleanup will never have any extents to remove. Don't bother with the superfluous orphan item. Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
btrfs_free_extent() can fail because of ENOMEM. There's no reason to panic here, we can just abort the transaction. Fixes: f4b9aa8d ("btrfs_truncate") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
btrfs_truncate_inode_items() uses two variables for error handling, ret and err. These are not handled consistently, leading to a couple of bugs. - Errors from btrfs_del_items() are handled but not propagated to the caller - If btrfs_run_delayed_refs() fails and aborts the transaction, we continue running Just use ret everywhere and simplify things a bit, fixing both of these issues. Fixes: 79787eaa ("btrfs: replace many BUG_ONs with proper error handling") Fixes: 1262133b ("Btrfs: account for crcs in delayed ref processing") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
Commit a41ad394 ("Btrfs: convert to the new truncate sequence") changed btrfs_setsize() to call truncate_setsize() instead of vmtruncate() but didn't update the comment above it. truncate_setsize() never fails (the IS_SWAPFILE() check happens elsewhere), so remove the comment. Additionally, the comment above btrfs_page_mkwrite() references vmtruncate(), but truncate_setsize() does the size write and page locking now. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
select_delayed_ref really just gets the next delayed ref which has to be processed - either an add ref or drop ref. We never go back for anything. So the comment is actually bogus, just remove it. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Misono Tomohiro authored
Deletion of a subvolume by rmdir(2) has become allowed by the 'commit cd2decf640b1 ("btrfs: Allow rmdir(2) to delete an empty subvolume")'. It is a kind of new feature and this commits add a sysfs entry /sys/fs/btrfs/features/rmdir_subvol to indicate the availability of the feature so that a user program (e.g. fstests) can detect it. Prior to this commit, all entries in /sys/fs/btrfs/features are feature which depend on feature bits of superblock (i.e. each feature affects on-disk format) and managed by attribute_group "btrfs_feature_attr_group". For each fs, entries in /sys/fs/btrfs/UUID/features indicate which features are enabled (or can be changed online) for the fs. However, rmdir_subvol feature only depends on kernel module. Therefore new attribute_group "btrfs_static_feature_attr_group" is introduced and sysfs_merge_group() is used to share /sys/fs/btrfs/features directory. Features in "btrfs_static_feature_attr_group" won't be listed in each /sys/fs/btrfs/UUID/features. Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Tomohiro Misono authored
Use existing named values instead of the raw numbers. Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Kernel logs are very important for the forensic investigations of the issues in general make it easy to use it. This patch adds 'balance:' prefix so that it can be easily searched. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
* The simple 'flags' refer to the btrfs inode * ... that's in 'binode * the FS_*_FL variables are 'fsflags' * the old copies of the variable are prefixed by 'old_' * Struct inode flags contain 'i_flags'. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The new ioctl is an extension to the FS_IOC_SETFLAGS and adds new flags and is extensible. Don't get fooled by the XATTR in the name, it does not have anything in common with the extended attributes, incidentally also abbreviated as XATTRs. This patch allows to set the xflags portion of the fsxattr structure, other items have no meaning and non-zero values will result in EOPNOTSUPP. Currently supported xflags: - APPEND - IMMUTABLE - NOATIME - NODUMP - SYNC The structure of btrfs_ioctl_fssetxattr copies btrfs_ioctl_setflags but is simpler on the flag setting side. The original patch was written by Chandan Jay Sharma but was incomplete and no further revision has been sent. Based-on-patches-by: Chandan Jay Sharma <chandansbg@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The new ioctl is an extension to the FS_IOC_GETFLAGS and adds new flags and is extensible. This patch allows to return the xflags portion of the fsxattr structure, other items have no meaning for btrfs or can be added later. The original patch was written by Chandan Jay Sharma but was incomplete and no further revision has been sent. Several cleanups were necessary to avoid confusion with other ioctls, as we have another flavor of flags. Based-on-patches-by: Chandan Jay Sharma <chandansbg@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Preparatory work for the FS_IOC_FSGETXATTR ioctl, basic conversions and checking helpers. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Converts btrfs_inode::flags to the FS_*_FL flags. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The FS_*_FL flags cannot be easily identified by a prefix but we still need to recognize them so the 'fsflags' should be closer to the naming scheme but again the 'fs' part sounds like it's a filesystem flag. I don't have a better idea for now. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The FS_*_FL flags cannot be easily identified by a variable name prefix but we still need to recognize them so the 'fsflags' should be closer to the naming scheme but again the 'fs' part sounds like it's a filesystem flag. I don't have a better idea for now. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The btrfs inode flag flavour is now simply called 'inode flags' and the vfs inode are i_flags. Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Use a local btrfs_fs_devices variable to access the structure. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Delete the uuid_mutex lock here as this thread accesses the btrfs_fs_devices::devices only (counters or called functions do a list traversal). And the device_list_mutex lock is already taken. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
btrfs_dev_replace_finishing updates devices (soruce and target) which are within the btrfs_fs_devices::devices or withint the cloned seed devices (btrfs_fs_devices::seed::devices), so we don't need the global uuid_mutex. The device replace context is also locked by its own locks. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
btrfs_open_devices() is using the uuid_mutex, but as btrfs_open_devices is just limited to openning all the devices under for given fsid, so we don't need uuid_mutex. Instead it should hold the device_list_mutex as it updates the members of the btrfs_fs_devices and btrfs_device and not the whole fs_devs list. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
read_chunk_tree() calls read_one_dev(), but for seed device we have to search the fs_uuids list, so we need the uuid_mutex. Add a comment comment, so that we can improve this part. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Instead of de-referencing the device->fs_devices use cur_devices which points to the same fs_devices and does not change. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
The generic block device lookup or cleanup does not need the uuid mutex, that's only for the device_list_add. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This function is no longer used outside of inode.c so just make it static. At the same time give a more becoming name, since it's not really invalidating the inodes but just calling d_prune_alias. Last, but not least - move the function above the sole caller to avoid introducing yet-another-pointless forward declaration. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Use the wrappers and reduce the amount of low-level details about the waitqueue management. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Currently the code assumes that there's an implied barrier by the sequence of code preceding the wakeup, namely the mutex unlock. As Nikolay pointed out: I think this is wrong (not your code) but the original assumption that the RELEASE semantics provided by mutex_unlock is sufficient. According to memory-barriers.txt: Section 'LOCK ACQUISITION FUNCTIONS' states: (2) RELEASE operation implication: Memory operations issued before the RELEASE will be completed before the RELEASE operation has completed. Memory operations issued after the RELEASE *may* be completed before the RELEASE operation has completed. (I've bolded the may portion) The example given there: As an example, consider the following: *A = a; *B = b; ACQUIRE *C = c; *D = d; RELEASE *E = e; *F = f; The following sequence of events is acceptable: ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE So if we assume that *C is modifying the flag which the waitqueue is checking, and *E is the actual wakeup, then those accesses can be re-ordered... IMHO this code should be considered broken... --- To be on the safe side, add the barriers. The synchronization logic around log using the mutexes and several other threads does not make it easy to reason for/against the barrier. CC: Nikolay Borisov <nborisov@suse.com> Link: https://lkml.kernel.org/r/6ee068d8-1a69-3728-00d1-d86293d43c9f@suse.comReviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Add convenience wrappers for the waitqueue management that involves memory barriers to prevent deadlocks. The helpers will let us remove barriers and the necessary comments in several places. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Under the following case, qgroup rescan can double account cowed tree blocks: In this case, extent tree only has one tree block. - | transid=5 last committed=4 | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 4). | Scan it, set qgroup_rescan_progress to the last | EXTENT/META_ITEM + 1 | now qgroup_rescan_progress = A + 1. | | fs tree get CoWed, new tree block is at A + 16K | transid 5 get committed - | transid=6 last committed=5 | btrfs_qgroup_rescan_worker() | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 5). | scan it using qgroup_rescan_progress (A + 1). | found new tree block beyong A, and it's fs tree block, | account it to increase qgroup numbers. - In above case, tree block A, and tree block A + 16K get accounted twice, while qgroup rescan should stop when it already reach the last leaf, other than continue using its qgroup_rescan_progress. Such case could happen by just looping btrfs/017 and with some possibility it can hit such double qgroup accounting problem. Fix it by checking the path to determine if we should finish qgroup rescan, other than relying on next loop to exit. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
When doing qgroup rescan using the following script (modified from btrfs/017 test case), we can sometimes hit qgroup corruption. ------ umount $dev &> /dev/null umount $mnt &> /dev/null mkfs.btrfs -f -n 64k $dev mount $dev $mnt extent_size=8192 xfs_io -f -d -c "pwrite 0 $extent_size" $mnt/foo > /dev/null btrfs subvolume snapshot $mnt $mnt/snap xfs_io -f -c "reflink $mnt/foo" $mnt/foo-reflink > /dev/null xfs_io -f -c "reflink $mnt/foo" $mnt/snap/foo-reflink > /dev/null xfs_io -f -c "reflink $mnt/foo" $mnt/snap/foo-reflink2 > /dev/unll btrfs quota enable $mnt # -W is the new option to only wait rescan while not starting new one btrfs quota rescan -W $mnt btrfs qgroup show -prce $mnt umount $mnt # Need to patch btrfs-progs to report qgroup mismatch as error btrfs check $dev || _fail ------ For fast machine, we can hit some corruption which missed accounting tree blocks: ------ qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 8.00KiB 0.00B none none --- --- 0/257 8.00KiB 0.00B none none --- --- ------ This is due to the fact that we're always searching commit root for btrfs_find_all_roots() at qgroup_rescan_leaf(), but the leaf we get is from current transaction, not commit root. And if our tree blocks get modified in current transaction, we won't find any owner in commit root, thus causing the corruption. Fix it by searching commit root for extent tree for qgroup_rescan_leaf(). Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Al Viro authored
[spotted while going through ->d_fsdata handling around d_splice_alias(); don't really care which tree that goes through] The only thing even looking at ->d_fsdata in there (since 2012) had been kfree(dentry->d_fsdata) in btrfs_dentry_delete(). Which, incidentally, is all btrfs_dentry_delete() does. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There are already 2 reports about strangely corrupted super blocks, where csum still matches but extra garbage gets slipped into super block. The corruption would looks like: ------ superblock: bytenr=65536, device=/dev/sdc1 --------------------------------------------------------- csum_type 41700 (INVALID) csum 0x3b252d3a [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x5b22400000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x5b22400000000000 ) ... ------ Or ------ superblock: bytenr=65536, device=/dev/mapper/x --------------------------------------------------------- csum_type 35355 (INVALID) csum_size 32 csum 0xf0dbeddd [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x176d200000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x176d200000000000 ) ------ Obviously, csum_type and incompat_flags get some garbage, but its csum still matches, which means kernel calculates the csum based on corrupted super block memory. And after manually fixing these values, the filesystem is completely healthy without any problem exposed by btrfs check. Although the cause is still unknown, at least detect it and prevent further corruption. Both reports have same symptoms, there's an overwrite on offset 192 of the superblock, by 4 bytes. The superblock structure is not allocated or freed and stays in the memory for the whole filesystem lifetime, so it's not a use-after-free kind of error on someone else's leaked page. As a vague point for the problable cause is mentioning of other system freezing related to graphic card drivers. Reported-by: Ken Swenson <flat@imo.uto.moe> Reported-by: Ben Parsons <9parsonsb@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add brief analysis of the reports ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Refactor btrfs_check_super_valid: 1) Rename it to btrfs_validate_mount_super() Now it's more obvious when the function should be called. 2) Extract core check routine into validate_super() Later write time check can reuse it, and if needed, we could also use validate_super() to check each super block. 3) Add more comments about btrfs_validate_mount_super() Mostly about what it doesn't check and when it should be called. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ rename to validate_super ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Move btrfs_check_super_valid() before its single caller to avoid forward declaration. Though such code motion is not recommended as it pollutes git history, in this case the following patches would need to add new forward declarations for static functions that we want to avoid. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This function always takes a transaction handle which contains a reference to the fs_info. Use that and remove the extra argument. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-