- 18 Apr, 2023 3 commits
-
-
Mathieu Desnoyers authored
commit f1a79412 ("mm: convert mm's rss stats into percpu_counter") introduces a memory leak by missing a call to destroy_context() when a percpu_counter fails to allocate. Before introducing the per-cpu counter allocations, init_new_context() was the last call that could fail in mm_init(), and thus there was no need to ever invoke destroy_context() in the error paths. Adding the following percpu counter allocations adds error paths after init_new_context(), which means its associated destroy_context() needs to be called when percpu counters fail to allocate. Link: https://lkml.kernel.org/r/20230330133822.66271-1-mathieu.desnoyers@efficios.com Fixes: f1a79412 ("mm: convert mm's rss stats into percpu_counter") Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Tetsuo Handa authored
syzbot is reporting circular locking dependency which involves zonelist_update_seq seqlock [1], for this lock is checked by memory allocation requests which do not need to be retried. One deadlock scenario is kmalloc(GFP_ATOMIC) from an interrupt handler. CPU0 ---- __build_all_zonelists() { write_seqlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount odd // e.g. timer interrupt handler runs at this moment some_timer_func() { kmalloc(GFP_ATOMIC) { __alloc_pages_slowpath() { read_seqbegin(&zonelist_update_seq) { // spins forever because zonelist_update_seq.seqcount is odd } } } } // e.g. timer interrupt handler finishes write_sequnlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount even } This deadlock scenario can be easily eliminated by not calling read_seqbegin(&zonelist_update_seq) from !__GFP_DIRECT_RECLAIM allocation requests, for retry is applicable to only __GFP_DIRECT_RECLAIM allocation requests. But Michal Hocko does not know whether we should go with this approach. Another deadlock scenario which syzbot is reporting is a race between kmalloc(GFP_ATOMIC) from tty_insert_flip_string_and_push_buffer() with port->lock held and printk() from __build_all_zonelists() with zonelist_update_seq held. CPU0 CPU1 ---- ---- pty_write() { tty_insert_flip_string_and_push_buffer() { __build_all_zonelists() { write_seqlock(&zonelist_update_seq); build_zonelists() { printk() { vprintk() { vprintk_default() { vprintk_emit() { console_unlock() { console_flush_all() { console_emit_next_record() { con->write() = serial8250_console_write() { spin_lock_irqsave(&port->lock, flags); tty_insert_flip_string() { tty_insert_flip_string_fixed_flag() { __tty_buffer_request_room() { tty_buffer_alloc() { kmalloc(GFP_ATOMIC | __GFP_NOWARN) { __alloc_pages_slowpath() { zonelist_iter_begin() { read_seqbegin(&zonelist_update_seq); // spins forever because zonelist_update_seq.seqcount is odd spin_lock_irqsave(&port->lock, flags); // spins forever because port->lock is held } } } } } } } } spin_unlock_irqrestore(&port->lock, flags); // message is printed to console spin_unlock_irqrestore(&port->lock, flags); } } } } } } } } } write_sequnlock(&zonelist_update_seq); } } } This deadlock scenario can be eliminated by preventing interrupt context from calling kmalloc(GFP_ATOMIC) and preventing printk() from calling console_flush_all() while zonelist_update_seq.seqcount is odd. Since Petr Mladek thinks that __build_all_zonelists() can become a candidate for deferring printk() [2], let's address this problem by disabling local interrupts in order to avoid kmalloc(GFP_ATOMIC) and disabling synchronous printk() in order to avoid console_flush_all() . As a side effect of minimizing duration of zonelist_update_seq.seqcount being odd by disabling synchronous printk(), latency at read_seqbegin(&zonelist_update_seq) for both !__GFP_DIRECT_RECLAIM and __GFP_DIRECT_RECLAIM allocation requests will be reduced. Although, from lockdep perspective, not calling read_seqbegin(&zonelist_update_seq) (i.e. do not record unnecessary locking dependency) from interrupt context is still preferable, even if we don't allow calling kmalloc(GFP_ATOMIC) inside write_seqlock(&zonelist_update_seq)/write_sequnlock(&zonelist_update_seq) section... Link: https://lkml.kernel.org/r/8796b95c-3da3-5885-fddd-6ef55f30e4d3@I-love.SAKURA.ne.jp Fixes: 3d36424b ("mm/page_alloc: fix race condition between build_all_zonelists and page allocation") Link: https://lkml.kernel.org/r/ZCrs+1cDqPWTDFNM@alley [2] Reported-by: syzbot <syzbot+223c7461c58c58a4cb10@syzkaller.appspotmail.com> Link: https://syzkaller.appspot.com/bug?extid=223c7461c58c58a4cb10 [1] Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Petr Mladek <pmladek@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Patrick Daly <quic_pdaly@quicinc.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Ondrej Mosnacek authored
Linux Security Modules (LSMs) that implement the "capable" hook will usually emit an access denial message to the audit log whenever they "block" the current task from using the given capability based on their security policy. The occurrence of a denial is used as an indication that the given task has attempted an operation that requires the given access permission, so the callers of functions that perform LSM permission checks must take care to avoid calling them too early (before it is decided if the permission is actually needed to perform the requested operation). The __sys_setres[ug]id() functions violate this convention by first calling ns_capable_setid() and only then checking if the operation requires the capability or not. It means that any caller that has the capability granted by DAC (task's capability set) but not by MAC (LSMs) will generate a "denied" audit record, even if is doing an operation for which the capability is not required. Fix this by reordering the checks such that ns_capable_setid() is checked last and -EPERM is returned immediately if it returns false. While there, also do two small optimizations: * move the capability check before prepare_creds() and * bail out early in case of a no-op. Link: https://lkml.kernel.org/r/20230217162154.837549-1-omosnace@redhat.com Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
- 16 Apr, 2023 11 commits
-
-
Peter Xu authored
This is a proposal to revert commit 914eedcb. I found this when writing a simple UFFDIO_API test to be the first unit test in this set. Two things breaks with the commit: - UFFDIO_API check was lost and missing. According to man page, the kernel should reject ioctl(UFFDIO_API) if uffdio_api.api != 0xaa. This check is needed if the api version will be extended in the future, or user app won't be able to identify which is a new kernel. - Feature flags checks were removed, which means UFFDIO_API with a feature that does not exist will also succeed. According to the man page, we should (and it makes sense) to reject ioctl(UFFDIO_API) if unknown features passed in. Link: https://lore.kernel.org/r/20220722201513.1624158-1-axelrasmussen@google.com Link: https://lkml.kernel.org/r/20230412163922.327282-2-peterx@redhat.com Fixes: 914eedcb ("userfaultfd: don't fail on unrecognized features") Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Zach O'Keefe <zokeefe@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Baokun Li authored
KASAN report null-ptr-deref: ================================================================== BUG: KASAN: null-ptr-deref in bdi_split_work_to_wbs+0x5c5/0x7b0 Write of size 8 at addr 0000000000000000 by task sync/943 CPU: 5 PID: 943 Comm: sync Tainted: 6.3.0-rc5-next-20230406-dirty #461 Call Trace: <TASK> dump_stack_lvl+0x7f/0xc0 print_report+0x2ba/0x340 kasan_report+0xc4/0x120 kasan_check_range+0x1b7/0x2e0 __kasan_check_write+0x24/0x40 bdi_split_work_to_wbs+0x5c5/0x7b0 sync_inodes_sb+0x195/0x630 sync_inodes_one_sb+0x3a/0x50 iterate_supers+0x106/0x1b0 ksys_sync+0x98/0x160 [...] ================================================================== The race that causes the above issue is as follows: cpu1 cpu2 -------------------------|------------------------- inode_switch_wbs INIT_WORK(&isw->work, inode_switch_wbs_work_fn) queue_rcu_work(isw_wq, &isw->work) // queue_work async inode_switch_wbs_work_fn wb_put_many(old_wb, nr_switched) percpu_ref_put_many ref->data->release(ref) cgwb_release queue_work(cgwb_release_wq, &wb->release_work) // queue_work async &wb->release_work cgwb_release_workfn ksys_sync iterate_supers sync_inodes_one_sb sync_inodes_sb bdi_split_work_to_wbs kmalloc(sizeof(*work), GFP_ATOMIC) // alloc memory failed percpu_ref_exit ref->data = NULL kfree(data) wb_get(wb) percpu_ref_get(&wb->refcnt) percpu_ref_get_many(ref, 1) atomic_long_add(nr, &ref->data->count) atomic64_add(i, v) // trigger null-ptr-deref bdi_split_work_to_wbs() traverses &bdi->wb_list to split work into all wbs. If the allocation of new work fails, the on-stack fallback will be used and the reference count of the current wb is increased afterwards. If cgroup writeback membership switches occur before getting the reference count and the current wb is released as old_wd, then calling wb_get() or wb_put() will trigger the null pointer dereference above. This issue was introduced in v4.3-rc7 (see fix tag1). Both sync_inodes_sb() and __writeback_inodes_sb_nr() calls to bdi_split_work_to_wbs() can trigger this issue. For scenarios called via sync_inodes_sb(), originally commit 7fc5854f ("writeback: synchronize sync(2) against cgroup writeback membership switches") reduced the possibility of the issue by adding wb_switch_rwsem, but in v5.14-rc1 (see fix tag2) removed the "inode_io_list_del_locked(inode, old_wb)" from inode_switch_wbs_work_fn() so that wb->state contains WB_has_dirty_io, thus old_wb is not skipped when traversing wbs in bdi_split_work_to_wbs(), and the issue becomes easily reproducible again. To solve this problem, percpu_ref_exit() is called under RCU protection to avoid race between cgwb_release_workfn() and bdi_split_work_to_wbs(). Moreover, replace wb_get() with wb_tryget() in bdi_split_work_to_wbs(), and skip the current wb if wb_tryget() fails because the wb has already been shutdown. Link: https://lkml.kernel.org/r/20230410130826.1492525-1-libaokun1@huawei.com Fixes: b817525a ("writeback: bdi_writeback iteration must not skip dying ones") Signed-off-by: Baokun Li <libaokun1@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Tejun Heo <tj@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Brauner <brauner@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Hou Tao <houtao1@huawei.com> Cc: yangerkun <yangerkun@huawei.com> Cc: Zhang Yi <yi.zhang@huawei.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Peng Zhang authored
In mas_alloc_nodes(), "node->node_count = 0" means to initialize the node_count field of the new node, but the node may not be a new node. It may be a node that existed before and node_count has a value, setting it to 0 will cause a memory leak. At this time, mas->alloc->total will be greater than the actual number of nodes in the linked list, which may cause many other errors. For example, out-of-bounds access in mas_pop_node(), and mas_pop_node() may return addresses that should not be used. Fix it by initializing node_count only for new nodes. Also, by the way, an if-else statement was removed to simplify the code. Link: https://lkml.kernel.org/r/20230411041005.26205-1-zhangpeng.00@bytedance.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Steve Chou authored
When using cull option with 'tg' flag, the fprintf is using pid instead of tgid. It should use tgid instead. Link: https://lkml.kernel.org/r/20230411034929.2071501-1-steve_chou@pesi.com.tw Fixes: 9c8a0a8e ("tools/vm/page_owner_sort.c: support for user-defined culling rules") Signed-off-by: Steve Chou <steve_chou@pesi.com.tw> Cc: Jiajian Ye <yejiajian2018@email.szu.edu.cn> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Jonathan Toppins authored
Link: https://lkml.kernel.org/r/d79bc6eaf65e68bd1c2a1e1510ab6291ce5926a6.1681162487.git.jtoppins@redhat.comSigned-off-by: Jonathan Toppins <jtoppins@redhat.com> Cc: Colin Ian King <colin.i.king@gmail.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Konrad Dybcio <konrad.dybcio@linaro.org> Cc: Qais Yousef <qyousef@layalina.io> Cc: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
set_mempolicy_home_node() iterates over a list of VMAs and calls mbind_range() on each VMA, which also iterates over the singular list of the VMA passed in and potentially splits the VMA. Since the VMA iterator is not passed through, set_mempolicy_home_node() may now point to a stale node in the VMA tree. This can result in a UAF as reported by syzbot. Avoid the stale maple tree node by passing the VMA iterator through to the underlying call to split_vma(). mbind_range() is also overly complicated, since there are two calling functions and one already handles iterating over the VMAs. Simplify mbind_range() to only handle merging and splitting of the VMAs. Align the new loop in do_mbind() and existing loop in set_mempolicy_home_node() to use the reduced mbind_range() function. This allows for a single location of the range calculation and avoids constantly looking up the previous VMA (since this is a loop over the VMAs). Link: https://lore.kernel.org/linux-mm/000000000000c93feb05f87e24ad@google.com/ Fixes: 66850be5 ("mm/mempolicy: use vma iterator & maple state instead of vma linked list") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reported-by: syzbot+a7c1ec5b1d71ceaa5186@syzkaller.appspotmail.com Link: https://lkml.kernel.org/r/20230410152205.2294819-1-Liam.Howlett@oracle.com Tested-by: syzbot+a7c1ec5b1d71ceaa5186@syzkaller.appspotmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Naoya Horiguchi authored
split_huge_page_to_list() WARNs when called for huge zero pages, which sounds to me too harsh because it does not imply a kernel bug, but just notifies the event to admins. On the other hand, this is considered as critical by syzkaller and makes its testing less efficient, which seems to me harmful. So replace the VM_WARN_ON_ONCE_FOLIO with pr_warn_ratelimited. Link: https://lkml.kernel.org/r/20230406082004.2185420-1-naoya.horiguchi@linux.dev Fixes: 478d134e ("mm/huge_memory: do not overkill when splitting huge_zero_page") Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reported-by: syzbot+07a218429c8d19b1fb25@syzkaller.appspotmail.com Link: https://lore.kernel.org/lkml/000000000000a6f34a05e6efcd01@google.com/Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Xu Yu <xuyu@linux.alibaba.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
When the loop over the VMA is terminated early due to an error, the return code could be overwritten with ENOMEM. Fix the return code by only setting the error on early loop termination when the error is not set. User-visible effects include: attempts to run mprotect() against a special mapping or with a poorly-aligned hugetlb address should return -EINVAL, but they presently return -ENOMEM. In other cases an -EACCESS should be returned. Link: https://lkml.kernel.org/r/20230406193050.1363476-1-Liam.Howlett@oracle.com Fixes: 2286a691 ("mm: change mprotect_fixup to vma iterator") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Peter Xu authored
Khugepaged collapse an anonymous thp in two rounds of scans. The 2nd round done in __collapse_huge_page_isolate() after hpage_collapse_scan_pmd(), during which all the locks will be released temporarily. It means the pgtable can change during this phase before 2nd round starts. It's logically possible some ptes got wr-protected during this phase, and we can errornously collapse a thp without noticing some ptes are wr-protected by userfault. e1e267c7 wanted to avoid it but it only did that for the 1st phase, not the 2nd phase. Since __collapse_huge_page_isolate() happens after a round of small page swapins, we don't need to worry on any !present ptes - if it existed khugepaged will already bail out. So we only need to check present ptes with uffd-wp bit set there. This is something I found only but never had a reproducer, I thought it was one caused a bug in Muhammad's recent pagemap new ioctl work, but it turns out it's not the cause of that but an userspace bug. However this seems to still be a real bug even with a very small race window, still worth to have it fixed and copy stable. Link: https://lkml.kernel.org/r/20230405155120.3608140-1-peterx@redhat.com Fixes: e1e267c7 ("khugepaged: skip collapse if uffd-wp detected") Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
David Hildenbrand authored
Looks like what we fixed for hugetlb in commit 44f86392 ("mm/hugetlb: fix uffd-wp handling for migration entries in hugetlb_change_protection()") similarly applies to THP. Setting/clearing uffd-wp on THP migration entries is not implemented properly. Further, while removing migration PMDs considers the uffd-wp bit, inserting migration PMDs does not consider the uffd-wp bit. We have to set/clear independently of the migration entry type in change_huge_pmd() and properly copy the uffd-wp bit in set_pmd_migration_entry(). Verified using a simple reproducer that triggers migration of a THP, that the set_pmd_migration_entry() no longer loses the uffd-wp bit. Link: https://lkml.kernel.org/r/20230405160236.587705-2-david@redhat.com Fixes: f45ec5ff ("userfaultfd: wp: support swap and page migration") Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Qi Zheng authored
The ->percpu_pvec_drained was originally introduced by commit d9ed0d08 ("mm: only drain per-cpu pagevecs once per pagevec usage") to drain per-cpu pagevecs only once per pagevec usage. But after converting the swap code to be more folio-based, the commit c2bc1681 ("mm/swap: add folio_batch_move_lru()") breaks this logic, which would cause ->percpu_pvec_drained to be reset to false, that means per-cpu pagevecs will be drained multiple times per pagevec usage. In theory, there should be no functional changes when converting code to be more folio-based. We should call folio_batch_reinit() in folio_batch_move_lru() instead of folio_batch_init(). And to verify that we still need ->percpu_pvec_drained, I ran mmtests/sparsetruncate-tiny and got the following data: baseline with baseline/ patch/ Min Time 326.00 ( 0.00%) 328.00 ( -0.61%) 1st-qrtle Time 334.00 ( 0.00%) 336.00 ( -0.60%) 2nd-qrtle Time 338.00 ( 0.00%) 341.00 ( -0.89%) 3rd-qrtle Time 343.00 ( 0.00%) 347.00 ( -1.17%) Max-1 Time 326.00 ( 0.00%) 328.00 ( -0.61%) Max-5 Time 327.00 ( 0.00%) 330.00 ( -0.92%) Max-10 Time 328.00 ( 0.00%) 331.00 ( -0.91%) Max-90 Time 350.00 ( 0.00%) 357.00 ( -2.00%) Max-95 Time 395.00 ( 0.00%) 390.00 ( 1.27%) Max-99 Time 508.00 ( 0.00%) 434.00 ( 14.57%) Max Time 547.00 ( 0.00%) 476.00 ( 12.98%) Amean Time 344.61 ( 0.00%) 345.56 * -0.28%* Stddev Time 30.34 ( 0.00%) 19.51 ( 35.69%) CoeffVar Time 8.81 ( 0.00%) 5.65 ( 35.87%) BAmean-99 Time 342.38 ( 0.00%) 344.27 ( -0.55%) BAmean-95 Time 338.58 ( 0.00%) 341.87 ( -0.97%) BAmean-90 Time 336.89 ( 0.00%) 340.26 ( -1.00%) BAmean-75 Time 335.18 ( 0.00%) 338.40 ( -0.96%) BAmean-50 Time 332.54 ( 0.00%) 335.42 ( -0.87%) BAmean-25 Time 329.30 ( 0.00%) 332.00 ( -0.82%) From the above it can be seen that we get similar data to when ->percpu_pvec_drained was introduced, so we still need it. Let's call folio_batch_reinit() in folio_batch_move_lru() to restore the original logic. Link: https://lkml.kernel.org/r/20230405161854.6931-1-zhengqi.arch@bytedance.com Fixes: c2bc1681 ("mm/swap: add folio_batch_move_lru()") Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
- 06 Apr, 2023 20 commits
-
-
Peng Zhang authored
There is a concurrency bug that may cause the wrong value to be loaded when a CPU is modifying the maple tree. CPU1: mtree_insert_range() mas_insert() mas_store_root() ... mas_root_expand() ... rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); ma_set_meta(node, maple_leaf_64, 0, slot); <---IP CPU2: mtree_load() mtree_lookup_walk() ma_data_end(); When CPU1 is about to execute the instruction pointed to by IP, the ma_data_end() executed by CPU2 may return the wrong end position, which will cause the value loaded by mtree_load() to be wrong. An example of triggering the bug: Add mdelay(100) between rcu_assign_pointer() and ma_set_meta() in mas_root_expand(). static DEFINE_MTREE(tree); int work(void *p) { unsigned long val; for (int i = 0 ; i< 30; ++i) { val = (unsigned long)mtree_load(&tree, 8); mdelay(5); pr_info("%lu",val); } return 0; } mt_init_flags(&tree, MT_FLAGS_USE_RCU); mtree_insert(&tree, 0, (void*)12345, GFP_KERNEL); run_thread(work) mtree_insert(&tree, 1, (void*)56789, GFP_KERNEL); In RCU mode, mtree_load() should always return the value before or after the data structure is modified, and in this example mtree_load(&tree, 8) may return 56789 which is not expected, it should always return NULL. Fix it by put ma_set_meta() before rcu_assign_pointer(). Link: https://lkml.kernel.org/r/20230314124203.91572-4-zhangpeng.00@bytedance.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Peng Zhang authored
if (likely(offset > end)) max = pivots[offset]; The above code should be changed to if (likely(offset < end)), which is correct. This affects the correctness of ma_data_end(). Now it seems that the final result will not be wrong, but it is best to change it. This patch does not change the code as above, because it simplifies the code by the way. Link: https://lkml.kernel.org/r/20230314124203.91572-1-zhangpeng.00@bytedance.com Link: https://lkml.kernel.org/r/20230314124203.91572-2-zhangpeng.00@bytedance.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Rongwei Wang authored
The si->lock must be held when deleting the si from the available list. Otherwise, another thread can re-add the si to the available list, which can lead to memory corruption. The only place we have found where this happens is in the swapoff path. This case can be described as below: core 0 core 1 swapoff del_from_avail_list(si) waiting try lock si->lock acquire swap_avail_lock and re-add si into swap_avail_head acquire si->lock but missing si already being added again, and continuing to clear SWP_WRITEOK, etc. It can be easily found that a massive warning messages can be triggered inside get_swap_pages() by some special cases, for example, we call madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile, run much swapon-swapoff operations (e.g. stress-ng-swap). However, in the worst case, panic can be caused by the above scene. In swapoff(), the memory used by si could be kept in swap_info[] after turning off a swap. This means memory corruption will not be caused immediately until allocated and reset for a new swap in the swapon path. A panic message caused: (with CONFIG_PLIST_DEBUG enabled) ------------[ cut here ]------------ top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70 Modules linked in: rfkill(E) crct10dif_ce(E)... CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+ Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015 pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--) pc : plist_check_prev_next_node+0x50/0x70 lr : plist_check_prev_next_node+0x50/0x70 sp : ffff0018009d3c30 x29: ffff0018009d3c40 x28: ffff800011b32a98 x27: 0000000000000000 x26: ffff001803908000 x25: ffff8000128ea088 x24: ffff800011b32a48 x23: 0000000000000028 x22: ffff001800875c00 x21: ffff800010f9e520 x20: ffff001800875c00 x19: ffff001800fdc6e0 x18: 0000000000000030 x17: 0000000000000000 x16: 0000000000000000 x15: 0736076307640766 x14: 0730073007380731 x13: 0736076307640766 x12: 0730073007380731 x11: 000000000004058d x10: 0000000085a85b76 x9 : ffff8000101436e4 x8 : ffff800011c8ce08 x7 : 0000000000000000 x6 : 0000000000000001 x5 : ffff0017df9ed338 x4 : 0000000000000001 x3 : ffff8017ce62a000 x2 : ffff0017df9ed340 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: plist_check_prev_next_node+0x50/0x70 plist_check_head+0x80/0xf0 plist_add+0x28/0x140 add_to_avail_list+0x9c/0xf0 _enable_swap_info+0x78/0xb4 __do_sys_swapon+0x918/0xa10 __arm64_sys_swapon+0x20/0x30 el0_svc_common+0x8c/0x220 do_el0_svc+0x2c/0x90 el0_svc+0x1c/0x30 el0_sync_handler+0xa8/0xb0 el0_sync+0x148/0x180 irq event stamp: 2082270 Now, si->lock locked before calling 'del_from_avail_list()' to make sure other thread see the si had been deleted and SWP_WRITEOK cleared together, will not reinsert again. This problem exists in versions after stable 5.10.y. Link: https://lkml.kernel.org/r/20230404154716.23058-1-rongwei.wang@linux.alibaba.com Fixes: a2468cc9 ("swap: choose swap device according to numa node") Tested-by: Yongchen Yin <wb-yyc939293@alibaba-inc.com> Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Aaron Lu <aaron.lu@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Ryusuke Konishi authored
The current nilfs2 sysfs support has issues with the timing of creation and deletion of sysfs entries, potentially leading to null pointer dereferences, use-after-free, and lockdep warnings. Some of the sysfs attributes for nilfs2 per-filesystem instance refer to metadata file "cpfile", "sufile", or "dat", but nilfs_sysfs_create_device_group that creates those attributes is executed before the inodes for these metadata files are loaded, and nilfs_sysfs_delete_device_group which deletes these sysfs entries is called after releasing their metadata file inodes. Therefore, access to some of these sysfs attributes may occur outside of the lifetime of these metadata files, resulting in inode NULL pointer dereferences or use-after-free. In addition, the call to nilfs_sysfs_create_device_group() is made during the locking period of the semaphore "ns_sem" of nilfs object, so the shrinker call caused by the memory allocation for the sysfs entries, may derive lock dependencies "ns_sem" -> (shrinker) -> "locks acquired in nilfs_evict_inode()". Since nilfs2 may acquire "ns_sem" deep in the call stack holding other locks via its error handler __nilfs_error(), this causes lockdep to report circular locking. This is a false positive and no circular locking actually occurs as no inodes exist yet when nilfs_sysfs_create_device_group() is called. Fortunately, the lockdep warnings can be resolved by simply moving the call to nilfs_sysfs_create_device_group() out of "ns_sem". This fixes these sysfs issues by revising where the device's sysfs interface is created/deleted and keeping its lifetime within the lifetime of the metadata files above. Link: https://lkml.kernel.org/r/20230330205515.6167-1-konishi.ryusuke@gmail.com Fixes: dd70edbd ("nilfs2: integrate sysfs support into driver") Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Reported-by: syzbot+979fa7f9c0d086fdc282@syzkaller.appspotmail.com Link: https://lkml.kernel.org/r/0000000000003414b505f7885f7e@google.com Reported-by: syzbot+5b7d542076d9bddc3c6a@syzkaller.appspotmail.com Link: https://lkml.kernel.org/r/0000000000006ac86605f5f44eb9@google.com Cc: Viacheslav Dubeyko <slava@dubeyko.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Alistair Popple authored
Device exclusive page table entries are used to prevent CPU access to a page whilst it is being accessed from a device. Typically this is used to implement atomic operations when the underlying bus does not support atomic access. When a CPU thread encounters a device exclusive entry it locks the page and restores the original entry after calling mmu notifiers to signal drivers that exclusive access is no longer available. The device exclusive entry holds a reference to the page making it safe to access the struct page whilst the entry is present. However the fault handling code does not hold the PTL when taking the page lock. This means if there are multiple threads faulting concurrently on the device exclusive entry one will remove the entry whilst others will wait on the page lock without holding a reference. This can lead to threads locking or waiting on a folio with a zero refcount. Whilst mmap_lock prevents the pages getting freed via munmap() they may still be freed by a migration. This leads to warnings such as PAGE_FLAGS_CHECK_AT_FREE due to the page being locked when the refcount drops to zero. Fix this by trying to take a reference on the folio before locking it. The code already checks the PTE under the PTL and aborts if the entry is no longer there. It is also possible the folio has been unmapped, freed and re-allocated allowing a reference to be taken on an unrelated folio. This case is also detected by the PTE check and the folio is unlocked without further changes. Link: https://lkml.kernel.org/r/20230330012519.804116-1-apopple@nvidia.com Fixes: b756a3b5 ("mm: device exclusive memory access") Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Yafang Shao authored
There're some suspicious warn_alloc on my test serer, for example, [13366.518837] warn_alloc: 81 callbacks suppressed [13366.518841] test_verifier: vmalloc error: size 4096, page order 0, failed to allocate pages, mode:0x500dc2(GFP_HIGHUSER|__GFP_ZERO|__GFP_ACCOUNT), nodemask=(null),cpuset=/,mems_allowed=0-1 [13366.522240] CPU: 30 PID: 722463 Comm: test_verifier Kdump: loaded Tainted: G W O 6.2.0+ #638 [13366.524216] Call Trace: [13366.524702] <TASK> [13366.525148] dump_stack_lvl+0x6c/0x80 [13366.525712] dump_stack+0x10/0x20 [13366.526239] warn_alloc+0x119/0x190 [13366.526783] ? alloc_pages_bulk_array_mempolicy+0x9e/0x2a0 [13366.527470] __vmalloc_area_node+0x546/0x5b0 [13366.528066] __vmalloc_node_range+0xc2/0x210 [13366.528660] __vmalloc_node+0x42/0x50 [13366.529186] ? bpf_prog_realloc+0x53/0xc0 [13366.529743] __vmalloc+0x1e/0x30 [13366.530235] bpf_prog_realloc+0x53/0xc0 [13366.530771] bpf_patch_insn_single+0x80/0x1b0 [13366.531351] bpf_jit_blind_constants+0xe9/0x1c0 [13366.531932] ? __free_pages+0xee/0x100 [13366.532457] ? free_large_kmalloc+0x58/0xb0 [13366.533002] bpf_int_jit_compile+0x8c/0x5e0 [13366.533546] bpf_prog_select_runtime+0xb4/0x100 [13366.534108] bpf_prog_load+0x6b1/0xa50 [13366.534610] ? perf_event_task_tick+0x96/0xb0 [13366.535151] ? security_capable+0x3a/0x60 [13366.535663] __sys_bpf+0xb38/0x2190 [13366.536120] ? kvm_clock_get_cycles+0x9/0x10 [13366.536643] __x64_sys_bpf+0x1c/0x30 [13366.537094] do_syscall_64+0x38/0x90 [13366.537554] entry_SYSCALL_64_after_hwframe+0x72/0xdc [13366.538107] RIP: 0033:0x7f78310f8e29 [13366.538561] Code: 01 00 48 81 c4 80 00 00 00 e9 f1 fe ff ff 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 17 e0 2c 00 f7 d8 64 89 01 48 [13366.540286] RSP: 002b:00007ffe2a61fff8 EFLAGS: 00000206 ORIG_RAX: 0000000000000141 [13366.541031] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f78310f8e29 [13366.541749] RDX: 0000000000000080 RSI: 00007ffe2a6200b0 RDI: 0000000000000005 [13366.542470] RBP: 00007ffe2a620010 R08: 00007ffe2a6202a0 R09: 00007ffe2a6200b0 [13366.543183] R10: 00000000000f423e R11: 0000000000000206 R12: 0000000000407800 [13366.543900] R13: 00007ffe2a620540 R14: 0000000000000000 R15: 0000000000000000 [13366.544623] </TASK> [13366.545260] Mem-Info: [13366.546121] active_anon:81319 inactive_anon:20733 isolated_anon:0 active_file:69450 inactive_file:5624 isolated_file:0 unevictable:0 dirty:10 writeback:0 slab_reclaimable:69649 slab_unreclaimable:48930 mapped:27400 shmem:12868 pagetables:4929 sec_pagetables:0 bounce:0 kernel_misc_reclaimable:0 free:15870308 free_pcp:142935 free_cma:0 [13366.551886] Node 0 active_anon:224836kB inactive_anon:33528kB active_file:175692kB inactive_file:13752kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:59248kB dirty:32kB writeback:0kB shmem:18252kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB kernel_stack:4616kB pagetables:10664kB sec_pagetables:0kB all_unreclaimable? no [13366.555184] Node 1 active_anon:100440kB inactive_anon:49404kB active_file:102108kB inactive_file:8744kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:50352kB dirty:8kB writeback:0kB shmem:33220kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB kernel_stack:3896kB pagetables:9052kB sec_pagetables:0kB all_unreclaimable? no [13366.558262] Node 0 DMA free:15360kB boost:0kB min:304kB low:380kB high:456kB reserved_highatomic:0KB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15360kB mlocked:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB [13366.560821] lowmem_reserve[]: 0 2735 31873 31873 31873 [13366.561981] Node 0 DMA32 free:2790904kB boost:0kB min:56028kB low:70032kB high:84036kB reserved_highatomic:0KB active_anon:1936kB inactive_anon:20kB active_file:396kB inactive_file:344kB unevictable:0kB writepending:0kB present:3129200kB managed:2801520kB mlocked:0kB bounce:0kB free_pcp:5188kB local_pcp:0kB free_cma:0kB [13366.565148] lowmem_reserve[]: 0 0 29137 29137 29137 [13366.566168] Node 0 Normal free:28533824kB boost:0kB min:596740kB low:745924kB high:895108kB reserved_highatomic:28672KB active_anon:222900kB inactive_anon:33508kB active_file:175296kB inactive_file:13408kB unevictable:0kB writepending:32kB present:30408704kB managed:29837172kB mlocked:0kB bounce:0kB free_pcp:295724kB local_pcp:0kB free_cma:0kB [13366.569485] lowmem_reserve[]: 0 0 0 0 0 [13366.570416] Node 1 Normal free:32141144kB boost:0kB min:660504kB low:825628kB high:990752kB reserved_highatomic:69632KB active_anon:100440kB inactive_anon:49404kB active_file:102108kB inactive_file:8744kB unevictable:0kB writepending:8kB present:33554432kB managed:33025372kB mlocked:0kB bounce:0kB free_pcp:270880kB local_pcp:46860kB free_cma:0kB [13366.573403] lowmem_reserve[]: 0 0 0 0 0 [13366.574015] Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 1*1024kB (U) 1*2048kB (M) 3*4096kB (M) = 15360kB [13366.575474] Node 0 DMA32: 782*4kB (UME) 756*8kB (UME) 736*16kB (UME) 745*32kB (UME) 694*64kB (UME) 653*128kB (UME) 595*256kB (UME) 552*512kB (UME) 454*1024kB (UME) 347*2048kB (UME) 246*4096kB (UME) = 2790904kB [13366.577442] Node 0 Normal: 33856*4kB (UMEH) 51815*8kB (UMEH) 42418*16kB (UMEH) 36272*32kB (UMEH) 22195*64kB (UMEH) 10296*128kB (UMEH) 7238*256kB (UMEH) 5638*512kB (UEH) 5337*1024kB (UMEH) 3506*2048kB (UMEH) 1470*4096kB (UME) = 28533784kB [13366.580460] Node 1 Normal: 15776*4kB (UMEH) 37485*8kB (UMEH) 29509*16kB (UMEH) 21420*32kB (UMEH) 14818*64kB (UMEH) 13051*128kB (UMEH) 9918*256kB (UMEH) 7374*512kB (UMEH) 5397*1024kB (UMEH) 3887*2048kB (UMEH) 2002*4096kB (UME) = 32141240kB [13366.583027] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=1048576kB [13366.584380] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB [13366.585702] Node 1 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=1048576kB [13366.587042] Node 1 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB [13366.588372] 87386 total pagecache pages [13366.589266] 0 pages in swap cache [13366.590327] Free swap = 0kB [13366.591227] Total swap = 0kB [13366.592142] 16777082 pages RAM [13366.593057] 0 pages HighMem/MovableOnly [13366.594037] 357226 pages reserved [13366.594979] 0 pages hwpoisoned This failure really confuse me as there're still lots of available pages. Finally I figured out it was caused by a fatal signal. When a process is allocating memory via vm_area_alloc_pages(), it will break directly even if it hasn't allocated the requested pages when it receives a fatal signal. In that case, we shouldn't show this warn_alloc, as it is useless. We only need to show this warning when there're really no enough pages. Link: https://lkml.kernel.org/r/20230330162625.13604-1-laoar.shao@gmail.comSigned-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Tetsuo Handa authored
nilfs_btree_assign_p() and nilfs_direct_assign_p() are not initializing "struct nilfs_binfo_dat"->bi_pad field, causing uninit-value reports when being passed to CRC function. Link: https://lkml.kernel.org/r/20230326152146.15872-1-konishi.ryusuke@gmail.comReported-by: syzbot <syzbot+048585f3f4227bb2b49b@syzkaller.appspotmail.com> Link: https://syzkaller.appspot.com/bug?extid=048585f3f4227bb2b49bReported-by: Dipanjan Das <mail.dipanjan.das@gmail.com> Link: https://lkml.kernel.org/r/CANX2M5bVbzRi6zH3PTcNE_31TzerstOXUa9Bay4E6y6dX23_pg@mail.gmail.comSigned-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Ryusuke Konishi authored
The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected. At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info. However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification. This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race. Link: https://lkml.kernel.org/r/20230327175318.8060-1-konishi.ryusuke@gmail.com Reported-by: syzbot+b08ebcc22f8f3e6be43a@syzkaller.appspotmail.com Link: https://lkml.kernel.org/r/00000000000000660d05f7dfa877@google.comSigned-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Sergey Senozhatsky authored
When freeable class stat was added to classes file (back in 2016) we forgot to update zsmalloc documentation. Fix that. Link: https://lkml.kernel.org/r/20230325024631.2817153-3-senozhatsky@chromium.org Fixes: 1120ed54 ("mm/zsmalloc: add `freeable' column to pool stat") Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Sergey Senozhatsky authored
Patch series "zsmalloc: minor documentation updates". Two minor patches that bring zsmalloc documentation up to date. This patch (of 2): Update documentation and reflect new zspages fullness grouping (we don't use almost_empty and almost_full anymore). Link: https://lkml.kernel.org/r/20230325024631.2817153-1-senozhatsky@chromium.org Link: https://lkml.kernel.org/r/20230325024631.2817153-2-senozhatsky@chromium.orgSigned-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> Fixes: 67e157eb3639 ("zsmalloc: show per fullness group class stats") Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Shiyang Ruan authored
XFS allows CoW on non-shared extents to combat fragmentation[1]. The old non-shared extent could be mwrited before, its dax entry is marked dirty. This results in a WARNing: [ 28.512349] ------------[ cut here ]------------ [ 28.512622] WARNING: CPU: 2 PID: 5255 at fs/dax.c:390 dax_insert_entry+0x342/0x390 [ 28.513050] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 nfs lockd grace fscache netfs nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables [ 28.515462] CPU: 2 PID: 5255 Comm: fsstress Kdump: loaded Not tainted 6.3.0-rc1-00001-g85e1481e19c1-dirty #117 [ 28.515902] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Arch Linux 1.16.1-1-1 04/01/2014 [ 28.516307] RIP: 0010:dax_insert_entry+0x342/0x390 [ 28.516536] Code: 30 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 48 8b 45 20 48 83 c0 01 e9 e2 fe ff ff 48 8b 45 20 48 83 c0 01 e9 cd fe ff ff <0f> 0b e9 53 ff ff ff 48 8b 7c 24 08 31 f6 e8 1b 61 a1 00 eb 8c 48 [ 28.517417] RSP: 0000:ffffc9000845fb18 EFLAGS: 00010086 [ 28.517721] RAX: 0000000000000053 RBX: 0000000000000155 RCX: 000000000018824b [ 28.518113] RDX: 0000000000000000 RSI: ffffffff827525a6 RDI: 00000000ffffffff [ 28.518515] RBP: ffffea00062092c0 R08: 0000000000000000 R09: ffffc9000845f9c8 [ 28.518905] R10: 0000000000000003 R11: ffffffff82ddb7e8 R12: 0000000000000155 [ 28.519301] R13: 0000000000000000 R14: 000000000018824b R15: ffff88810cfa76b8 [ 28.519703] FS: 00007f14a0c94740(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000 [ 28.520148] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 28.520472] CR2: 00007f14a0c8d000 CR3: 000000010321c004 CR4: 0000000000770ee0 [ 28.520863] PKRU: 55555554 [ 28.521043] Call Trace: [ 28.521219] <TASK> [ 28.521368] dax_fault_iter+0x196/0x390 [ 28.521595] dax_iomap_pte_fault+0x19b/0x3d0 [ 28.521852] __xfs_filemap_fault+0x234/0x2b0 [ 28.522116] __do_fault+0x30/0x130 [ 28.522334] do_fault+0x193/0x340 [ 28.522586] __handle_mm_fault+0x2d3/0x690 [ 28.522975] handle_mm_fault+0xe6/0x2c0 [ 28.523259] do_user_addr_fault+0x1bc/0x6f0 [ 28.523521] exc_page_fault+0x60/0x140 [ 28.523763] asm_exc_page_fault+0x22/0x30 [ 28.524001] RIP: 0033:0x7f14a0b589ca [ 28.524225] Code: c5 fe 7f 07 c5 fe 7f 47 20 c5 fe 7f 47 40 c5 fe 7f 47 60 c5 f8 77 c3 66 0f 1f 84 00 00 00 00 00 40 0f b6 c6 48 89 d1 48 89 fa <f3> aa 48 89 d0 c5 f8 77 c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 [ 28.525198] RSP: 002b:00007fff1dea1c98 EFLAGS: 00010202 [ 28.525505] RAX: 000000000000001e RBX: 000000000014a000 RCX: 0000000000006046 [ 28.525895] RDX: 00007f14a0c82000 RSI: 000000000000001e RDI: 00007f14a0c8d000 [ 28.526290] RBP: 000000000000006f R08: 0000000000000004 R09: 000000000014a000 [ 28.526681] R10: 0000000000000008 R11: 0000000000000246 R12: 028f5c28f5c28f5c [ 28.527067] R13: 8f5c28f5c28f5c29 R14: 0000000000011046 R15: 00007f14a0c946c0 [ 28.527449] </TASK> [ 28.527600] ---[ end trace 0000000000000000 ]--- To be able to delete this entry, clear its dirty mark before invalidate_inode_pages2_range(). [1] https://lore.kernel.org/linux-xfs/20230321151339.GA11376@frogsfrogsfrogs/ Link: https://lkml.kernel.org/r/1679653680-2-1-git-send-email-ruansy.fnst@fujitsu.com Fixes: f80e1668 ("fsdax: invalidate pages when CoW") Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Peter Xu authored
This patch fixes an issue that a hugetlb uffd-wr-protected mapping can be writable even with uffd-wp bit set. It only happens with hugetlb private mappings, when someone firstly wr-protects a missing pte (which will install a pte marker), then a write to the same page without any prior access to the page. Userfaultfd-wp trap for hugetlb was implemented in hugetlb_fault() before reaching hugetlb_wp() to avoid taking more locks that userfault won't need. However there's one CoW optimization path that can trigger hugetlb_wp() inside hugetlb_no_page(), which will bypass the trap. This patch skips hugetlb_wp() for CoW and retries the fault if uffd-wp bit is detected. The new path will only trigger in the CoW optimization path because generic hugetlb_fault() (e.g. when a present pte was wr-protected) will resolve the uffd-wp bit already. Also make sure anonymous UNSHARE won't be affected and can still be resolved, IOW only skip CoW not CoR. This patch will be needed for v5.19+ hence copy stable. [peterx@redhat.com: v2] Link: https://lkml.kernel.org/r/ZBzOqwF2wrHgBVZb@x1n [peterx@redhat.com: v3] Link: https://lkml.kernel.org/r/20230324142620.2344140-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20230321191840.1897940-1-peterx@redhat.com Fixes: 166f3ecc ("mm/hugetlb: hook page faults for uffd write protection") Signed-off-by: Peter Xu <peterx@redhat.com> Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Tested-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Use the maple tree in RCU mode for VMA tracking. The maple tree tracks the stack and is able to update the pivot (lower/upper boundary) in-place to allow the page fault handler to write to the tree while holding just the mmap read lock. This is safe as the writes to the stack have a guard VMA which ensures there will always be a NULL in the direction of the growth and thus will only update a pivot. It is possible, but not recommended, to have VMAs that grow up/down without guard VMAs. syzbot has constructed a testcase which sets up a VMA to grow and consume the empty space. Overwriting the entire NULL entry causes the tree to be altered in a way that is not safe for concurrent readers; the readers may see a node being rewritten or one that does not match the maple state they are using. Enabling RCU mode allows the concurrent readers to see a stable node and will return the expected result. [Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[ Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/ Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com Fixes: d4af56c5 ("mm: start tracking VMAs with maple tree") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Dereferencing RCU objects within the RCU callback without the RCU check has caused lockdep to complain. Fix the RCU dereferencing by using the RCU callback lock to ensure the operation is safe. Also stop creating a new lock to use for dereferencing during destruction of the tree or subtree. Instead, pass through a pointer to the tree that has the lock that is held for RCU dereferencing checking. It also does not make sense to use the maple state in the freeing scenario as the tree walk is a special case where the tree no longer has the normal encodings and parent pointers. Link: https://lkml.kernel.org/r/20230227173632.3292573-8-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reported-by: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Add an smp_rmb() before reading the parent pointer to ensure that anything read from the node prior to the parent pointer hasn't been reordered ahead of this check. The is necessary for RCU mode. Link: https://lkml.kernel.org/r/20230227173632.3292573-7-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
During the development of the maple tree, the strategy of freeing multiple nodes changed and, in the process, the pivots were reused to store pointers to dead nodes. To ensure the readers see accurate pivots, the writers need to mark the nodes as dead and call smp_wmb() to ensure any readers can identify the node as dead before using the pivot values. There were two places where the old method of marking the node as dead without smp_wmb() were being used, which resulted in RCU readers seeing the wrong pivot value before seeing the node was dead. Fix this race condition by using mte_set_node_dead() which has the smp_wmb() call to ensure the race is closed. Add a WARN_ON() to the ma_free_rcu() call to ensure all nodes being freed are marked as dead to ensure there are no other call paths besides the two updated paths. This is necessary for the RCU mode of the maple tree. Link: https://lkml.kernel.org/r/20230227173632.3292573-6-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam Howlett authored
The call to mte_set_dead_node() before the smp_wmb() already calls smp_wmb() so this is not needed. This is an optimization for the RCU mode of the maple tree. Link: https://lkml.kernel.org/r/20230227173632.3292573-5-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam Howlett authored
The walk to destroy the nodes was not always setting the node type and would result in a destroy method potentially using the values as nodes. Avoid this by setting the correct node types. This is necessary for the RCU mode of the maple tree. Link: https://lkml.kernel.org/r/20230227173632.3292573-4-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam Howlett authored
When initially starting a search, the root node may already be in the process of being replaced in RCU mode. Detect and restart the walk if this is the case. This is necessary for RCU mode of the maple tree. Link: https://lkml.kernel.org/r/20230227173632.3292573-3-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam Howlett authored
Patch series "Fix VMA tree modification under mmap read lock". Syzbot reported a BUG_ON in mm/mmap.c which was found to be caused by an inconsistency between threads walking the VMA maple tree. The inconsistency is caused by the page fault handler modifying the maple tree while holding the mmap_lock for read. This only happens for stack VMAs. We had thought this was safe as it only modifies a single pivot in the tree. Unfortunately, syzbot constructed a test case where the stack had no guard page and grew the stack to abut the next VMA. This causes us to delete the NULL entry between the two VMAs and rewrite the node. We considered several options for fixing this, including dropping the mmap_lock, then reacquiring it for write; and relaxing the definition of the tree to permit a zero-length NULL entry in the node. We decided the best option was to backport some of the RCU patches from -next, which solve the problem by allocating a new node and RCU-freeing the old node. Since the problem exists in 6.1, we preferred a solution which is similar to the one we intended to merge next merge window. These patches have been in -next since next-20230301, and have received intensive testing in Android as part of the RCU page fault patchset. They were also sent as part of the "Per-VMA locks" v4 patch series. Patches 1 to 7 are bug fixes for RCU mode of the tree and patch 8 enables RCU mode for the tree. Performance v6.3-rc3 vs patched v6.3-rc3: Running these changes through mmtests showed there was a 15-20% performance decrease in will-it-scale/brk1-processes. This tests creating and inserting a single VMA repeatedly through the brk interface and isn't representative of any real world applications. This patch (of 8): ma_pivots() and ma_data_end() may be called with a dead node. Ensure to that the node isn't dead before using the returned values. This is necessary for RCU mode of the maple tree. Link: https://lkml.kernel.org/r/20230327185532.2354250-1-Liam.Howlett@oracle.com Link: https://lkml.kernel.org/r/20230227173632.3292573-1-surenb@google.com Link: https://lkml.kernel.org/r/20230227173632.3292573-2-surenb@google.com Fixes: 54a611b6 ("Maple Tree: add new data structure") Signed-off-by: Liam Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjun Roy <arjunroy@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Li <chriscli@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: freak07 <michalechner92@googlemail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Minchan Kim <minchan@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Oskolkov <posk@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
- 28 Mar, 2023 6 commits
-
-
Florian Fainelli authored
Link: https://lkml.kernel.org/r/20230324130737.3360169-1-f.fainelli@gmail.comSigned-off-by: Florian Fainelli <f.fainelli@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Colin Ian King <colin.i.king@gmail.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Konrad Dybcio <konrad.dybcio@linaro.org> Cc: Leonard Crestez <cdleonard@gmail.com> Cc: Qais Yousef <qyousef@layalina.io> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Vasily Averin <vasily.averin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Muchun Song authored
The struct pages could be discontiguous when the kfence pool is allocated via alloc_contig_pages() with CONFIG_SPARSEMEM and !CONFIG_SPARSEMEM_VMEMMAP. This may result in setting PG_slab and memcg_data to a arbitrary address (may be not used as a struct page), which in the worst case might corrupt the kernel. So the iteration should use nth_page(). Link: https://lkml.kernel.org/r/20230323025003.94447-1-songmuchun@bytedance.com Fixes: 0ce20dd8 ("mm: add Kernel Electric-Fence infrastructure") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jann Horn <jannh@google.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Muchun Song authored
It does not reset PG_slab and memcg_data when KFENCE fails to initialize kfence pool at runtime. It is reporting a "Bad page state" message when kfence pool is freed to buddy. The checking of whether it is a compound head page seems unnecessary since we already guarantee this when allocating kfence pool. Remove the check to simplify the code. Link: https://lkml.kernel.org/r/20230320030059.20189-1-songmuchun@bytedance.com Fixes: 0ce20dd8 ("mm: add Kernel Electric-Fence infrastructure") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jann Horn <jannh@google.com> Cc: Marco Elver <elver@google.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sjpark@amazon.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Shiyang Ruan authored
In an dedupe comparison iter loop, the length of iomap_iter decreases because it implies the remaining length after each iteration. The dedupe command will fail with -EIO if the range is larger than one page size and not aligned to the page size. Also report warning in dmesg: [ 4338.498374] ------------[ cut here ]------------ [ 4338.498689] WARNING: CPU: 3 PID: 1415645 at fs/iomap/iter.c:16 ... The compare function should use the min length of the current iters, not the total length. Link: https://lkml.kernel.org/r/1679469958-2-1-git-send-email-ruansy.fnst@fujitsu.com Fixes: 0e79e373 ("fsdax: dedupe: iter two files at the same time") Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Shiyang Ruan authored
unshare copies data from source to destination. But if the source is HOLE or UNWRITTEN extents, we should zero the destination, otherwise the HOLE or UNWRITTEN part will be user-visible old data of the new allocated extent. Found by running generic/649 while mounting with -o dax=always on pmem. Link: https://lkml.kernel.org/r/1679483469-2-1-git-send-email-ruansy.fnst@fujitsu.com Fixes: d984648e ("fsdax,xfs: port unshare to fsdax") Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Tiezhu Yang authored
We can see the following definition in kernel/locking/lockdep_internals.h: #define STACK_TRACE_HASH_SIZE (1 << CONFIG_LOCKDEP_STACK_TRACE_HASH_BITS) CONFIG_LOCKDEP_STACK_TRACE_HASH_BITS is related with STACK_TRACE_HASH_SIZE instead of MAX_STACK_TRACE_ENTRIES, fix it. Link: https://lkml.kernel.org/r/1679380508-20830-1-git-send-email-yangtiezhu@loongson.cn Fixes: 5dc33592 ("lockdep: Allow tuning tracing capacity constants.") Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-