- 27 Nov, 2015 34 commits
-
-
Filipe Manana authored
commit aeafbf84 upstream. While running a stress test I got the following warning triggered: [191627.672810] ------------[ cut here ]------------ [191627.673949] WARNING: CPU: 8 PID: 8447 at fs/btrfs/file.c:779 __btrfs_drop_extents+0x391/0xa50 [btrfs]() (...) [191627.701485] Call Trace: [191627.702037] [<ffffffff8145f077>] dump_stack+0x4f/0x7b [191627.702992] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2 [191627.704091] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb [191627.705380] [<ffffffffa0664499>] ? __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.706637] [<ffffffff8104b46d>] warn_slowpath_null+0x1a/0x1c [191627.707789] [<ffffffffa0664499>] __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.709155] [<ffffffff8115663c>] ? cache_alloc_debugcheck_after.isra.32+0x171/0x1d0 [191627.712444] [<ffffffff81155007>] ? kmemleak_alloc_recursive.constprop.40+0x16/0x18 [191627.714162] [<ffffffffa06570c9>] insert_reserved_file_extent.constprop.40+0x83/0x24e [btrfs] [191627.715887] [<ffffffffa065422b>] ? start_transaction+0x3bb/0x610 [btrfs] [191627.717287] [<ffffffffa065b604>] btrfs_finish_ordered_io+0x273/0x4e2 [btrfs] [191627.728865] [<ffffffffa065b888>] finish_ordered_fn+0x15/0x17 [btrfs] [191627.730045] [<ffffffffa067d688>] normal_work_helper+0x14c/0x32c [btrfs] [191627.731256] [<ffffffffa067d96a>] btrfs_endio_write_helper+0x12/0x14 [btrfs] [191627.732661] [<ffffffff81061119>] process_one_work+0x24c/0x4ae [191627.733822] [<ffffffff810615b0>] worker_thread+0x206/0x2c2 [191627.734857] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.736052] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.737349] [<ffffffff810669a6>] kthread+0xef/0xf7 [191627.738267] [<ffffffff810f3b3a>] ? time_hardirqs_on+0x15/0x28 [191627.739330] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.741976] [<ffffffff81465592>] ret_from_fork+0x42/0x70 [191627.743080] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.744206] ---[ end trace bbfddacb7aaada8d ]--- $ cat -n fs/btrfs/file.c 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, (...) 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 if (key.objectid > ino || 760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 761 break; 762 763 fi = btrfs_item_ptr(leaf, path->slots[0], 764 struct btrfs_file_extent_item); 765 extent_type = btrfs_file_extent_type(leaf, fi); 766 767 if (extent_type == BTRFS_FILE_EXTENT_REG || 768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) 774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) 778 } else { 779 WARN_ON(1); 780 extent_end = search_start; 781 } (...) This happened because the item we were processing did not match a file extent item (its key type != BTRFS_EXTENT_DATA_KEY), and even on this case we cast the item to a struct btrfs_file_extent_item pointer and then find a type field value that does not match any of the expected values (BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]). This scenario happens due to a tiny time window where a race can happen as exemplified below. For example, consider the following scenario where we're using the NO_HOLES feature and we have the following two neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 Our inode 257 has an implicit hole in the range [0, 8K[ (implicit rather than explicit because NO_HOLES is enabled). Now if our inode has an ordered extent for the range [4K, 8K[ that is finishing, the following can happen: CPU 1 CPU 2 btrfs_finish_ordered_io() insert_reserved_file_extent() __btrfs_drop_extents() Searches for the key (257 EXTENT_DATA 4096) through btrfs_lookup_file_extent() Key not found and we get a path where path->nodes[0] == leaf X and path->slots[0] == N Because path->slots[0] is >= btrfs_header_nritems(leaf X), we call btrfs_next_leaf() btrfs_next_leaf() releases the path inserts key (257 INODE_REF 4096) at the end of leaf X, leaf X now has N + 1 keys, and the new key is at slot N btrfs_next_leaf() searches for key (257 INODE_REF 256), with path->keep_locks set to 1, because it was the last key it saw in leaf X finds it in leaf X again and notices it's no longer the last key of the leaf, so it returns 0 with path->nodes[0] == leaf X and path->slots[0] == N (which is now < btrfs_header_nritems(leaf X)), pointing to the new key (257 INODE_REF 4096) __btrfs_drop_extents() casts the item at path->nodes[0], slot path->slots[0], to a struct btrfs_file_extent_item - it does not skip keys for the target inode with a type less than BTRFS_EXTENT_DATA_KEY (BTRFS_INODE_REF_KEY < BTRFS_EXTENT_DATA_KEY) sees a bogus value for the type field triggering the WARN_ON in the trace shown above, and sets extent_end = search_start (4096) does the if-then-else logic to fixup 0 length extent items created by a past bug from hole punching: if (extent_end == key.offset && extent_end >= search_start) goto delete_extent_item; that evaluates to true and it ends up deleting the key pointed to by path->slots[0], (257 INODE_REF 4096), from leaf X The same could happen for example for a xattr that ends up having a key with an offset value that matches search_start (very unlikely but not impossible). So fix this by ensuring that keys smaller than BTRFS_EXTENT_DATA_KEY are skipped, never casted to struct btrfs_file_extent_item and never deleted by accident. Also protect against the unexpected case of getting a key for a lower inode number by skipping that key and issuing a warning. Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: drop use of ASSERT()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Borislav Petkov authored
commit 04633df0 upstream. When we get loaded by a 64-bit bootloader, kernel entry point is startup_64 in head_64.S. We don't trust any and all bootloaders because some will fiddle with CPU configuration so we go ahead and massage each CPU into sanity again. For example, some dell BIOSes have this XD disable feature which set IA32_MISC_ENABLE[34] and disable NX. This might be some dumb workaround for other OSes but Linux sure doesn't need it. A similar thing is present in the Surface 3 firmware - see https://bugzilla.kernel.org/show_bug.cgi?id=106051 - which sets this bit only on the BSP: # rdmsr -a 0x1a0 400850089 850089 850089 850089 I know, right?! There's not even an off switch in there. So fix all those cases by sanitizing the 64-bit entry point too. For that, make verify_cpu() callable in 64-bit mode also. Requested-and-debugged-by: "H. Peter Anvin" <hpa@zytor.com> Reported-and-tested-by: Bastien Nocera <bugzilla@hadess.net> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1446739076-21303-1-git-send-email-bp@alien8.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Christoph Hellwig authored
commit 40998193 upstream. When dropping a lock while iterating a list we must restart the search as other threads could have manipulated the list under us. Without this we can get stuck in an endless loop. This bug was introduced by commit bc3f02a7 Author: Dan Williams <djbw@fb.com> Date: Tue Aug 28 22:12:10 2012 -0700 [SCSI] scsi_remove_target: fix softlockup regression on hot remove Which was itself trying to fix a reported soft lockup issue http://thread.gmane.org/gmane.linux.kernel/1348679 However, we believe even with this revert of the original patch, the soft lockup problem has been fixed by commit f2495e22 Author: James Bottomley <JBottomley@Parallels.com> Date: Tue Jan 21 07:01:41 2014 -0800 [SCSI] dual scan thread bug fix Thanks go to Dan Williams <dan.j.williams@intel.com> for tracking all this prior history down. Reported-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Fixes: bc3f02a7Signed-off-by: James Bottomley <JBottomley@Odin.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Stefan Richter authored
commit 100ceb66 upstream. Reported by Clifford and Craig for JMicron OHCI-1394 + SDHCI combo controllers: Often or even most of the time, the controller is initialized with the message "added OHCI v1.10 device as card 0, 4 IR + 0 IT contexts, quirks 0x10". With 0 isochronous transmit DMA contexts (IT contexts), applications like audio output are impossible. However, OHCI-1394 demands that at least 4 IT contexts are implemented by the link layer controller, and indeed JMicron JMB38x do implement four of them. Only their IsoXmitIntMask register is unreliable at early access. With my own JMB381 single function controller I found: - I can reproduce the problem with a lower probability than Craig's. - If I put a loop around the section which clears and reads IsoXmitIntMask, then either the first or the second attempt will return the correct initial mask of 0x0000000f. I never encountered a case of needing more than a second attempt. - Consequently, if I put a dummy reg_read(...IsoXmitIntMaskSet) before the first write, the subsequent read will return the correct result. - If I merely ignore a wrong read result and force the known real result, later isochronous transmit DMA usage works just fine. So let's just fix this chip bug up by the latter method. Tested with JMB381 on kernel 3.13 and 4.3. Since OHCI-1394 generally requires 4 IT contexts at a minium, this workaround is simply applied whenever the initial read of IsoXmitIntMask returns 0, regardless whether it's a JMicron chip or not. I never heard of this issue together with any other chip though. I am not 100% sure that this fix works on the OHCI-1394 part of JMB380 and JMB388 combo controllers exactly the same as on the JMB381 single- function controller, but so far I haven't had a chance to let an owner of a combo chip run a patched kernel. Strangely enough, IsoRecvIntMask is always reported correctly, even though it is probed right before IsoXmitIntMask. Reported-by: Clifford Dunn Reported-by: Craig Moore <craig.moore@qenos.com> Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de> [bwh: Backported to 3.2: log with fw_notify() instead of ohci_notice()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit c932b98c upstream. HP ProBook 6550b needs the same pin fixup applied to other HP B-series laptops with docks for making its headphone and dock headphone jacks working properly. We just need to add the codec SSID to the list. Bugzilla: https://bugzilla.kernel.org/attachment.cgi?id=191971Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Michal Kubeček authored
commit ebac62fe upstream. Both tunnel6_protocol and tunnel46_protocol share the same error handler, tunnel6_err(), which traverses through tunnel6_handlers list. For ipip6 tunnels, we need to traverse tunnel46_handlers as we do e.g. in tunnel46_rcv(). Current code can generate an ICMPv6 error message with an IPv4 packet embedded in it. Fixes: 73d605d1 ("[IPSEC]: changing API of xfrm6_tunnel_register") Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
libin authored
commit c84da8b9 upstream. In nop_mcount, shdr->sh_offset and welp->r_offset should handle endianness properly, otherwise it will trigger Segmentation fault if the recordmcount main and file.o have different endianness. Link: http://lkml.kernel.org/r/563806C7.7070606@huawei.comSigned-off-by: Li Bin <huawei.libin@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
sumit.saxena@avagotech.com authored
commit 323c4a02 upstream. This is an issue on SMAP enabled CPUs and 32 bit apps running on 64 bit OS. Do not access user memory from kernel code. The SMAP bit restricts accessing user memory from kernel code. Signed-off-by: Sumit Saxena <sumit.saxena@avagotech.com> Signed-off-by: Kashyap Desai <kashyap.desai@avagotech.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Herbert Xu authored
commit 4afa5f96 upstream. The hash_accept call fails to work on sockets that have not received any data. For some algorithm implementations it may cause crashes. This patch fixes this by ensuring that we only export and import on sockets that have received data. Reported-by: Harsh Jain <harshjain.prof@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Brian Norris authored
commit f3c63795 upstream. Commit 073db4a5 ("mtd: fix: avoid race condition when accessing mtd->usecount") fixed a race condition but due to poor ordering of the mutex acquisition, introduced a potential deadlock. The deadlock can occur, for example, when rmmod'ing the m25p80 module, which will delete one or more MTDs, along with any corresponding mtdblock devices. This could potentially race with an acquisition of the block device as follows. -> blktrans_open() -> mutex_lock(&dev->lock); -> mutex_lock(&mtd_table_mutex); -> del_mtd_device() -> mutex_lock(&mtd_table_mutex); -> blktrans_notify_remove() -> del_mtd_blktrans_dev() -> mutex_lock(&dev->lock); This is a classic (potential) ABBA deadlock, which can be fixed by making the A->B ordering consistent everywhere. There was no real purpose to the ordering in the original patch, AFAIR, so this shouldn't be a problem. This ordering was actually already present in del_mtd_blktrans_dev(), for one, where the function tried to ensure that its caller already held mtd_table_mutex before it acquired &dev->lock: if (mutex_trylock(&mtd_table_mutex)) { mutex_unlock(&mtd_table_mutex); BUG(); } So, reverse the ordering of acquisition of &dev->lock and &mtd_table_mutex so we always acquire mtd_table_mutex first. Snippets of the lockdep output follow: # modprobe -r m25p80 [ 53.419251] [ 53.420838] ====================================================== [ 53.427300] [ INFO: possible circular locking dependency detected ] [ 53.433865] 4.3.0-rc6 #96 Not tainted [ 53.437686] ------------------------------------------------------- [ 53.444220] modprobe/372 is trying to acquire lock: [ 53.449320] (&new->lock){+.+...}, at: [<c043fe4c>] del_mtd_blktrans_dev+0x80/0xdc [ 53.457271] [ 53.457271] but task is already holding lock: [ 53.463372] (mtd_table_mutex){+.+.+.}, at: [<c0439994>] del_mtd_device+0x18/0x100 [ 53.471321] [ 53.471321] which lock already depends on the new lock. [ 53.471321] [ 53.479856] [ 53.479856] the existing dependency chain (in reverse order) is: [ 53.487660] -> #1 (mtd_table_mutex){+.+.+.}: [ 53.492331] [<c043fc5c>] blktrans_open+0x34/0x1a4 [ 53.497879] [<c01afce0>] __blkdev_get+0xc4/0x3b0 [ 53.503364] [<c01b0bb8>] blkdev_get+0x108/0x320 [ 53.508743] [<c01713c0>] do_dentry_open+0x218/0x314 [ 53.514496] [<c0180454>] path_openat+0x4c0/0xf9c [ 53.519959] [<c0182044>] do_filp_open+0x5c/0xc0 [ 53.525336] [<c0172758>] do_sys_open+0xfc/0x1cc [ 53.530716] [<c000f740>] ret_fast_syscall+0x0/0x1c [ 53.536375] -> #0 (&new->lock){+.+...}: [ 53.540587] [<c063f124>] mutex_lock_nested+0x38/0x3cc [ 53.546504] [<c043fe4c>] del_mtd_blktrans_dev+0x80/0xdc [ 53.552606] [<c043f164>] blktrans_notify_remove+0x7c/0x84 [ 53.558891] [<c04399f0>] del_mtd_device+0x74/0x100 [ 53.564544] [<c043c670>] del_mtd_partitions+0x80/0xc8 [ 53.570451] [<c0439aa0>] mtd_device_unregister+0x24/0x48 [ 53.576637] [<c046ce6c>] spi_drv_remove+0x1c/0x34 [ 53.582207] [<c03de0f0>] __device_release_driver+0x88/0x114 [ 53.588663] [<c03de19c>] device_release_driver+0x20/0x2c [ 53.594843] [<c03dd9e8>] bus_remove_device+0xd8/0x108 [ 53.600748] [<c03dacc0>] device_del+0x10c/0x210 [ 53.606127] [<c03dadd0>] device_unregister+0xc/0x20 [ 53.611849] [<c046d878>] __unregister+0x10/0x20 [ 53.617211] [<c03da868>] device_for_each_child+0x50/0x7c [ 53.623387] [<c046eae8>] spi_unregister_master+0x58/0x8c [ 53.629578] [<c03e12f0>] release_nodes+0x15c/0x1c8 [ 53.635223] [<c03de0f8>] __device_release_driver+0x90/0x114 [ 53.641689] [<c03de900>] driver_detach+0xb4/0xb8 [ 53.647147] [<c03ddc78>] bus_remove_driver+0x4c/0xa0 [ 53.652970] [<c00cab50>] SyS_delete_module+0x11c/0x1e4 [ 53.658976] [<c000f740>] ret_fast_syscall+0x0/0x1c [ 53.664621] [ 53.664621] other info that might help us debug this: [ 53.664621] [ 53.672979] Possible unsafe locking scenario: [ 53.672979] [ 53.679169] CPU0 CPU1 [ 53.683900] ---- ---- [ 53.688633] lock(mtd_table_mutex); [ 53.692383] lock(&new->lock); [ 53.698306] lock(mtd_table_mutex); [ 53.704658] lock(&new->lock); [ 53.707946] [ 53.707946] *** DEADLOCK *** Fixes: 073db4a5 ("mtd: fix: avoid race condition when accessing mtd->usecount") Reported-by: Felipe Balbi <balbi@ti.com> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Marek Vasut authored
commit 562b103a upstream. The sizeof() is invoked on an incorrect variable, likely due to some copy-paste error, and this might result in memory corruption. Fix this. Signed-off-by: Marek Vasut <marex@denx.de> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: netdev@vger.kernel.org Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> [bwh: Backported to 3.2: - Keep using the old NLA_PUT macro - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
sumit.saxena@avagotech.com authored
commit 357ae967 upstream. Do not use PAGE_SIZE marco to calculate max_sectors per I/O request. Driver code assumes PAGE_SIZE will be always 4096 which can lead to wrongly calculated value if PAGE_SIZE is not 4096. This issue was reported in Ubuntu Bugzilla Bug #1475166. Signed-off-by: Sumit Saxena <sumit.saxena@avagotech.com> Signed-off-by: Kashyap Desai <kashyap.desai@avagotech.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit cadd16ea upstream. We've had many reports that some Creative sound cards with CA0132 don't work well. Some reported that it starts working after reloading the module, while some reported it starts working when a 32bit kernel is used. All these facts seem implying that the chip fails to communicate when the buffer is located in 64bit address. This patch addresses these issues by just adding AZX_DCAPS_NO_64BIT flag to the corresponding PCI entries. I casually had a chance to test an SB Recon3D board, and indeed this seems helping. Although this hasn't been tested on all Creative devices, it's safer to assume that this restriction applies to the rest of them, too. So the flag is applied to all Creative entries. Signed-off-by: Takashi Iwai <tiwai@suse.de> [bwh: Backported to 3.2: drop the change to AZX_DCAPS_PRESET_CTHDA] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Ralf Baechle authored
commit f25319d2 upstream. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Fixes: f24219b4 (cherry picked from commit f0a232cde7be18a207fd057dd79bbac8a0a45dec) Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Chen Yu authored
commit 49e4b843 upstream. Currently when the system is trying to uninstall the ACPI interrupt handler, it uses acpi_gbl_FADT.sci_interrupt as the IRQ number. However, the IRQ number that the ACPI interrupt handled is installed for comes from acpi_gsi_to_irq() and that is the number that should be used for the handler removal. Fix this problem by using the mapped IRQ returned from acpi_gsi_to_irq() as appropriate. Acked-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Larry Finger authored
commit 1e6e6328 upstream. This adds the USB ID for the Sitecom WLA2100. The Windows 10 inf file was checked to verify that the addition is correct. Reported-by: Frans van de Wiel <fvdw@fvdw.eu> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Cc: Frans van de Wiel <fvdw@fvdw.eu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dmitry Tunin authored
commit 18e0afab upstream. T: Bus=04 Lev=02 Prnt=02 Port=04 Cnt=01 Dev#= 3 Spd=12 MxCh= 0 D: Ver= 1.10 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs= 1 P: Vendor=0cf3 ProdID=817b Rev=00.02 C: #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb I: If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb BugLink: https://bugs.launchpad.net/bugs/1506615Signed-off-by: Dmitry Tunin <hanipouspilot@gmail.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dmitry Tunin authored
commit cd355ff0 upstream. This adapter works with the existing linux-firmware. T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=02 Dev#= 3 Spd=12 MxCh= 0 D: Ver= 1.10 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs= 1 P: Vendor=0930 ProdID=021c Rev=00.01 C: #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb I: If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb BugLink: https://bugs.launchpad.net/bugs/1502781Signed-off-by: Dmitry Tunin <hanipouspilot@gmail.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Daeho Jeong authored
commit 4327ba52 upstream. If a EXT4 filesystem utilizes JBD2 journaling and an error occurs, the journaling will be aborted first and the error number will be recorded into JBD2 superblock and, finally, the system will enter into the panic state in "errors=panic" option. But, in the rare case, this sequence is little twisted like the below figure and it will happen that the system enters into panic state, which means the system reset in mobile environment, before completion of recording an error in the journal superblock. In this case, e2fsck cannot recognize that the filesystem failure occurred in the previous run and the corruption wouldn't be fixed. Task A Task B ext4_handle_error() -> jbd2_journal_abort() -> __journal_abort_soft() -> __jbd2_journal_abort_hard() | -> journal->j_flags |= JBD2_ABORT; | | __ext4_abort() | -> jbd2_journal_abort() | | -> __journal_abort_soft() | | -> if (journal->j_flags & JBD2_ABORT) | | return; | -> panic() | -> jbd2_journal_update_sb_errno() Tested-by: Hobin Woo <hobin.woo@samsung.com> Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit 0305cd5f upstream. When truncating a file to a smaller size which consists of an inline extent that is compressed, we did not discard (or made unusable) the data between the new file size and the old file size, wasting metadata space and allowing for the truncated data to be leaked and the data corruption/loss mentioned below. We were also not correctly decrementing the number of bytes used by the inode, we were setting it to zero, giving a wrong report for callers of the stat(2) syscall. The fsck tool also reported an error about a mismatch between the nbytes of the file versus the real space used by the file. Now because we weren't discarding the truncated region of the file, it was possible for a caller of the clone ioctl to actually read the data that was truncated, allowing for a security breach without requiring root access to the system, using only standard filesystem operations. The scenario is the following: 1) User A creates a file which consists of an inline and compressed extent with a size of 2000 bytes - the file is not accessible to any other users (no read, write or execution permission for anyone else); 2) The user truncates the file to a size of 1000 bytes; 3) User A makes the file world readable; 4) User B creates a file consisting of an inline extent of 2000 bytes; 5) User B issues a clone operation from user A's file into its own file (using a length argument of 0, clone the whole range); 6) User B now gets to see the 1000 bytes that user A truncated from its file before it made its file world readbale. User B also lost the bytes in the range [1000, 2000[ bytes from its own file, but that might be ok if his/her intention was reading stale data from user A that was never supposed to be public. Note that this contrasts with the case where we truncate a file from 2000 bytes to 1000 bytes and then truncate it back from 1000 to 2000 bytes. In this case reading any byte from the range [1000, 2000[ will return a value of 0x00, instead of the original data. This problem exists since the clone ioctl was added and happens both with and without my recent data loss and file corruption fixes for the clone ioctl (patch "Btrfs: fix file corruption and data loss after cloning inline extents"). So fix this by truncating the compressed inline extents as we do for the non-compressed case, which involves decompressing, if the data isn't already in the page cache, compressing the truncated version of the extent, writing the compressed content into the inline extent and then truncate it. The following test case for fstests reproduces the problem. In order for the test to pass both this fix and my previous fix for the clone ioctl that forbids cloning a smaller inline extent into a larger one, which is titled "Btrfs: fix file corruption and data loss after cloning inline extents", are needed. Without that other fix the test fails in a different way that does not leak the truncated data, instead part of destination file gets replaced with zeroes (because the destination file has a larger inline extent than the source). seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_cloner rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _scratch_mount "-o compress" # Create our test files. File foo is going to be the source of a clone operation # and consists of a single inline extent with an uncompressed size of 512 bytes, # while file bar consists of a single inline extent with an uncompressed size of # 256 bytes. For our test's purpose, it's important that file bar has an inline # extent with a size smaller than foo's inline extent. $XFS_IO_PROG -f -c "pwrite -S 0xa1 0 128" \ -c "pwrite -S 0x2a 128 384" \ $SCRATCH_MNT/foo | _filter_xfs_io $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 256" $SCRATCH_MNT/bar | _filter_xfs_io # Now durably persist all metadata and data. We do this to make sure that we get # on disk an inline extent with a size of 512 bytes for file foo. sync # Now truncate our file foo to a smaller size. Because it consists of a # compressed and inline extent, btrfs did not shrink the inline extent to the # new size (if the extent was not compressed, btrfs would shrink it to 128 # bytes), it only updates the inode's i_size to 128 bytes. $XFS_IO_PROG -c "truncate 128" $SCRATCH_MNT/foo # Now clone foo's inline extent into bar. # This clone operation should fail with errno EOPNOTSUPP because the source # file consists only of an inline extent and the file's size is smaller than # the inline extent of the destination (128 bytes < 256 bytes). However the # clone ioctl was not prepared to deal with a file that has a size smaller # than the size of its inline extent (something that happens only for compressed # inline extents), resulting in copying the full inline extent from the source # file into the destination file. # # Note that btrfs' clone operation for inline extents consists of removing the # inline extent from the destination inode and copy the inline extent from the # source inode into the destination inode, meaning that if the destination # inode's inline extent is larger (N bytes) than the source inode's inline # extent (M bytes), some bytes (N - M bytes) will be lost from the destination # file. Btrfs could copy the source inline extent's data into the destination's # inline extent so that we would not lose any data, but that's currently not # done due to the complexity that would be needed to deal with such cases # (specially when one or both extents are compressed), returning EOPNOTSUPP, as # it's normally not a very common case to clone very small files (only case # where we get inline extents) and copying inline extents does not save any # space (unlike for normal, non-inlined extents). $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar # Now because the above clone operation used to succeed, and due to foo's inline # extent not being shinked by the truncate operation, our file bar got the whole # inline extent copied from foo, making us lose the last 128 bytes from bar # which got replaced by the bytes in range [128, 256[ from foo before foo was # truncated - in other words, data loss from bar and being able to read old and # stale data from foo that should not be possible to read anymore through normal # filesystem operations. Contrast with the case where we truncate a file from a # size N to a smaller size M, truncate it back to size N and then read the range # [M, N[, we should always get the value 0x00 for all the bytes in that range. # We expected the clone operation to fail with errno EOPNOTSUPP and therefore # not modify our file's bar data/metadata. So its content should be 256 bytes # long with all bytes having the value 0xbb. # # Without the btrfs bug fix, the clone operation succeeded and resulted in # leaking truncated data from foo, the bytes that belonged to its range # [128, 256[, and losing data from bar in that same range. So reading the # file gave us the following content: # # 0000000 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 # * # 0000200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a # * # 0000400 echo "File bar's content after the clone operation:" od -t x1 $SCRATCH_MNT/bar # Also because the foo's inline extent was not shrunk by the truncate # operation, btrfs' fsck, which is run by the fstests framework everytime a # test completes, failed reporting the following error: # # root 5 inode 257 errors 400, nbytes wrong status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: - Adjust parameters to btrfs_truncate_page() and btrfs_truncate_item() - Pass transaction pointer into truncate_inline_extent() - Add prototype of btrfs_truncate_page() - s/test_bit(BTRFS_ROOT_REF_COWS, &root->state)/root->ref_cows/ - Keep using BUG_ON() for other error cases, as there is no btrfs_abort_transaction() - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Chris Mason authored
commit 514ac8ad upstream. If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect the new size. The fixe uses the size directly from the item header when reading uncompressed inlines, and also fixes truncate to update the size as it goes. Reported-by: Jens Axboe <axboe@fb.com> Signed-off-by: Chris Mason <clm@fb.com> [bwh: Backported to 3.2: - Don't use btrfs_map_token API - There are fewer callers of btrfs_file_extent_inline_len() to change - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Arnd Bergmann authored
commit 54c09889 upstream. The z2 machine calls pxa27x_set_pwrmode() in order to power off the machine, but this function gets discarded early at boot because it is marked __init, as pointed out by kbuild: WARNING: vmlinux.o(.text+0x145c4): Section mismatch in reference from the function z2_power_off() to the function .init.text:pxa27x_set_pwrmode() The function z2_power_off() references the function __init pxa27x_set_pwrmode(). This is often because z2_power_off lacks a __init annotation or the annotation of pxa27x_set_pwrmode is wrong. This removes the __init section modifier to fix rebooting and the build error. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Fixes: ba4a90a6 ("ARM: pxa/z2: fix building error of pxa27x_cpu_suspend() no longer available") Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
David Woodhouse authored
commit d14053b3 upstream. The VT-d specification says that "Software must enable ATS on endpoint devices behind a Root Port only if the Root Port is reported as supporting ATS transactions." We walk up the tree to find a Root Port, but for integrated devices we don't find one — we get to the host bridge. In that case we *should* allow ATS. Currently we don't, which means that we are incorrectly failing to use ATS for the integrated graphics. Fix that. We should never break out of this loop "naturally" with bus==NULL, since we'll always find bridge==NULL in that case (and now return 1). So remove the check for (!bridge) after the loop, since it can never happen. If it did, it would be worthy of a BUG_ON(!bridge). But since it'll oops anyway in that case, that'll do just as well. Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> [bwh: Backported to 3.2: - Adjust context - There's no (!bridge) check to remove] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit 8039d87d upstream. Currently the clone ioctl allows to clone an inline extent from one file to another that already has other (non-inlined) extents. This is a problem because btrfs is not designed to deal with files having inline and regular extents, if a file has an inline extent then it must be the only extent in the file and must start at file offset 0. Having a file with an inline extent followed by regular extents results in EIO errors when doing reads or writes against the first 4K of the file. Also, the clone ioctl allows one to lose data if the source file consists of a single inline extent, with a size of N bytes, and the destination file consists of a single inline extent with a size of M bytes, where we have M > N. In this case the clone operation removes the inline extent from the destination file and then copies the inline extent from the source file into the destination file - we lose the M - N bytes from the destination file, a read operation will get the value 0x00 for any bytes in the the range [N, M] (the destination inode's i_size remained as M, that's why we can read past N bytes). So fix this by not allowing such destructive operations to happen and return errno EOPNOTSUPP to user space. Currently the fstest btrfs/035 tests the data loss case but it totally ignores this - i.e. expects the operation to succeed and does not check the we got data loss. The following test case for fstests exercises all these cases that result in file corruption and data loss: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_cloner _require_btrfs_fs_feature "no_holes" _require_btrfs_mkfs_feature "no-holes" rm -f $seqres.full test_cloning_inline_extents() { local mkfs_opts=$1 local mount_opts=$2 _scratch_mkfs $mkfs_opts >>$seqres.full 2>&1 _scratch_mount $mount_opts # File bar, the source for all the following clone operations, consists # of a single inline extent (50 bytes). $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 50" $SCRATCH_MNT/bar \ | _filter_xfs_io # Test cloning into a file with an extent (non-inlined) where the # destination offset overlaps that extent. It should not be possible to # clone the inline extent from file bar into this file. $XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 16K" $SCRATCH_MNT/foo \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "File foo data after clone operation:" # All bytes should have the value 0xaa (clone operation failed and did # not modify our file). od -t x1 $SCRATCH_MNT/foo $XFS_IO_PROG -c "pwrite -S 0xcc 0 100" $SCRATCH_MNT/foo | _filter_xfs_io # Test cloning the inline extent against a file which has a hole in its # first 4K followed by a non-inlined extent. It should not be possible # as well to clone the inline extent from file bar into this file. $XFS_IO_PROG -f -c "pwrite -S 0xdd 4K 12K" $SCRATCH_MNT/foo2 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo2 # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "File foo2 data after clone operation:" # All bytes should have the value 0x00 (clone operation failed and did # not modify our file). od -t x1 $SCRATCH_MNT/foo2 $XFS_IO_PROG -c "pwrite -S 0xee 0 90" $SCRATCH_MNT/foo2 | _filter_xfs_io # Test cloning the inline extent against a file which has a size of zero # but has a prealloc extent. It should not be possible as well to clone # the inline extent from file bar into this file. $XFS_IO_PROG -f -c "falloc -k 0 1M" $SCRATCH_MNT/foo3 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo3 # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "First 50 bytes of foo3 after clone operation:" # Should not be able to read any bytes, file has 0 bytes i_size (the # clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo3 $XFS_IO_PROG -c "pwrite -S 0xff 0 90" $SCRATCH_MNT/foo3 | _filter_xfs_io # Test cloning the inline extent against a file which consists of a # single inline extent that has a size not greater than the size of # bar's inline extent (40 < 50). # It should be possible to do the extent cloning from bar to this file. $XFS_IO_PROG -f -c "pwrite -S 0x01 0 40" $SCRATCH_MNT/foo4 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo4 # Doing IO against any range in the first 4K of the file should work. echo "File foo4 data after clone operation:" # Must match file bar's content. od -t x1 $SCRATCH_MNT/foo4 $XFS_IO_PROG -c "pwrite -S 0x02 0 90" $SCRATCH_MNT/foo4 | _filter_xfs_io # Test cloning the inline extent against a file which consists of a # single inline extent that has a size greater than the size of bar's # inline extent (60 > 50). # It should not be possible to clone the inline extent from file bar # into this file. $XFS_IO_PROG -f -c "pwrite -S 0x03 0 60" $SCRATCH_MNT/foo5 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo5 # Reading the file should not fail. echo "File foo5 data after clone operation:" # Must have a size of 60 bytes, with all bytes having a value of 0x03 # (the clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo5 # Test cloning the inline extent against a file which has no extents but # has a size greater than bar's inline extent (16K > 50). # It should not be possible to clone the inline extent from file bar # into this file. $XFS_IO_PROG -f -c "truncate 16K" $SCRATCH_MNT/foo6 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo6 # Reading the file should not fail. echo "File foo6 data after clone operation:" # Must have a size of 16K, with all bytes having a value of 0x00 (the # clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo6 # Test cloning the inline extent against a file which has no extents but # has a size not greater than bar's inline extent (30 < 50). # It should be possible to clone the inline extent from file bar into # this file. $XFS_IO_PROG -f -c "truncate 30" $SCRATCH_MNT/foo7 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo7 # Reading the file should not fail. echo "File foo7 data after clone operation:" # Must have a size of 50 bytes, with all bytes having a value of 0xbb. od -t x1 $SCRATCH_MNT/foo7 # Test cloning the inline extent against a file which has a size not # greater than the size of bar's inline extent (20 < 50) but has # a prealloc extent that goes beyond the file's size. It should not be # possible to clone the inline extent from bar into this file. $XFS_IO_PROG -f -c "falloc -k 0 1M" \ -c "pwrite -S 0x88 0 20" \ $SCRATCH_MNT/foo8 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo8 echo "File foo8 data after clone operation:" # Must have a size of 20 bytes, with all bytes having a value of 0x88 # (the clone operation did not modify our file). od -t x1 $SCRATCH_MNT/foo8 _scratch_unmount } echo -e "\nTesting without compression and without the no-holes feature...\n" test_cloning_inline_extents echo -e "\nTesting with compression and without the no-holes feature...\n" test_cloning_inline_extents "" "-o compress" echo -e "\nTesting without compression and with the no-holes feature...\n" test_cloning_inline_extents "-O no-holes" "" echo -e "\nTesting with compression and with the no-holes feature...\n" test_cloning_inline_extents "-O no-holes" "-o compress" status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: - Adjust parameters to btrfs_drop_extents() - Drop use of ASSERT() - Keep using BUG_ON() for other error cases, as there is no btrfs_abort_transaction() - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jan Schmidt authored
commit c7d22a3c upstream. btrfs_next_item() makes the btrfs path point to the next item, crossing leaf boundaries if needed. Signed-off-by: Arne Jansen <sensille@gmx.net> Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> [bwh: Dependency of the following fix] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Dumazet authored
commit 161642e2 upstream. Recent TCP listener patches exposed a prior af_packet bug : match_fanout_group() blindly assumes it is always safe to cast sk to a packet socket to compare fanout with af_packet_priv But SYNACK packets can be sent while attached to request_sock, which are smaller than a "struct sock". We can read non existent memory and crash. Fixes: c0de08d0 ("af_packet: don't emit packet on orig fanout group") Fixes: ca6fb065 ("tcp: attach SYNACK messages to request sockets instead of listener") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Eric Leblond <eric@regit.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dan Carpenter authored
commit 1f35d04a upstream. The iomap[] array has PCIM_IOMAP_MAX (6) elements and not DEVICE_COUNT_RESOURCE (16). This bug was found using a static checker. It may be that the "if (!(mask & (1 << i)))" check means we never actually go past the end of the array in real life. Fixes: ec04b075 ('iomap: implement pcim_iounmap_regions()') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Boris BREZILLON authored
commit e5bae867 upstream. If we fail to allocate a partition structure in the middle of the partition creation process, the already allocated partitions are never removed, which means they are still present in the partition list and their resources are never freed. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dan Carpenter authored
commit 1f9c6e1b upstream. There were several bugs here. 1) The done label was in the wrong place so we didn't copy any information out when there was no command given. 2) We were using PAGE_SIZE as the size of the buffer instead of "PAGE_SIZE - pos". 3) snprintf() returns the number of characters that would have been printed if there were enough space. If there was not enough space (and we had fixed the memory corruption bug #2) then it would result in an information leak when we do simple_read_from_buffer(). I've changed it to use scnprintf() instead. I also removed the initialization at the start of the function, because I thought it made the code a little more clear. Fixes: 5e6e3a92 ('wireless: mwifiex: initial commit for Marvell mwifiex driver') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Amitkumar Karwar <akarwar@marvell.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Valentin Rothberg authored
commit 90adf98d upstream. Since commit 1c6c6952 ("genirq: Reject bogus threaded irq requests") threaded IRQs without a primary handler need to be requested with IRQF_ONESHOT, otherwise the request will fail. scripts/coccinelle/misc/irqf_oneshot.cocci detected this issue. Fixes: b5874f33 ("wm831x_power: Use genirq") Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com> Signed-off-by: Sebastian Reichel <sre@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Richard Purdie authored
commit 79b568b9 upstream. hid_connect adds various strings to the buffer but they're all conditional. You can find circumstances where nothing would be written to it but the kernel will still print the supposedly empty buffer with printk. This leads to corruption on the console/in the logs. Ensure buf is initialized to an empty string. Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org> [dvhart: Initialize string to "" rather than assign buf[0] = NULL;] Cc: Jiri Kosina <jikos@kernel.org> Cc: linux-input@vger.kernel.org Signed-off-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Johannes Berg authored
commit 8ec6d978 upstream. The ifmgd->ave_beacon_signal value cannot be taken as is for comparisons, it must be divided by since it's represented like that for better accuracy of the EWMA calculations. This would lead to invalid driver RSSI events. Fix the used value. Fixes: 615f7b9b ("mac80211: add driver RSSI threshold events") Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Alex Williamson authored
commit da2d03ea upstream. 932c435c ("PCI: Add dev_flags bit to access VPD through function 0") added PCI_DEV_FLAGS_VPD_REF_F0. Previously, we set the flag on every non-zero function of quirked devices. If a function turned out to be different from function 0, i.e., it had a different class, vendor ID, or device ID, the flag remained set but we didn't make VPD accessible at all. Flip this around so we only set PCI_DEV_FLAGS_VPD_REF_F0 for functions that are identical to function 0, and allow regular VPD access for any other functions. [bhelgaas: changelog, stable tag] Fixes: 932c435c ("PCI: Add dev_flags bit to access VPD through function 0") Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Bjorn Helgaas <helgaas@kernel.org> Acked-by: Myron Stowe <myron.stowe@redhat.com> Acked-by: Mark Rustad <mark.d.rustad@intel.com> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Alex Williamson authored
commit 9d924075 upstream. Commit 932c435c ("PCI: Add dev_flags bit to access VPD through function 0") passes PCI_SLOT(devfn) for the devfn parameter of pci_get_slot(). Generally this works because we're fairly well guaranteed that a PCIe device is at slot address 0, but for the general case, including conventional PCI, it's incorrect. We need to get the slot and then convert it back into a devfn. Fixes: 932c435c ("PCI: Add dev_flags bit to access VPD through function 0") Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Bjorn Helgaas <helgaas@kernel.org> Acked-by: Myron Stowe <myron.stowe@redhat.com> Acked-by: Mark Rustad <mark.d.rustad@intel.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
- 17 Nov, 2015 6 commits
-
-
Ben Hutchings authored
-
David Howells authored
commit f05819df upstream. The following sequence of commands: i=`keyctl add user a a @s` keyctl request2 keyring foo bar @t keyctl unlink $i @s tries to invoke an upcall to instantiate a keyring if one doesn't already exist by that name within the user's keyring set. However, if the upcall fails, the code sets keyring->type_data.reject_error to -ENOKEY or some other error code. When the key is garbage collected, the key destroy function is called unconditionally and keyring_destroy() uses list_empty() on keyring->type_data.link - which is in a union with reject_error. Subsequently, the kernel tries to unlink the keyring from the keyring names list - which oopses like this: BUG: unable to handle kernel paging request at 00000000ffffff8a IP: [<ffffffff8126e051>] keyring_destroy+0x3d/0x88 ... Workqueue: events key_garbage_collector ... RIP: 0010:[<ffffffff8126e051>] keyring_destroy+0x3d/0x88 RSP: 0018:ffff88003e2f3d30 EFLAGS: 00010203 RAX: 00000000ffffff82 RBX: ffff88003bf1a900 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000003bfc6901 RDI: ffffffff81a73a40 RBP: ffff88003e2f3d38 R08: 0000000000000152 R09: 0000000000000000 R10: ffff88003e2f3c18 R11: 000000000000865b R12: ffff88003bf1a900 R13: 0000000000000000 R14: ffff88003bf1a908 R15: ffff88003e2f4000 ... CR2: 00000000ffffff8a CR3: 000000003e3ec000 CR4: 00000000000006f0 ... Call Trace: [<ffffffff8126c756>] key_gc_unused_keys.constprop.1+0x5d/0x10f [<ffffffff8126ca71>] key_garbage_collector+0x1fa/0x351 [<ffffffff8105ec9b>] process_one_work+0x28e/0x547 [<ffffffff8105fd17>] worker_thread+0x26e/0x361 [<ffffffff8105faa9>] ? rescuer_thread+0x2a8/0x2a8 [<ffffffff810648ad>] kthread+0xf3/0xfb [<ffffffff810647ba>] ? kthread_create_on_node+0x1c2/0x1c2 [<ffffffff815f2ccf>] ret_from_fork+0x3f/0x70 [<ffffffff810647ba>] ? kthread_create_on_node+0x1c2/0x1c2 Note the value in RAX. This is a 32-bit representation of -ENOKEY. The solution is to only call ->destroy() if the key was successfully instantiated. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> [carnil: Backported for 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
David Howells authored
commit 94c4554b upstream. There appears to be a race between: (1) key_gc_unused_keys() which frees key->security and then calls keyring_destroy() to unlink the name from the name list (2) find_keyring_by_name() which calls key_permission(), thus accessing key->security, on a key before checking to see whether the key usage is 0 (ie. the key is dead and might be cleaned up). Fix this by calling ->destroy() before cleaning up the core key data - including key->security. Reported-by: Petr Matousek <pmatouse@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> [carnil: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Northup authored
commit 54a20552 upstream. It was found that a guest can DoS a host by triggering an infinite stream of "alignment check" (#AC) exceptions. This causes the microcode to enter an infinite loop where the core never receives another interrupt. The host kernel panics pretty quickly due to the effects (CVE-2015-5307). Signed-off-by: Eric Northup <digitaleric@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2: - Add definition of AC_VECTOR - Adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Olga Kornievskaia authored
commit a41cbe86 upstream. A test case is as the description says: open(foobar, O_WRONLY); sleep() --> reboot the server close(foobar) The bug is because in nfs4state.c in nfs4_reclaim_open_state() a few line before going to restart, there is clear_bit(NFS4CLNT_RECLAIM_NOGRACE, &state->flags). NFS4CLNT_RECLAIM_NOGRACE is a flag for the client states not open owner states. Value of NFS4CLNT_RECLAIM_NOGRACE is 4 which is the value of NFS_O_WRONLY_STATE in nfs4_state->flags. So clearing it wipes out state and when we go to close it, “call_close” doesn’t get set as state flag is not set and CLOSE doesn’t go on the wire. Signed-off-by: Olga Kornievskaia <aglo@umich.edu> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Charles Keepax authored
[ Upstream commit 436c2a50 ] commit 3cc81d85 ("asix: Don't reset PHY on if_up for ASIX 88772") causes the ethernet on Arndale to no longer function. This appears to be because the Arndale ethernet requires a full reset before it will function correctly, however simply reverting the above patch causes problems with ethtool settings getting reset. It seems the problem is that the ethernet is not properly reset during bind, and indeed the code in ax88772_bind that resets the device is a very small subset of the actual ax88772_reset function. This patch uses ax88772_reset in place of the existing reset code in ax88772_bind which removes some code duplication and fixes the ethernet on Arndale. It is still possible that the original patch causes some issues with suspend and resume but that seems like a separate issue and I haven't had a chance to test that yet. Signed-off-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Tested-by: Riku Voipio <riku.voipio@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.2: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-