- 20 Jan, 2015 18 commits
-
-
Andre Przywara authored
With all the necessary GICv3 emulation code in place, we can now connect the code to the GICv3 backend in the kernel. The LR register handling is different depending on the emulated GIC model, so provide different implementations for each. Also allow non-v2-compatible GICv3 implementations (which don't provide MMIO regions for the virtual CPU interface in the DT), but restrict those hosts to support GICv3 guests only. If the device tree provides a GICv2 compatible GICV resource entry, but that one is faulty, just disable the GICv2 emulation and let the user use at least the GICv3 emulation for guests. To provide proper support for the legacy KVM_CREATE_IRQCHIP ioctl, note virtual GICv2 compatibility in struct vgic_params and use it on creating a VGICv2. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
While the generation of a (virtual) inter-processor interrupt (SGI) on a GICv2 works by writing to a MMIO register, GICv3 uses the system register ICC_SGI1R_EL1 to trigger them. Add a trap handler function that calls the new SGI register handler in the GICv3 code. As ICC_SRE_EL1.SRE at this point is still always 0, this will not trap yet, but will only be used later when all the data structures have been initialized properly. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
The gic_send_sgi() function used hardcoded bit shift values to generate the ICC_SGI1R_EL1 register value. Replace this with symbolic names to allow reusing them later. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
With everything separated and prepared, we implement a model of a GICv3 distributor and redistributors by using the existing framework to provide handler functions for each register group. Currently we limit the emulation to a model enforcing a single security state, with SRE==1 (forcing system register access) and ARE==1 (allowing more than 8 VCPUs). We share some of the functions provided for GICv2 emulation, but take the different ways of addressing (v)CPUs into account. Save and restore is currently not implemented. Similar to the split-off of the GICv2 specific code, the new emulation code goes into a new file (vgic-v3-emul.c). Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
For a GICv2 there is always only one (v)CPU involved: the one that does the access. On a GICv3 the access to a CPU redistributor is memory-mapped, but not banked, so the (v)CPU affected is determined by looking at the MMIO address region being accessed. To allow passing the affected CPU into the accessors later, extend struct kvm_exit_mmio to add an opaque private pointer parameter. The current GICv2 emulation just does not use it. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
vgic.c is currently a mixture of generic vGIC emulation code and functions specific to emulating a GICv2. To ease the addition of GICv3, split off strictly v2 specific parts into a new file vgic-v2-emul.c. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> ------- As the diff isn't always obvious here (and to aid eventual rebases), here is a list of high-level changes done to the code: * added new file to respective arm/arm64 Makefiles * moved GICv2 specific functions to vgic-v2-emul.c: - handle_mmio_misc() - handle_mmio_set_enable_reg() - handle_mmio_clear_enable_reg() - handle_mmio_set_pending_reg() - handle_mmio_clear_pending_reg() - handle_mmio_priority_reg() - vgic_get_target_reg() - vgic_set_target_reg() - handle_mmio_target_reg() - handle_mmio_cfg_reg() - handle_mmio_sgi_reg() - vgic_v2_unqueue_sgi() - read_set_clear_sgi_pend_reg() - write_set_clear_sgi_pend_reg() - handle_mmio_sgi_set() - handle_mmio_sgi_clear() - vgic_v2_handle_mmio() - vgic_get_sgi_sources() - vgic_dispatch_sgi() - vgic_v2_queue_sgi() - vgic_v2_map_resources() - vgic_v2_init() - vgic_v2_add_sgi_source() - vgic_v2_init_model() - vgic_v2_init_emulation() - handle_cpu_mmio_misc() - handle_mmio_abpr() - handle_cpu_mmio_ident() - vgic_attr_regs_access() - vgic_create() (renamed to vgic_v2_create()) - vgic_destroy() (renamed to vgic_v2_destroy()) - vgic_has_attr() (renamed to vgic_v2_has_attr()) - vgic_set_attr() (renamed to vgic_v2_set_attr()) - vgic_get_attr() (renamed to vgic_v2_get_attr()) - struct kvm_mmio_range vgic_dist_ranges[] - struct kvm_mmio_range vgic_cpu_ranges[] - struct kvm_device_ops kvm_arm_vgic_v2_ops {} Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
vgic.c is currently a mixture of generic vGIC emulation code and functions specific to emulating a GICv2. To ease the addition of GICv3 later, we create new header file vgic.h, which holds constants and prototypes of commonly used functions. Rename some identifiers to avoid name space clutter. I removed the long-standing comment about using the kvm_io_bus API to tackle the GIC register ranges, as it wouldn't be a win for us anymore. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> ------- As the diff isn't always obvious here (and to aid eventual rebases), here is a list of high-level changes done to the code: * moved definitions and prototypes from vgic.c to vgic.h: - VGIC_ADDR_UNDEF - ACCESS_{READ,WRITE}_* - vgic_init() - vgic_update_state() - vgic_kick_vcpus() - vgic_get_vmcr() - vgic_set_vmcr() - struct mmio_range {} (renamed to struct kvm_mmio_range) * removed static keyword and exported prototype in vgic.h: - vgic_bitmap_get_reg() - vgic_bitmap_set_irq_val() - vgic_bitmap_get_shared_map() - vgic_bytemap_get_reg() - vgic_dist_irq_set_pending() - vgic_dist_irq_clear_pending() - vgic_cpu_irq_clear() - vgic_reg_access() - handle_mmio_raz_wi() - vgic_handle_enable_reg() - vgic_handle_set_pending_reg() - vgic_handle_clear_pending_reg() - vgic_handle_cfg_reg() - vgic_unqueue_irqs() - find_matching_range() (renamed to vgic_find_range) - vgic_handle_mmio_range() - vgic_update_state() - vgic_get_vmcr() - vgic_set_vmcr() - vgic_queue_irq() - vgic_kick_vcpus() - vgic_init() - vgic_v2_init_emulation() - vgic_has_attr_regs() - vgic_set_common_attr() - vgic_get_common_attr() - vgic_destroy() - vgic_create() * moved functions to vgic.h (static inline): - mmio_data_read() - mmio_data_write() - is_in_range() Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
vgic_set_attr() and vgic_get_attr() contain both code specific for the emulated GIC as well as code for the userland facing, generic part of the GIC. Split the guest GIC facing code of from the generic part to allow easier splitting later. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
The MMIO accessors for GICD_I[CS]ENABLER, GICD_I[CS]PENDR and GICD_ICFGR behave very similar for GICv2 and GICv3, although the way the affected VCPU is determined differs. Since we need them to access the registers from three different places in the future, we factor out a generic, backend-facing implementation and use small wrappers in the current GICv2 emulation. This will ease adding GICv3 accessors later. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
ICC_SRE_EL1 is a system register allowing msr/mrs accesses to the GIC CPU interface for EL1 (guests). Currently we force it to 0, but for proper GICv3 support we have to allow guests to use it (depending on their selected virtual GIC model). So add ICC_SRE_EL1 to the list of saved/restored registers on a world switch, but actually disallow a guest to change it by only restoring a fixed, once-initialized value. This value depends on the GIC model userland has chosen for a guest. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
Currently the maximum number of vCPUs supported is a global value limited by the used GIC model. GICv3 will lift this limit, but we still need to observe it for guests using GICv2. So the maximum number of vCPUs is per-VM value, depending on the GIC model the guest uses. Store and check the value in struct kvm_arch, but keep it down to 8 for now. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
To check whether the vGIC was already initialized, we currently check the GICH base address for not being NULL. Since with GICv3 we may get along without this address, lets use the irqchip_in_kernel() function to detect an already initialized vGIC. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
Currently we unconditionally register the GICv2 emulation device during the host's KVM initialization. Since with GICv3 support we may end up with only v2 or only v3 or both supported, we move the registration into the GIC probing function, where we will later know which combination is valid. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
Currently we only have one virtual GIC model supported, so all guests use the same emulation code. With the addition of another model we end up with different guests using potentially different vGIC models, so we have to split up some functions to be per VM. Introduce a vgic_vm_ops struct to hold function pointers for those functions that are different and provide the necessary code to initialize them. Also split up the vgic_init() function to separate out VGIC model specific functionality into a separate function, which will later be different for a GICv3 model. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
Some GICv3 registers can and will be accessed as 64 bit registers. Currently the register handling code can only deal with 32 bit accesses, so we do two consecutive calls to cover this. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
Currently we only need to deal with one MMIO region for the GIC emulation (the GICv2 distributor), but we soon need to extend this. Refactor the existing code to allow easier addition of different ranges without code duplication. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
With the introduction of a second emulated GIC model we need to let userspace specify the GIC model to use for each VM. Pass the userspace provided value down into the vGIC code and store it there to differentiate later. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Andre Przywara authored
The virtual MPIDR registers (containing topology information) for the guest are currently mapped linearily to the vcpu_id. Improve this mapping for arm64 by using three levels to not artificially limit the number of vCPUs. To help this, change and rename the kvm_vcpu_get_mpidr() function to mask off the non-affinity bits in the MPIDR register. Also add an accessor to later allow easier access to a vCPU with a given MPIDR. Use this new accessor in the PSCI emulation. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
- 16 Jan, 2015 10 commits
-
-
Mario Smarduch authored
This patch enables ARMv8 ditry page logging support. Plugs ARMv8 into generic layer through Kconfig symbol, and drops earlier ARM64 constraints to enable logging at architecture layer. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
This patch adds support for arm64 hyp interface to flush all TLBs associated with VMID. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
This patch adds arm64 helpers to write protect pmds/ptes and retrieve permissions while logging dirty pages. Also adds prototype to write protect a memory slot and adds a pmd define to check for read-only pmds. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
This patch adds support for 2nd stage page fault handling while dirty page logging. On huge page faults, huge pages are dissolved to normal pages, and rebuilding of 2nd stage huge pages is blocked. In case migration is canceled this restriction is removed and huge pages may be rebuilt again. Signed-off-by: Mario Smarduch <m.smarduch@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Mario Smarduch authored
Add support to track dirty pages between user space KVM_GET_DIRTY_LOG ioctl calls. We call kvm_get_dirty_log_protect() function to do most of the work. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
Add support for initial write protection of VM memslots. This patch series assumes that huge PUDs will not be used in 2nd stage tables, which is always valid on ARMv7 Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
This patch adds ARMv7 architecture TLB Flush function. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Paolo Bonzini authored
We now have a generic function that does most of the work of kvm_vm_ioctl_get_dirty_log, now use it. Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
kvm_get_dirty_log() provides generic handling of dirty bitmap, currently reused by several architectures. Building on that we intrdoduce kvm_get_dirty_log_protect() adding write protection to mark these pages dirty for future write access, before next KVM_GET_DIRTY_LOG ioctl call from user space. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
Mario Smarduch authored
Allow architectures to override the generic kvm_flush_remote_tlbs() function via HAVE_KVM_ARCH_TLB_FLUSH_ALL. ARMv7 will need this to provide its own TLB flush interface. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
-
- 15 Jan, 2015 2 commits
-
-
Andre Przywara authored
Currently the trace printk talks about "wfi" only, though the trace point triggers both on wfi and wfe traps. Add a parameter to differentiate between the two. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Wei Huang <wei@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Wei Huang authored
arm64 uses its own copy of exit handler (arm64/kvm/handle_exit.c). Currently this file doesn't hook up with any trace points. As a result users might not see certain events (e.g. HVC & WFI) while using ftrace with arm64 KVM. This patch fixes this issue by adding a new trace file and defining two trace events (one of which is shared by wfi and wfe) for arm64. The new trace points are then linked with related functions in handle_exit.c. Signed-off-by: Wei Huang <wei@redhat.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
- 11 Jan, 2015 2 commits
-
-
Eric Auger authored
Since the advent of VGIC dynamic initialization, this latter is initialized quite late on the first vcpu run or "on-demand", when injecting an IRQ or when the guest sets its registers. This initialization could be initiated explicitly much earlier by the users-space, as soon as it has provided the requested dimensioning parameters. This patch adds a new entry to the VGIC KVM device that allows the user to manually request the VGIC init: - a new KVM_DEV_ARM_VGIC_GRP_CTRL group is introduced. - Its first attribute is KVM_DEV_ARM_VGIC_CTRL_INIT The rationale behind introducing a group is to be able to add other controls later on, if needed. Signed-off-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Eric Auger authored
To be more explicit on vgic initialization failure, -ENODEV is returned by vgic_init when no online vcpus can be found at init. Signed-off-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
- 08 Jan, 2015 8 commits
-
-
Nicholas Krause authored
Adds a function kvm_vcpu_set_pending_timer instead of calling kvm_make_request in lapic.c. Signed-off-by: Nicholas Krause <xerofoify@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
When access to descriptor in LDT/GDT wraparound outside long-mode, the address of the descriptor should be truncated to 32-bit. Citing Intel SDM 2.1.1.1 "Global and Local Descriptor Tables in IA-32e Mode": "GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility mode)." So in other cases, we need to truncate. Creating new function to return a pointer to descriptor table to avoid too much code duplication. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> [Wrap 64-bit check with #ifdef CONFIG_X86_64, to avoid a "right shift count >= width of type" warning and consequent undefined behavior. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
When segment is loaded, the segment access bit is set unconditionally. In fact, it should be set conditionally, based on whether the segment had the accessed bit set before. In addition, it can improve performance. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
According to Intel SDM: "If the ESP register is used as a base register for addressing a destination operand in memory, the POP instruction computes the effective address of the operand after it increments the ESP register." The current emulation does not behave so. The fix required to waste another of the precious instruction flags and to check the flag in decode_modrm. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
Currently, if em_call_far fails it returns success instead of the resulting error-code. Fix it. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
The KVM emulator does not emulate JMP and CALL that target a call gate or a task gate. This patch does not try to implement these scenario as they are presumably rare; yet it returns X86EMUL_UNHANDLEABLE error in such cases instead of generating an exception. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
Since the operand size of fnstcw and fnstsw is updated during the execution, the emulation may cause spurious exceptions as it reads the memory beforehand. Marking these instructions as Mov (since the previous value is ignored) and DstMem16 to simplify the setting of operand size. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
Although pop sreg updates RSP according to the operand size, only 2 bytes are read. The current behavior may result in incorrect #GP or #PF exceptions. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-