- 28 Jun, 2017 1 commit
-
-
Takashi Iwai authored
In the commit 3d774d5e ("ALSA: seq: Allow the tristate build of OSS emulation") we changed CONFIG_SND_SEQUENCER_OSS to tristate, but a couple of places were forgotten, namely, opl3 and emux Makefile. These contain the line like snd-opl3-synth-$(CONFIG_SND_SEQUENCER_OSS) += opl3_oss.o and this doesn't work any longer as expected because snd-opl3-synth can be built-in while CONFIG_SND_SEQUENCER_OSS=m. This patch fixes these places to build properly for the new kconfig dependency. In the end, we had to use ifneq() to satisfy the requirement. It's a bit ugly, but lesser evil. Fixes: 3d774d5e ("ALSA: seq: Allow the tristate build of OSS emulation") Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 27 Jun, 2017 2 commits
-
-
Takashi Iwai authored
Now that user-space (typically alsa-lib) can specify which protocol version it supports, we can optimize the kernel code depending on the reported protocol version. In this patch, we change the previous hack for enforcing the appl_ptr sync by disabling status/control mmap. Instead of forcibly disabling both mmaps, we disable only the control mmap when user-space declares the supported protocol version new enough. For older user-space, still both PCM status and control mmaps are disabled when requested by the driver due to the compatibility reason. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
We have an ioctl to inform the PCM protocol version the running kernel supports, but there is no way to know which protocol version the user-space can understand. This lack of information caused headaches in the past when we tried to extend the ABI. For example, because we couldn't guarantee the validity of the reserved bytes, we had to introduce a new ioctl SNDRV_PCM_IOCTL_STATUS_EXT for assigning a few new fields in the formerly reserved bits. If we could know that it's a new alsa-lib, we could assume the availability of the new fields, thus we could have reused the existing SNDRV_PCM_IOCTL_STATUS. In order to improve the ABI extensibility, this patch adds a new ioctl for user-space to inform its supporting protocol version to the kernel. By reporting the supported protocol from user-space, the kernel can judge which feature should be provided and which not. With the addition of the new ioctl, the PCM protocol version is bumped to 2.0.14, too. User-space checks the kernel protocol version via SNDRV_PCM_INFO_PVERSION, then it sets the supported version back via SNDRV_PCM_INFO_USER_PVERSION. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 26 Jun, 2017 1 commit
-
-
Hui Wang authored
We have a Lenovo machine with the codec ALC294 on it, without the patch, the Node 0x0b is regarded as the loopback mixer, but the Node 0x0b in this codec is "Vendor Defined Widget" instead of the audio mixer, please see the log below: Node 0x0b [Vendor Defined Widget] wcaps 0xf00000: Mono Control: name="Beep Playback Volume", index=0, device=0 ControlAmp: chs=3, dir=In, idx=4, ofs=0 Control: name="Beep Playback Switch", index=0, device=0 ControlAmp: chs=3, dir=In, idx=4, ofs=0 And I have consulted with Realtek, so far the ALC234/274/294 all don't have loopback mixer. Cc: Kailang Yang <kailang@realtek.com> Signed-off-by: Hui Wang <hui.wang@canonical.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 23 Jun, 2017 1 commit
-
-
Takashi Iwai authored
Currently x86 platforms use the PCM status/control mmaps for transferring the PCM status and appl_ptr between kernel and user-spaces. The mmap is a most efficient way of communication, but it has a drawback per its nature, namely, it can't notify the change explicitly to kernel. The lack of appl_ptr update notification is a problem on a few existing drivers, but it's mostly a small issue and negligible. However, a new type of driver that uses DSP for a deep buffer management requires the exact position of appl_ptr for calculating the buffer prefetch size, and the asynchronous appl_ptr update between kernel and user-spaces becomes a significant problem for it. How can we enforce user-space to report the appl_ptr update? The way is relatively simple. Just by disabling the PCM control mmap, the user-space is supposed to fall back to the mode using SYNC_PTR ioctl, and the kernel gets control over that. This fallback mode is used in all non-x86 platforms as default, and also in the 32bit compatible model on all platforms including x86. It's been implemented already over a decade, so we can say it's fairly safe and stably working. With the help of the knowledge above, this patch introduces a new PCM info flag SNDRV_PCM_INFO_SYNC_APPLPTR for achieving the appl_ptr sync from user-space. When a driver sets this flag at open, the PCM status / control mmap is disabled, which effectively switches to SYNC_PTR mode in user-space side. In this version, both PCM status and control mmaps are disabled although only the latter, control mmap, is the target. It's because the current alsa-lib implementation supposes that both status and control mmaps are always coupled, thus it handles a fatal error when only one of them fails. Of course, the disablement of the status/control mmaps may bring a slight performance overhead. Thus, as of now, this should be used only for the dedicated devices that deserves. Note that the disablement of mmap is a sort of workaround. In the later patch, we'll introduce the way to identify the protocol version alsa-lib supports, and keep mmap working while the sync_ptr is performed together. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 21 Jun, 2017 1 commit
-
-
Kailang Yang authored
Except ALC269. This will reduce pop noise from headset or headphone. If codec enter to power save state, when plug headset or headphone.... It has a chance to cut off power by system. Our new codec use this procedure will be more stable during suspend and resume state. Signed-off-by: Kailang Yang <kailang@realtek.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 20 Jun, 2017 8 commits
-
-
Kailang Yang authored
This patch will enable headset mode for ALC234/ALC274/ALC294 platform. Signed-off-by: Kailang Yang <kailang@realtek.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
The ALSA PCM core refers to the appl_ptr value stored on the mmapped page that is shared between kernel and user-space. Although the reference is performed in the PCM stream lock, it doesn't guarantee the atomic access when the value gets updated concurrently from the user-space on another CPU. In most of codes, this is no big problem, but still there are a few places that may result in slight inconsistencies because they access runtime->control->appl_ptr multiple times; that is, the second read might be a different value from the first value. It can be even backward or jumping, as we have no control for it. Hence, the calculation may give an unexpected value. Luckily, there is no security vulnerability by that, as far as I've checked. But still we should address it. This patch tries to reduce such possible cases. The fix is simple -- we just read once, store it to a local variable and use it for the rest calculations. The READ_ONCE() macro is used for it in order to avoid the ill-effect by possible compiler optimizations. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
When the codec device is unregistered / freed, it may release the resource while being used in an unsolicited event like the jack detection work. This leads to use-after-free. The fix here is to unregister the device at first, i.e. removing the codec from the list, then flushing the pending works to assure that all unsol events are gone. After this point, we're free from accessing the codec via unsol events, thus can release the resources gracefully. The issue was spotted originally by Intel CI, but it couldn't be reproduced reliably by its nature. So let's hope this fix really addresses the whole issues. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=196045Reported-by: Martin Peres <martin.peres@free.fr> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
We checked the quirks specific to the recent Intel chips by checking the PCI IDs manually, but it's becoming messy with lots of IS_SKL() and other macros, as the amount accumulated. For simplification, here the new AZX_DRIVER_SKL type is introduced, and check chip->driver_type instead of the manual PCI ID. The short name for this is still "HDA Intel PCH", so that it doesn't break the existing user-space unnecessarily. Suggested-by: Vinod Koul <vinod.koul@intel.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
-
Takashi Iwai authored
Broxton-T was a forgotten child and we didn't apply the quirks for Skylake+ properly. Meanwhile, a quirk for reducing the DMA latency seems specific to the early Broxton model, so we leave as is. Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Hans P. Möller Ebner authored
Remove Initialization from POD HD500X because it's not needed. Every time the device is connected dmesg gives the following output: "receive length failed (error -11)". To solve this problem, another flags is introduced (LINE6_CAP_CONTROL_INFO) and it is only used for PODX3 in: sysfs entries, call podhd_startup_finalize(pod) and disconnection. With this patch the error disappear. Signed-off-by: Hans P. Moller <hmoller@uc.cl> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Hans P. Möller Ebner authored
Add support for the Line6 POD HD500X multi effect processor for playback and capture (in/out audio) through USB. Signed-off-by: Hans P. Moller <hmoller@uc.cl> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 19 Jun, 2017 1 commit
-
-
Takashi Sakamoto authored
At Linux v3.5, packet processing can be done in process context of ALSA PCM application as well as software IRQ context for OHCI 1394. Below is an example of the callgraph (some calls are omitted). ioctl(2) with e.g. HWSYNC (sound/core/pcm_native.c) ->snd_pcm_common_ioctl1() ->snd_pcm_hwsync() ->snd_pcm_stream_lock_irq (sound/core/pcm_lib.c) ->snd_pcm_update_hw_ptr() ->snd_pcm_udpate_hw_ptr0() ->struct snd_pcm_ops.pointer() (sound/firewire/*) = Each handler on drivers in ALSA firewire stack (sound/firewire/amdtp-stream.c) ->amdtp_stream_pcm_pointer() (drivers/firewire/core-iso.c) ->fw_iso_context_flush_completions() ->struct fw_card_driver.flush_iso_completion() (drivers/firewire/ohci.c) = flush_iso_completions() ->struct fw_iso_context.callback.sc (sound/firewire/amdtp-stream.c) = in_stream_callback() or out_stream_callback() ->... ->snd_pcm_stream_unlock_irq When packet queueing error occurs or detecting invalid packets in 'in_stream_callback()' or 'out_stream_callback()', 'snd_pcm_stop_xrun()' is called on local CPU with disabled IRQ. (sound/firewire/amdtp-stream.c) in_stream_callback() or out_stream_callback() ->amdtp_stream_pcm_abort() ->snd_pcm_stop_xrun() ->snd_pcm_stream_lock_irqsave() ->snd_pcm_stop() ->snd_pcm_stream_unlock_irqrestore() The process is stalled on the CPU due to attempt to acquire recursive lock. [ 562.630853] INFO: rcu_sched detected stalls on CPUs/tasks: [ 562.630861] 2-...: (1 GPs behind) idle=37d/140000000000000/0 softirq=38323/38323 fqs=7140 [ 562.630862] (detected by 3, t=15002 jiffies, g=21036, c=21035, q=5933) [ 562.630866] Task dump for CPU 2: [ 562.630867] alsa-source-OXF R running task 0 6619 1 0x00000008 [ 562.630870] Call Trace: [ 562.630876] ? vt_console_print+0x79/0x3e0 [ 562.630880] ? msg_print_text+0x9d/0x100 [ 562.630883] ? up+0x32/0x50 [ 562.630885] ? irq_work_queue+0x8d/0xa0 [ 562.630886] ? console_unlock+0x2b6/0x4b0 [ 562.630888] ? vprintk_emit+0x312/0x4a0 [ 562.630892] ? dev_vprintk_emit+0xbf/0x230 [ 562.630895] ? do_sys_poll+0x37a/0x550 [ 562.630897] ? dev_printk_emit+0x4e/0x70 [ 562.630900] ? __dev_printk+0x3c/0x80 [ 562.630903] ? _raw_spin_lock+0x20/0x30 [ 562.630909] ? snd_pcm_stream_lock+0x31/0x50 [snd_pcm] [ 562.630914] ? _snd_pcm_stream_lock_irqsave+0x2e/0x40 [snd_pcm] [ 562.630918] ? snd_pcm_stop_xrun+0x16/0x70 [snd_pcm] [ 562.630922] ? in_stream_callback+0x3e6/0x450 [snd_firewire_lib] [ 562.630925] ? handle_ir_packet_per_buffer+0x8e/0x1a0 [firewire_ohci] [ 562.630928] ? ohci_flush_iso_completions+0xa3/0x130 [firewire_ohci] [ 562.630932] ? fw_iso_context_flush_completions+0x15/0x20 [firewire_core] [ 562.630935] ? amdtp_stream_pcm_pointer+0x2d/0x40 [snd_firewire_lib] [ 562.630938] ? pcm_capture_pointer+0x19/0x20 [snd_oxfw] [ 562.630943] ? snd_pcm_update_hw_ptr0+0x47/0x3d0 [snd_pcm] [ 562.630945] ? poll_select_copy_remaining+0x150/0x150 [ 562.630947] ? poll_select_copy_remaining+0x150/0x150 [ 562.630952] ? snd_pcm_update_hw_ptr+0x10/0x20 [snd_pcm] [ 562.630956] ? snd_pcm_hwsync+0x45/0xb0 [snd_pcm] [ 562.630960] ? snd_pcm_common_ioctl1+0x1ff/0xc90 [snd_pcm] [ 562.630962] ? futex_wake+0x90/0x170 [ 562.630966] ? snd_pcm_capture_ioctl1+0x136/0x260 [snd_pcm] [ 562.630970] ? snd_pcm_capture_ioctl+0x27/0x40 [snd_pcm] [ 562.630972] ? do_vfs_ioctl+0xa3/0x610 [ 562.630974] ? vfs_read+0x11b/0x130 [ 562.630976] ? SyS_ioctl+0x79/0x90 [ 562.630978] ? entry_SYSCALL_64_fastpath+0x1e/0xad This commit fixes the above bug. This assumes two cases: 1. Any error is detected in software IRQ context of OHCI 1394 context. In this case, PCM substream should be aborted in packet handler. On the other hand, it should not be done in any process context. TO distinguish these two context, use 'in_interrupt()' macro. 2. Any error is detect in process context of ALSA PCM application. In this case, PCM substream should not be aborted in packet handler because PCM substream lock is acquired. The task to abort PCM substream should be done in ALSA PCM core. For this purpose, SNDRV_PCM_POS_XRUN is returned at 'struct snd_pcm_ops.pointer()'. Suggested-by: Clemens Ladisch <clemens@ladisch.de> Fixes: e9148ddd("ALSA: firewire-lib: flush completed packets when reading PCM position") Cc: <stable@vger.kernel.org> # 4.9+ Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 16 Jun, 2017 6 commits
-
-
Takashi Iwai authored
Just a tidy up to follow the standard EXPORT_SYMBOL*() declarations in order to improve grep-ability. - Move EXPORT_SYMBOL*() to the position right after its definition - Remove superfluous blank line before EXPORT_SYMBOL*() lines Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Just a tidy up to follow the standard EXPORT_SYMBOL*() declarations in order to improve grep-ability. - Move EXPORT_SYMBOL*() to the position right after its definition Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Just a tidy up to follow the standard EXPORT_SYMBOL*() declarations in order to improve grep-ability. - Move EXPORT_SYMBOL*() to the position right after its definition - Remove superfluous blank line before EXPORT_SYMBOL*() lines Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Just a tidy up to follow the standard EXPORT_SYMBOL*() declarations in order to improve grep-ability. - Remove superfluous blank line before EXPORT_SYMBOL*() lines Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Kailang Yang authored
Add this functions, it could support ALC256 for HP depop functions. It also can solve some ALC256 machine plug headset cause power off issue. Signed-off-by: Kailang Yang <kailang@realtek.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Christoph Hellwig authored
Use dma_alloc_attrs directly instead of the dma_alloc_noncoherent wrapper. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 14 Jun, 2017 10 commits
-
-
Takashi Iwai authored
The standard PCM chmap helper callbacks treat the NULL info->chmap as a fatal error and spews the kernel warning with stack trace when CONFIG_SND_DEBUG is on. This was OK, originally it was supposed to be always static and non-NULL. But, as the recent addition of Intel LPE audio driver shows, the chmap content may vary dynamically, and it can be even NULL when disconnected. The user still sees the kernel warning unnecessarily. For clearing such a confusion, this patch simply removes the snd_BUG_ON() in each place, just returns an error without warning. Cc: <stable@vger.kernel.org> # v4.11+ Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Sakamoto authored
SNDRV_PCM_IOCTL1_GSTATE was firstly introduced in v0.9.0, however never be used and the purpose is missing. This commit removes the long-abandoned command, bye. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Sakamoto authored
Drivers can implement 'struct snd_pcm_ops.ioctl' to handle some requests from ALSA PCM core. These requests are internal purpose in kernel land. Usually common set of operations are used for it. SNDRV_PCM_IOCTL1_INFO is one of the requests. According to code comment, it has been obsoleted in the old days. We can see old releases in ftp.alsa-project.org. The command was firstly introduced in v0.5.0 release as SND_PCM_IOCTL1_INFO, to allow drivers to fill data of 'struct snd_pcm_channel_info' type. In v0.9.0 release, this was obsoleted by the other commands for ioctl(2) such as SNDRV_PCM_IOCTL_CHANNEL_INFO. This commit removes the long-abandoned command, bye. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Megha Dey authored
Coffelake is another Intel part, so need to add PCI ID for it. Signed-off-by: Megha Dey <megha.dey@intel.com> Signed-off-by: Subhransu S. Prusty <subhransu.s.prusty@intel.com> Acked-by: Vinod Koul <vinod.koul@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
We call ack callback whenever appl_ptr gets updated via pcm_lib_apply_appl_ptr(). There are various code paths to call this function. A part of them are for read/write/forward/rewind, where the appl_ptr is always changed and thus the call of ack is mandatory. OTOH, another part of code paths are from the explicit user call, e.g. via SYNC_PTR ioctl. There, we may receive the same appl_ptr value, and in such a case, calling ack is obviously superfluous. This patch adds the check of the given appl_ptr value, and returns immediately if it's no real update. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Just a code cleanup. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Calling PREPARE ioctl to the stream in either PAUSED or SUSPENDED state may confuse some drivers that don't handle the state properly. Instead of fixing each driver, PCM core should take care of the proper state change before actually trying to (re-)prepare the stream. Namely, when the stream is in PAUSED state, it triggers PAUSE_RELEASE, and when in SUSPENDED state, it triggers STOP, before calling prepare callbacks. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
So far, the PCM core refuses DROP ioctl when the stream in the suspended state. This was basically to avoid the invalid state change *during* the suspend. But since we protect the power change globally in the common PCM ioctl caller side, it's guaranteed that snd_pcm_drop() is called at the right power state. So we can assume that the drop of stream is safe immediately after SUSPENDED state. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
All PCM common ioctls should run only in the powered up state, but currently only a few ioctls do the proper snd_power_lock() and snd_power_wait() invocations. Instead of adding to each place, do it commonly in the caller side, so that all these ioctls are assured to be operated at the power up state. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Use snd_pcm_action_lock_irq() helper instead of open coding. No functional change. Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 13 Jun, 2017 1 commit
-
-
Takashi Iwai authored
-
- 12 Jun, 2017 4 commits
-
-
Takashi Sakamoto authored
As long as I know, in userspace, '%c' format on printing format for tracepoint is replaced with '>c<' by existent tracing program; i.g. 'perf-trace' and 'trace-cmd'. This is inconvenient. This commit replaces the format with '%s'. The length of letters in the format string is not changed, thus this commit doesn't increase object size. In theory, I should work for improvements of these tracing programs, but here I'd like to save my time to work for the other projects. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Sakamoto authored
In design of ALSA PCM core, status and control data for runtime of ALSA PCM substream are shared between kernel/user spaces by page frame mapping with read-only attribute. Both of hardware-side and application-side position on PCM buffer are maintained as a part of the status data. In a view of ALSA PCM application, these two positions can be updated by executing ioctl(2) with some commands. There's an event of tracepoint for hardware-side position; 'hwptr'. On the other hand, no events for application-side position. This commit adds a new event for this purpose; 'applptr'. When the application-side position is changed in kernel space, this event is probed with useful information for developers. I note that the event is not probed for all of ALSA PCM applications, When applications are written by read/write programming scenario, the event is surely probed. The applications execute ioctl(2) with SNDRV_PCM_IOCTL_[READ|WRITE][N/I]_FRAMES to read/write any PCM frame, then ALSA PCM core updates the application-side position in kernel land. However, when applications are written by mmap programming scenario, if maintaining the application side position in kernel space accurately, applications should voluntarily execute ioctl(2) with SNDRV_PCM_IOCTL_SYNC_PTR to commit the number of handled PCM frames. If not voluntarily, the application-side position is not changed, thus the added event is not probed. There's a loophole, using architectures to which ALSA PCM core judges non cache coherent. In this case, the status and control data is not mapped into processe's VMA for any applications. Userland library, alsa-lib, is programmed for this case. It executes ioctl(2) with SNDRV_PCM_IOCTL_SYNC_PTR command every time to requiring the status and control data. ARM is such an architecture. Below is an example with serial sound interface (ssi) on i.mx6 quad core SoC. I use v4.1 kernel released by fsl-community with patches from VIA Tech. Inc. for VAB820, and my backport patches for relevant features for this patchset. I use Ubuntu 17.04 from ports.ubuntu.com as user land for armhf architecture. $ aplay -v -M -D hw:imx6vab820sgtl5,0 /dev/urandom -f S16_LE -r 48000 --period-size=128 --buffer-size=256 Playing raw data '/dev/urandom' : Signed 16 bit Little Endian, Rate 48000 Hz, Mono Hardware PCM card 0 'imx6-vab820-sgtl5000' device 0 subdevice 0 Its setup is: stream : PLAYBACK access : MMAP_INTERLEAVED format : S16_LE subformat : STD channels : 1 rate : 48000 exact rate : 48000 (48000/1) msbits : 16 buffer_size : 256 period_size : 128 period_time : 2666 tstamp_mode : NONE tstamp_type : MONOTONIC period_step : 1 avail_min : 128 period_event : 0 start_threshold : 256 stop_threshold : 256 silence_threshold: 0 silence_size : 0 boundary : 1073741824 appl_ptr : 0 hw_ptr : 0 mmap_area[0] = 0x76f98000,0,16 (16) $ trace-cmd record -e snd_pcm:hwptr -e snd_pcm:applptr $ trace-cmd report ... 60.208495: applptr: pcmC0D0p/sub0: prev=1792, curr=1792, avail=0, period=128, buf=256 60.208633: applptr: pcmC0D0p/sub0: prev=1792, curr=1792, avail=0, period=128, buf=256 60.210022: hwptr: pcmC0D0p/sub0: IRQ: pos=128, old=1536, base=1536, period=128, buf=256 60.210202: applptr: pcmC0D0p/sub0: prev=1792, curr=1792, avail=128, period=128, buf=256 60.210344: hwptr: pcmC0D0p/sub0: POS: pos=128, old=1664, base=1536, period=128, buf=256 60.210348: applptr: pcmC0D0p/sub0: prev=1792, curr=1792, avail=128, period=128, buf=256 60.210486: applptr: pcmC0D0p/sub0: prev=1792, curr=1792, avail=128, period=128, buf=256 60.210626: applptr: pcmC0D0p/sub0: prev=1792, curr=1920, avail=0, period=128, buf=256 60.211002: applptr: pcmC0D0p/sub0: prev=1920, curr=1920, avail=0, period=128, buf=256 60.211142: hwptr: pcmC0D0p/sub0: POS: pos=128, old=1664, base=1536, period=128, buf=256 60.211146: applptr: pcmC0D0p/sub0: prev=1920, curr=1920, avail=0, period=128, buf=256 60.211287: applptr: pcmC0D0p/sub0: prev=1920, curr=1920, avail=0, period=128, buf=256 60.212690: hwptr: pcmC0D0p/sub0: IRQ: pos=0, old=1664, base=1536, period=128, buf=256 60.212866: applptr: pcmC0D0p/sub0: prev=1920, curr=1920, avail=128, period=128, buf=256 60.212999: hwptr: pcmC0D0p/sub0: POS: pos=0, old=1792, base=1792, period=128, buf=256 60.213003: applptr: pcmC0D0p/sub0: prev=1920, curr=1920, avail=128, period=128, buf=256 60.213135: applptr: pcmC0D0p/sub0: prev=1920, curr=1920, avail=128, period=128, buf=256 60.213276: applptr: pcmC0D0p/sub0: prev=1920, curr=2048, avail=0, period=128, buf=256 60.213654: applptr: pcmC0D0p/sub0: prev=2048, curr=2048, avail=0, period=128, buf=256 60.213796: hwptr: pcmC0D0p/sub0: POS: pos=0, old=1792, base=1792, period=128, buf=256 60.213800: applptr: pcmC0D0p/sub0: prev=2048, curr=2048, avail=0, period=128, buf=256 60.213937: applptr: pcmC0D0p/sub0: prev=2048, curr=2048, avail=0, period=128, buf=256 60.215356: hwptr: pcmC0D0p/sub0: IRQ: pos=128, old=1792, base=1792, period=128, buf=256 60.215542: applptr: pcmC0D0p/sub0: prev=2048, curr=2048, avail=128, period=128, buf=256 60.215679: hwptr: pcmC0D0p/sub0: POS: pos=128, old=1920, base=1792, period=128, buf=256 60.215683: applptr: pcmC0D0p/sub0: prev=2048, curr=2048, avail=128, period=128, buf=256 60.215813: applptr: pcmC0D0p/sub0: prev=2048, curr=2048, avail=128, period=128, buf=256 60.215947: applptr: pcmC0D0p/sub0: prev=2048, curr=2176, avail=0, period=128, buf=256 ... We can surely see 'applptr' event is probed even if the application run for mmap programming scenario ('-M' option and 'hw' plugin). Below is a result of strace: 02:44:15.886382 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.887203 poll([{fd=4, events=POLLOUT|POLLERR|POLLNVAL}], 1, -1) = 1 ([{fd=4, revents=POLLOUT}]) 02:44:15.887471 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.887637 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.887805 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.887969 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.888132 read(3, "..."..., 256) = 256 02:44:15.889040 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.889221 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.889431 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.889606 poll([{fd=4, events=POLLOUT|POLLERR|POLLNVAL}], 1, -1) = 1 ([{fd=4, revents=POLLOUT}]) 02:44:15.889833 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.889998 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.890164 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.891048 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.891228 read(3, "..."..., 256) = 256 02:44:15.891497 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.891661 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.891829 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 02:44:15.891991 poll([{fd=4, events=POLLOUT|POLLERR|POLLNVAL}], 1, -1) = 1 ([{fd=4, revents=POLLOUT}]) 02:44:15.893007 ioctl(4, SNDRV_PCM_IOCTL_SYNC_PTR, 0x56a32b30) = 0 We can see 7 calls of ioctl(2) with SNDRV_PCM_IOCTL_SYNC_PTR per loop with call of poll(2). 128 PCM frames are transferred per loop of one poll(2), because the PCM substream is configured with S16_LE format and 1 channel (2 byte * 1 * 128 = 256 bytes). This equals to the size of period of PCM buffer. Comparing to the probed data, one of the 7 calls of ioctl(2) is actually used to commit the number of copied PCM frames to kernel space. The other calls are just used to check runtime status of PCM substream; e.g. XRUN. The tracepoint event is useful to investigate this case. I note that below modules are related to the above sample. * snd-soc-dummy.ko * snd-soc-imx-sgtl5000.ko * snd-soc-fsl-ssi.ko * snd-soc-imx-pcm-dma.ko * snd-soc-sgtl5000.ko My additional note is lock acquisition. The event is probed under acquiring PCM stream lock. This means that calculation in the event is free from any hardware events. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Sakamoto authored
In a series of recent work, ALSA PCM core got some arrangements to handle application-side position on PCM buffer. However, relevant codes still disperse to two translation units This commit unifies these codes into a helper function. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
Many drivers bind the sequencer stuff in off-load by another driver module, so that it's loaded only on demand. In the current code, this mechanism doesn't work when the driver is built-in while the sequencer is module. We check with IS_REACHABLE() and enable only when the sequencer is in the same level of build. However, this is basically a overshoot. The binder code (snd-seq-device) is an individual module from the sequencer core (snd-seq), and we just have to make the former a built-in while keeping the latter a module for allowing the scenario like the above. This patch achieves that by rewriting Kconfig slightly. Now, a driver that provides the manual sequencer device binding should select CONFIG_SND_SEQ_DEVICE in a way as select SND_SEQ_DEVICE if SND_SEQUENCER != n Note that the "!=n" is needed here to avoid the influence of the sequencer core is module while the driver is built-in. Also, since rawmidi.o may be linked with snd_seq_device.o when built-in, we have to shuffle the code to make the linker happy. (the kernel linker isn't smart enough yet to handle such a case.) That is, snd_seq_device.c is moved to sound/core from sound/core/seq, as well as Makefile. Last but not least, the patch replaces the code using IS_REACHABLE() with IS_ENABLED(), since now the condition meets always when enabled. Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 11 Jun, 2017 2 commits
-
-
Takashi Sakamoto authored
At present, trace events are probed even if corresponding parameter is not actually changed. This is inconvenient. This commit improves the behaviour. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Sakamoto authored
When refining mask/interval parameters, helper functions can return error code. This error is not handled immediately. This seems to return parameters to userspace applications in its meddle of processing. However, in general, when receiving error from system calls, the application might not handle argument buffer. It's reasonable to judge the above design as superfluity. This commit handles the error immediately. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
- 09 Jun, 2017 2 commits
-
-
Takashi Iwai authored
Instead of the non-standard way to enable the build of snd-emux-synth module inside Makefile, rewrite Kconfig to select the item explicitly from each driver (sbawe and emu10k1). This is the standard way. Signed-off-by: Takashi Iwai <tiwai@suse.de>
-
Takashi Iwai authored
This is a slightly intensive rewrite of Kconfig and Makefile about ALSA sequencer stuff. The first major change is that the kconfig items for the sequencer are moved to sound/core/seq/Kconfig. OK, that's easy. The substantial change is that, instead of hackish top-level module selection in Makefile, we define a Kconfig item for each sequencer module. The driver that requires such sequencer components select exclusively the kconfig items. This is more straightforward and standard way. Signed-off-by: Takashi Iwai <tiwai@suse.de>
-