- 08 Dec, 2020 40 commits
-
-
Filipe Manana authored
Every time we log an inode we lookup in the fs/subvol tree for xattrs and if we have any, log them into the log tree. However it is very common to have inodes without any xattrs, so doing the search wastes times, but more importantly it adds contention on the fs/subvol tree locks, either making the logging code block and wait for tree locks or making the logging code making other concurrent operations block and wait. The most typical use cases where xattrs are used are when capabilities or ACLs are defined for an inode, or when SELinux is enabled. This change makes the logging code detect when an inode does not have xattrs and skip the xattrs search the next time the inode is logged, unless the inode is evicted and loaded again or a xattr is added to the inode. Therefore skipping the search for xattrs on inodes that don't ever have xattrs and are fsynced with some frequency. The following script that calls dbench was used to measure the impact of this change on a VM with 8 CPUs, 16Gb of ram, using a raw NVMe device directly (no intermediary filesystem on the host) and using a non-debug kernel (default configuration on Debian distributions): $ cat test.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd" mkfs.btrfs -f -m single -d single $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 200 40 umount $MNT The results before this change: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 5761605 0.172 312.057 Close 4232452 0.002 10.927 Rename 243937 1.406 277.344 Unlink 1163456 0.631 298.402 Deltree 160 11.581 221.107 Mkdir 80 0.003 0.005 Qpathinfo 5221410 0.065 122.309 Qfileinfo 915432 0.001 3.333 Qfsinfo 957555 0.003 3.992 Sfileinfo 469244 0.023 20.494 Find 2018865 0.448 123.659 WriteX 2874851 0.049 118.529 ReadX 9030579 0.004 21.654 LockX 18754 0.003 4.423 UnlockX 18754 0.002 0.331 Flush 403792 10.944 359.494 Throughput 908.444 MB/sec 40 clients 40 procs max_latency=359.500 ms The results after this change: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 6442521 0.159 230.693 Close 4732357 0.002 10.972 Rename 272809 1.293 227.398 Unlink 1301059 0.563 218.500 Deltree 160 7.796 54.887 Mkdir 80 0.008 0.478 Qpathinfo 5839452 0.047 124.330 Qfileinfo 1023199 0.001 4.996 Qfsinfo 1070760 0.003 5.709 Sfileinfo 524790 0.033 21.765 Find 2257658 0.314 125.611 WriteX 3211520 0.040 232.135 ReadX 10098969 0.004 25.340 LockX 20974 0.003 1.569 UnlockX 20974 0.002 3.475 Flush 451553 10.287 331.037 Throughput 1011.77 MB/sec 40 clients 40 procs max_latency=331.045 ms +10.8% throughput, -8.2% max latency Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
There are only 2 direct calls to set_extent_bit outside of extent-io - in btrfs_find_new_delalloc_bytes and btrfs_truncate_block, the rest are thin wrappers around __set_extent_bit. This adds unnecessary indirection and just makes it more annoying when looking at the various extent bit manipulation functions. This patch renames __set_extent_bit to set_extent_bit effectively removing a level of indirection. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat and remove __must_check ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
It is unused everywhere now, it can be removed. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
It is completely unused now, remove it. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We no longer use recursion, so __btrfs_tree_read_lock(BTRFS_NESTING_NORMAL) == btrfs_tree_read_lock. Replace this call with the simple helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We no longer have recursive locking and there's no need for separate helpers that allowed the transition to rwsem with minimal code changes. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Now that we're no longer using recursion, rip out all of the supporting code. Follow up patches will clean up the callers of these functions. The extent_buffer::lock_owner is still retained as it allows safety checks in btrfs_init_new_buffer for the case that the free space cache is corrupted and we try to allocate a block that we are currently using and have locked in the path. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
With my async free space cache loading patches ("btrfs: load free space cache asynchronously") we no longer have a user of path->recurse and can remove it. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Filipe reported the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc2-btrfs-next-71 #1 Not tainted ------------------------------------------------------ find/324157 is trying to acquire lock: ffff8ebc48d293a0 (btrfs-tree-01#2/3){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] but task is already holding lock: ffff8eb9932c5088 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-tree-00){++++}-{3:3}: lock_acquire+0xd8/0x490 down_write_nested+0x44/0x120 __btrfs_tree_lock+0x27/0x120 [btrfs] btrfs_search_slot+0x2a3/0xc50 [btrfs] btrfs_insert_empty_items+0x58/0xa0 [btrfs] insert_with_overflow+0x44/0x110 [btrfs] btrfs_insert_xattr_item+0xb8/0x1d0 [btrfs] btrfs_setxattr+0xd6/0x4c0 [btrfs] btrfs_setxattr_trans+0x68/0x100 [btrfs] __vfs_setxattr+0x66/0x80 __vfs_setxattr_noperm+0x70/0x200 vfs_setxattr+0x6b/0x120 setxattr+0x125/0x240 path_setxattr+0xba/0xd0 __x64_sys_setxattr+0x27/0x30 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-tree-01#2/3){++++}-{3:3}: check_prev_add+0x91/0xc60 __lock_acquire+0x1689/0x3130 lock_acquire+0xd8/0x490 down_read_nested+0x45/0x220 __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] btrfs_next_old_leaf+0x27d/0x580 [btrfs] btrfs_real_readdir+0x1e3/0x4b0 [btrfs] iterate_dir+0x170/0x1c0 __x64_sys_getdents64+0x83/0x140 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-tree-01#2/3); lock(btrfs-tree-00); lock(btrfs-tree-01#2/3); *** DEADLOCK *** 5 locks held by find/324157: #0: ffff8ebc502c6e00 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0x4d/0x60 #1: ffff8eb97f689980 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: iterate_dir+0x52/0x1c0 #2: ffff8ebaec00ca58 (btrfs-tree-02#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] #3: ffff8eb98f986f78 (btrfs-tree-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] #4: ffff8eb9932c5088 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] stack backtrace: CPU: 2 PID: 324157 Comm: find Not tainted 5.10.0-rc2-btrfs-next-71 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 check_noncircular+0xff/0x110 ? mark_lock.part.0+0x468/0xe90 check_prev_add+0x91/0xc60 __lock_acquire+0x1689/0x3130 ? kvm_clock_read+0x14/0x30 ? kvm_sched_clock_read+0x5/0x10 lock_acquire+0xd8/0x490 ? __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] down_read_nested+0x45/0x220 ? __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] __btrfs_tree_read_lock+0x32/0x1a0 [btrfs] btrfs_next_old_leaf+0x27d/0x580 [btrfs] btrfs_real_readdir+0x1e3/0x4b0 [btrfs] iterate_dir+0x170/0x1c0 __x64_sys_getdents64+0x83/0x140 ? filldir+0x1d0/0x1d0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This happens because btrfs_next_old_leaf searches down to our current key, and then walks up the path until we can move to the next slot, and then reads back down the path so we get the next leaf. However it doesn't unlock any lower levels until it replaces them with the new extent buffer. This is technically fine, but of course causes lockdep to complain, because we could be holding locks on lower levels while locking upper levels. Fix this by dropping all nodes below the level that we use as our new starting point before we start reading back down the path. This also allows us to drop the nested/recursive locking magic, because we're no longer locking two nodes at the same level anymore. Reported-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We are carrying around this next_rw_lock from when we would do spinning vs blocking read locks. Now that we have the rwsem locking we can simply use the read lock flag unconditionally and the read lock helpers. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Commit 343694eee8d8 ("btrfs: switch seed device to list api"), missed to check if the parameter seed is true in the function btrfs_find_device(). This tells it whether to traverse the seed device list or not. After this commit, the argument is unused and can be removed. In device_list_add() it's not necessary because fs_devices always points to the device's fs_devices. So with the devid+uuid matching, it will find the right device and return, thus not needing to traverse seed devices. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Drop the condition in verify_one_dev_extent, btrfs_device::disk_total_bytes is set even for a seed device. The comment is wrong, the size is properly set when cloning the device. Commit 1b3922a8 ("btrfs: Use real device structure to verify dev extent") introduced it but it's unclear why the total_disk_bytes was 0. Theoretically, all devices (including missing and seed) marked with the BTRFS_DEV_STATE_IN_FS_METADATA flag gets the total_disk_bytes updated at fill_device_from_item(): open_ctree() btrfs_read_chunk_tree() read_one_dev() open_seed_device() fill_device_from_item() Even if verify_one_dev_extent() reports total_disk_bytes == 0, then its a bug to be fixed somewhere else and not in verify_one_dev_extent() as it's just a messenger. It is never expected that a total_disk_bytes shall be zero. The function fill_device_from_item() does the job of reading it from the item and updating btrfs_device::disk_total_bytes. So both the missing device and the seed devices do have their disk_total_bytes updated. btrfs_find_device can also return a device from fs_info->seed_list because it searches it as well. Furthermore, while removing the device if there is a power loss, we could have a device with its total_bytes = 0, that's still valid. Instead, introduce a check against maximum block device size in read_one_dev(). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
Commit cf89af14 ("btrfs: dev-replace: fail mount if we don't have replace item with target device") dropped the multi stage operation of btrfs_free_extra_devids() that does not need to check replace target anymore and we can remove the 'step' argument. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
There are several occasions where we do not update the inode's number of used bytes atomically, resulting in a concurrent stat(2) syscall to report a value of used blocks that does not correspond to a valid value, that is, a value that does not match neither what we had before the operation nor what we get after the operation completes. In extreme cases it can result in stat(2) reporting zero used blocks, which can cause problems for some userspace tools where they can consider a file with a non-zero size and zero used blocks as completely sparse and skip reading data, as reported/discussed a long time ago in some threads like the following: https://lists.gnu.org/archive/html/bug-tar/2016-07/msg00001.html The cases where this can happen are the following: -> Case 1 If we do a write (buffered or direct IO) against a file region for which there is already an allocated extent (or multiple extents), then we have a short time window where we can report a number of used blocks to stat(2) that does not take into account the file region being overwritten. This short time window happens when completing the ordered extent(s). This happens because when we drop the extents in the write range we decrement the inode's number of bytes and later on when we insert the new extent(s) we increment the number of bytes in the inode, resulting in a short time window where a stat(2) syscall can get an incorrect number of used blocks. If we do writes that overwrite an entire file, then we have a short time window where we report 0 used blocks to stat(2). Example reproducer: $ cat reproducer-1.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi stat_loop() { trap "wait; exit" SIGTERM local filepath=$1 local expected=$2 local got while :; do got=$(stat -c %b $filepath) if [ $got -ne $expected ]; then echo -n "ERROR: unexpected used blocks" echo " (got: $got expected: $expected)" fi done } mkfs.btrfs -f $DEV > /dev/null # mkfs.xfs -f $DEV > /dev/null # mkfs.ext4 -F $DEV > /dev/null # mkfs.f2fs -f $DEV > /dev/null # mkfs.reiserfs -f $DEV > /dev/null mount $DEV $MNT xfs_io -f -s -c "pwrite -b 64K 0 64K" $MNT/foobar >/dev/null expected=$(stat -c %b $MNT/foobar) # Create a process to keep calling stat(2) on the file and see if the # reported number of blocks used (disk space used) changes, it should # not because we are not increasing the file size nor punching holes. stat_loop $MNT/foobar $expected & loop_pid=$! for ((i = 0; i < 50000; i++)); do xfs_io -s -c "pwrite -b 64K 0 64K" $MNT/foobar >/dev/null done kill $loop_pid &> /dev/null wait umount $DEV $ ./reproducer-1.sh ERROR: unexpected used blocks (got: 0 expected: 128) ERROR: unexpected used blocks (got: 0 expected: 128) (...) Note that since this is a short time window where the race can happen, the reproducer may not be able to always trigger the bug in one run, or it may trigger it multiple times. -> Case 2 If we do a buffered write against a file region that does not have any allocated extents, like a hole or beyond EOF, then during ordered extent completion we have a short time window where a concurrent stat(2) syscall can report a number of used blocks that does not correspond to the value before or after the write operation, a value that is actually larger than the value after the write completes. This happens because once we start a buffered write into an unallocated file range we increment the inode's 'new_delalloc_bytes', to make sure any stat(2) call gets a correct used blocks value before delalloc is flushed and completes. However at ordered extent completion, after we inserted the new extent, we increment the inode's number of bytes used with the size of the new extent, and only later, when clearing the range in the inode's iotree, we decrement the inode's 'new_delalloc_bytes' counter with the size of the extent. So this results in a short time window where a concurrent stat(2) syscall can report a number of used blocks that accounts for the new extent twice. Example reproducer: $ cat reproducer-2.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi stat_loop() { trap "wait; exit" SIGTERM local filepath=$1 local expected=$2 local got while :; do got=$(stat -c %b $filepath) if [ $got -ne $expected ]; then echo -n "ERROR: unexpected used blocks" echo " (got: $got expected: $expected)" fi done } mkfs.btrfs -f $DEV > /dev/null # mkfs.xfs -f $DEV > /dev/null # mkfs.ext4 -F $DEV > /dev/null # mkfs.f2fs -f $DEV > /dev/null # mkfs.reiserfs -f $DEV > /dev/null mount $DEV $MNT touch $MNT/foobar write_size=$((64 * 1024)) for ((i = 0; i < 16384; i++)); do offset=$(($i * $write_size)) xfs_io -c "pwrite -S 0xab $offset $write_size" $MNT/foobar >/dev/null blocks_used=$(stat -c %b $MNT/foobar) # Fsync the file to trigger writeback and keep calling stat(2) on it # to see if the number of blocks used changes. stat_loop $MNT/foobar $blocks_used & loop_pid=$! xfs_io -c "fsync" $MNT/foobar kill $loop_pid &> /dev/null wait $loop_pid done umount $DEV $ ./reproducer-2.sh ERROR: unexpected used blocks (got: 265472 expected: 265344) ERROR: unexpected used blocks (got: 284032 expected: 283904) (...) Note that since this is a short time window where the race can happen, the reproducer may not be able to always trigger the bug in one run, or it may trigger it multiple times. -> Case 3 Another case where such problems happen is during other operations that replace extents in a file range with other extents. Those operations are extent cloning, deduplication and fallocate's zero range operation. The cause of the problem is similar to the first case. When we drop the extents from a range, we decrement the inode's number of bytes, and later on, after inserting the new extents we increment it. Since this is not done atomically, a concurrent stat(2) call can see and return a number of used blocks that is smaller than it should be, does not match the number of used blocks before or after the clone/deduplication/zero operation. Like for the first case, when doing a clone, deduplication or zero range operation against an entire file, we end up having a time window where we can report 0 used blocks to a stat(2) call. Example reproducer: $ cat reproducer-3.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi mkfs.btrfs -f $DEV > /dev/null # mkfs.xfs -f -m reflink=1 $DEV > /dev/null mount $DEV $MNT extent_size=$((64 * 1024)) num_extents=16384 file_size=$(($extent_size * $num_extents)) # File foo has many small extents. xfs_io -f -s -c "pwrite -S 0xab -b $extent_size 0 $file_size" $MNT/foo \ > /dev/null # File bar has much less extents and has exactly the same data as foo. xfs_io -f -c "pwrite -S 0xab 0 $file_size" $MNT/bar > /dev/null expected=$(stat -c %b $MNT/foo) # Now deduplicate bar into foo. While the deduplication is in progres, # the number of used blocks/file size reported by stat should not change xfs_io -c "dedupe $MNT/bar 0 0 $file_size" $MNT/foo > /dev/null & dedupe_pid=$! while [ -n "$(ps -p $dedupe_pid -o pid=)" ]; do used=$(stat -c %b $MNT/foo) if [ $used -ne $expected ]; then echo "Unexpected blocks used: $used (expected: $expected)" fi done umount $DEV $ ./reproducer-3.sh Unexpected blocks used: 2076800 (expected: 2097152) Unexpected blocks used: 2097024 (expected: 2097152) Unexpected blocks used: 2079872 (expected: 2097152) (...) Note that since this is a short time window where the race can happen, the reproducer may not be able to always trigger the bug in one run, or it may trigger it multiple times. So fix this by: 1) Making btrfs_drop_extents() not decrement the VFS inode's number of bytes, and instead return the number of bytes; 2) Making any code that drops extents and adds new extents update the inode's number of bytes atomically, while holding the btrfs inode's spinlock, which is also used by the stat(2) callback to get the inode's number of bytes; 3) For ranges in the inode's iotree that are marked as 'delalloc new', corresponding to previously unallocated ranges, increment the inode's number of bytes when clearing the 'delalloc new' bit from the range, in the same critical section that decrements the inode's 'new_delalloc_bytes' counter, delimited by the btrfs inode's spinlock. An alternative would be to have btrfs_getattr() wait for any IO (ordered extents in progress) and locking the whole range (0 to (u64)-1) while it it computes the number of blocks used. But that would mean blocking stat(2), which is a very used syscall and expected to be fast, waiting for writes, clone/dedupe, fallocate, page reads, fiemap, etc. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When defragmenting we skip ranges that have holes or inline extents, so that we don't do unnecessary IO and waste space. We do this check when calling should_defrag_range() at btrfs_defrag_file(). However we do it without holding the inode's lock. The reason we do it like this is to avoid blocking other tasks for too long, that possibly want to operate on other file ranges, since after the call to should_defrag_range() and before locking the inode, we trigger a synchronous page cache readahead. However before we were able to lock the inode, some other task might have punched a hole in our range, or we may now have an inline extent there, in which case we should not set the range for defrag anymore since that would cause unnecessary IO and make us waste space (i.e. allocating extents to contain zeros for a hole). So after we locked the inode and the range in the iotree, check again if we have holes or an inline extent, and if we do, just skip the range. I hit this while testing my next patch that fixes races when updating an inode's number of bytes (subject "btrfs: update the number of bytes used by an inode atomically"), and it depends on this change in order to work correctly. Alternatively I could rework that other patch to detect holes and flag their range with the 'new delalloc' bit, but this itself fixes an efficiency problem due a race that from a functional point of view is not harmful (it could be triggered with btrfs/062 from fstests). CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
There are many arguments for __btrfs_drop_extents() and its wrapper btrfs_drop_extents(), which makes it hard to add more arguments to it and requires changing every caller. I have added a couple myself back in 2014 commit 1acae57b ("Btrfs: faster file extent item replace operations") and therefore know firsthand that it is a bit cumbersome to add additional arguments to these functions. Since I will need to add more arguments in a subsequent bug fix, this change is preparatory work and adds a data structure that holds all the arguments, for both input and output, that are passed to this function, with some comments in the structure's definition mentioning what each field is and how it relates to other fields. Callers of this function need only to zero out the content of the structure and setup only the fields they need. This also removes the need to have both __btrfs_drop_extents() and btrfs_drop_extents(), so now we have a single function named btrfs_drop_extents() that takes a pointer to this new data structure (struct btrfs_drop_extents_args). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Both Filipe and Fedora QA recently hit the following lockdep splat: WARNING: possible recursive locking detected 5.10.0-0.rc1.20201028gited8780e3.57.fc34.x86_64 #1 Not tainted -------------------------------------------- rsync/2610 is trying to acquire lock: ffff89617ed48f20 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140 but task is already holding lock: ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&eb->lock); lock(&eb->lock); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by rsync/2610: #0: ffff896107212b90 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: walk_component+0x10c/0x190 #1: ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140 stack backtrace: CPU: 1 PID: 2610 Comm: rsync Not tainted 5.10.0-0.rc1.20201028gited8780e3.57.fc34.x86_64 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x8b/0xb0 __lock_acquire.cold+0x12d/0x2a4 ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 lock_acquire+0xc8/0x400 ? btrfs_tree_read_lock_atomic+0x34/0x140 ? read_block_for_search.isra.0+0xdd/0x320 _raw_read_lock+0x3d/0xa0 ? btrfs_tree_read_lock_atomic+0x34/0x140 btrfs_tree_read_lock_atomic+0x34/0x140 btrfs_search_slot+0x616/0x9a0 btrfs_lookup_dir_item+0x6c/0xb0 btrfs_lookup_dentry+0xa8/0x520 ? lockdep_init_map_waits+0x4c/0x210 btrfs_lookup+0xe/0x30 __lookup_slow+0x10f/0x1e0 walk_component+0x11b/0x190 path_lookupat+0x72/0x1c0 filename_lookup+0x97/0x180 ? strncpy_from_user+0x96/0x1e0 ? getname_flags.part.0+0x45/0x1a0 vfs_statx+0x64/0x100 ? lockdep_hardirqs_on_prepare+0xff/0x180 ? _raw_spin_unlock_irqrestore+0x41/0x50 __do_sys_newlstat+0x26/0x40 ? lockdep_hardirqs_on_prepare+0xff/0x180 ? syscall_enter_from_user_mode+0x27/0x80 ? syscall_enter_from_user_mode+0x27/0x80 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 I have also seen a report of lockdep complaining about the lock class that was looked up being the same as the lock class on the lock we were using, but I can't find the report. These are problems that occur because we do not have the lockdep class set on the extent buffer until _after_ we read the eb in properly. This is problematic for concurrent readers, because we will create the extent buffer, lock it, and then attempt to read the extent buffer. If a second thread comes in and tries to do a search down the same path they'll get the above lockdep splat because the class isn't set properly on the extent buffer. There was a good reason for this, we generally didn't know the real owner of the eb until we read it, specifically in refcounted roots. However now all refcounted roots have the same class name, so we no longer need to worry about this. For non-refcounted trees we know which root we're on based on the parent. Fix this by setting the lockdep class on the eb at creation time instead of read time. This will fix the splat and the weirdness where the class changes in the middle of locking the block. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Now that we've plumbed all of the callers to have the owner root and the level, plumb it down into alloc_extent_buffer(). Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
The readahead infrastructure does raw reads of extent buffers, but we're going to need to know their owner and level in order to set the lockdep key properly, so plumb in the infrastructure that we'll need to have this information when we start allocating extent buffers. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
In order to properly set the lockdep class of a newly allocated block we need to know the owner of the block. For non-refcounted trees this is straightforward, we always know in advance what tree we're reading from. For refcounted trees we don't necessarily know, however all refcounted trees share the same lockdep class name, tree-<level>. Fix all the callers of read_tree_block() to pass in the root objectid we're using. In places like relocation and backref we could probably unconditionally use 0, but just in case use the root when we have it, otherwise use 0 in the cases we don't have the root as it's going to be a refcounted tree anyway. This is a preparation patch for further changes. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We're open-coding btrfs_read_node_slot() here, replace with the helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We're open-coding btrfs_read_node_slot() here, replace with the helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We're open-coding btrfs_read_node_slot() here, replace with the helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We're open-coding btrfs_read_node_slot() here, replace with the helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We're open-coding btrfs_read_node_slot() here, replace with the helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We're open coding btrfs_read_node_slot in do_relocation, replace this with the proper helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We do not need to call read_tree_block() here, simply use the btrfs_read_node_slot helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-