1. 09 Jul, 2011 3 commits
    • Russell King's avatar
      ARM: vfp: fix a hole in VFP thread migration · f8f2a852
      Russell King authored
      Fix a hole in the VFP thread migration.  Lets define two threads.
      
      Thread 1, we'll call 'interesting_thread' which is a thread which is
      running on CPU0, using VFP (so vfp_current_hw_state[0] =
      &interesting_thread->vfpstate) and gets migrated off to CPU1, where
      it continues execution of VFP instructions.
      
      Thread 2, we'll call 'new_cpu0_thread' which is the thread which takes
      over on CPU0.  This has also been using VFP, and last used VFP on CPU0,
      but doesn't use it again.
      
      The following code will be executed twice:
      
      		cpu = thread->cpu;
      
      		/*
      		 * On SMP, if VFP is enabled, save the old state in
      		 * case the thread migrates to a different CPU. The
      		 * restoring is done lazily.
      		 */
      		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) {
      			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
      			vfp_current_hw_state[cpu]->hard.cpu = cpu;
      		}
      		/*
      		 * Thread migration, just force the reloading of the
      		 * state on the new CPU in case the VFP registers
      		 * contain stale data.
      		 */
      		if (thread->vfpstate.hard.cpu != cpu)
      			vfp_current_hw_state[cpu] = NULL;
      
      The first execution will be on CPU0 to switch away from 'interesting_thread'.
      interesting_thread->cpu will be 0.
      
      So, vfp_current_hw_state[0] points at interesting_thread->vfpstate.
      The hardware state will be saved, along with the CPU number (0) that
      it was executing on.
      
      'thread' will be 'new_cpu0_thread' with new_cpu0_thread->cpu = 0.
      Also, because it was executing on CPU0, new_cpu0_thread->vfpstate.hard.cpu = 0,
      and so the thread migration check is not triggered.
      
      This means that vfp_current_hw_state[0] remains pointing at interesting_thread.
      
      The second execution will be on CPU1 to switch _to_ 'interesting_thread'.
      So, 'thread' will be 'interesting_thread' and interesting_thread->cpu now
      will be 1.  The previous thread executing on CPU1 is not relevant to this
      so we shall ignore that.
      
      We get to the thread migration check.  Here, we discover that
      interesting_thread->vfpstate.hard.cpu = 0, yet interesting_thread->cpu is
      now 1, indicating thread migration.  We set vfp_current_hw_state[1] to
      NULL.
      
      So, at this point vfp_current_hw_state[] contains the following:
      
      [0] = &interesting_thread->vfpstate
      [1] = NULL
      
      Our interesting thread now executes a VFP instruction, takes a fault
      which loads the state into the VFP hardware.  Now, through the assembly
      we now have:
      
      [0] = &interesting_thread->vfpstate
      [1] = &interesting_thread->vfpstate
      
      CPU1 stops due to ptrace (and so saves its VFP state) using the thread
      switch code above), and CPU0 calls vfp_sync_hwstate().
      
      	if (vfp_current_hw_state[cpu] == &thread->vfpstate) {
      		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
      
      BANG, we corrupt interesting_thread's VFP state by overwriting the
      more up-to-date state saved by CPU1 with the old VFP state from CPU0.
      
      Fix this by ensuring that we have sane semantics for the various state
      describing variables:
      
      1. vfp_current_hw_state[] points to the current owner of the context
         information stored in each CPUs hardware, or NULL if that state
         information is invalid.
      2. thread->vfpstate.hard.cpu always contains the most recent CPU number
         which the state was loaded into or NR_CPUS if no CPU owns the state.
      
      So, for a particular CPU to be a valid owner of the VFP state for a
      particular thread t, two things must be true:
      
       vfp_current_hw_state[cpu] == &t->vfpstate && t->vfpstate.hard.cpu == cpu.
      
      and that is valid from the moment a CPU loads the saved VFP context
      into the hardware.  This gives clear and consistent semantics to
      interpreting these variables.
      
      This patch also fixes thread copying, ensuring that t->vfpstate.hard.cpu
      is invalidated, otherwise CPU0 may believe it was the last owner.  The
      hole can happen thus:
      
      - thread1 runs on CPU2 using VFP, migrates to CPU3, exits and thread_info
        freed.
      - New thread allocated from a previously running thread on CPU2, reusing
        memory for thread1 and copying vfp.hard.cpu.
      
      At this point, the following are true:
      
      	new_thread1->vfpstate.hard.cpu == 2
      	&new_thread1->vfpstate == vfp_current_hw_state[2]
      
      Lastly, this also addresses thread flushing in a similar way to thread
      copying.  Hole is:
      
      - thread runs on CPU0, using VFP, migrates to CPU1 but does not use VFP.
      - thread calls execve(), so thread flush happens, leaving
        vfp_current_hw_state[0] intact.  This vfpstate is memset to 0 causing
        thread->vfpstate.hard.cpu = 0.
      - thread migrates back to CPU0 before using VFP.
      
      At this point, the following are true:
      
      	thread->vfpstate.hard.cpu == 0
      	&thread->vfpstate == vfp_current_hw_state[0]
      Signed-off-by: default avatarRussell King <rmk+kernel@arm.linux.org.uk>
      f8f2a852
    • Russell King's avatar
      ARM: vfp: rename check_exception to vfp_hw_state_valid · 08409c33
      Russell King authored
      Rename this branch to more accurately reflect why its taken, rather
      than what the following code does.  It is the only caller of this code.
      This helps to clarify following changes, yet this change results in no
      actual code change.
      
      Document the VFP hardware state at the target of this branch.
      Signed-off-by: default avatarRussell King <rmk+kernel@arm.linux.org.uk>
      08409c33
    • Russell King's avatar
      ARM: vfp: rename last_VFP_context to vfp_current_hw_state · af61bdf0
      Russell King authored
      Rename the slightly confusing 'last_VFP_context' variable to be more
      descriptive of what it actually is.  This variable stores a pointer
      to the current owner's vfpstate structure for the context held in the
      VFP hardware.
      Signed-off-by: default avatarRussell King <rmk+kernel@arm.linux.org.uk>
      af61bdf0
  2. 04 Jul, 2011 7 commits
  3. 03 Jul, 2011 30 commits