process.c 56.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45
#include <linux/pkeys.h>
46 47 48 49 50 51

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
52
#include <asm/machdep.h>
53
#include <asm/time.h>
54
#include <asm/runlatch.h>
55
#include <asm/syscalls.h>
56
#include <asm/switch_to.h>
57
#include <asm/tm.h>
58
#include <asm/debug.h>
59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
61
#include <asm/hw_irq.h>
62
#endif
63
#include <asm/code-patching.h>
64
#include <asm/exec.h>
65
#include <asm/livepatch.h>
66
#include <asm/cpu_has_feature.h>
67
#include <asm/asm-prototypes.h>
68

69 70
#include <linux/kprobes.h>
#include <linux/kdebug.h>
71

72 73 74 75 76 77 78
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

79 80
extern unsigned long _get_SP(void);

81
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 83 84 85 86 87 88
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

89
static void check_if_tm_restore_required(struct task_struct *tsk)
90 91 92 93 94 95 96 97 98 99
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
100
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 102 103
		set_thread_flag(TIF_RESTORE_TM);
	}
}
104 105 106 107 108

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
109 110 111 112 113 114 115 116 117 118 119 120

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
121
#else
122
static inline bool msr_tm_active(unsigned long msr) { return false; }
123
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 125
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 127
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

128 129 130 131 132 133 134 135 136 137 138 139
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

140
unsigned long msr_check_and_set(unsigned long bits)
141
{
142 143
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
144

145
	newmsr = oldmsr | bits;
146 147

#ifdef CONFIG_VSX
148
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 150
		newmsr |= MSR_VSX;
#endif
151

152 153
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
154 155

	return newmsr;
156
}
157

158
void __msr_check_and_clear(unsigned long bits)
159 160 161 162 163 164 165 166 167 168 169 170 171 172
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
173
EXPORT_SYMBOL(__msr_check_and_clear);
174 175

#ifdef CONFIG_PPC_FPU
176 177
void __giveup_fpu(struct task_struct *tsk)
{
178 179
	unsigned long msr;

180
	save_fpu(tsk);
181 182
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
183 184
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
185
		msr &= ~MSR_VSX;
186
#endif
187
	tsk->thread.regs->msr = msr;
188 189
}

190 191 192 193 194
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
195
	__giveup_fpu(tsk);
196
	msr_check_and_clear(MSR_FP);
197 198 199
}
EXPORT_SYMBOL(giveup_fpu);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
220
			 * the FP register state on context switch,
221 222 223 224
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
225
			giveup_fpu(tsk);
226 227 228 229
		}
		preempt_enable();
	}
}
230
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231 232 233

void enable_kernel_fp(void)
{
234 235
	unsigned long cpumsr;

236 237
	WARN_ON(preemptible());

238
	cpumsr = msr_check_and_set(MSR_FP);
239

240 241
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
242 243 244 245 246 247 248 249 250
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
251
		__giveup_fpu(current);
252
	}
253 254
}
EXPORT_SYMBOL(enable_kernel_fp);
255

256 257
static int restore_fp(struct task_struct *tsk)
{
258
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
259 260 261 262 263 264 265 266
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
267
#endif /* CONFIG_PPC_FPU */
268 269

#ifdef CONFIG_ALTIVEC
270 271
#define loadvec(thr) ((thr).load_vec)

272 273
static void __giveup_altivec(struct task_struct *tsk)
{
274 275
	unsigned long msr;

276
	save_altivec(tsk);
277 278
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
279 280
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
281
		msr &= ~MSR_VSX;
282
#endif
283
	tsk->thread.regs->msr = msr;
284 285
}

286 287 288 289
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

290
	msr_check_and_set(MSR_VEC);
291
	__giveup_altivec(tsk);
292
	msr_check_and_clear(MSR_VEC);
293 294 295
}
EXPORT_SYMBOL(giveup_altivec);

296 297
void enable_kernel_altivec(void)
{
298 299
	unsigned long cpumsr;

300 301
	WARN_ON(preemptible());

302
	cpumsr = msr_check_and_set(MSR_VEC);
303

304 305
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
306 307 308 309 310 311 312 313 314
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
315
		__giveup_altivec(current);
316
	}
317 318 319 320 321 322 323 324 325 326 327 328 329
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
330
			giveup_altivec(tsk);
331 332 333 334
		}
		preempt_enable();
	}
}
335
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
336 337 338

static int restore_altivec(struct task_struct *tsk)
{
339
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
340
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
341 342 343 344 345 346 347 348 349 350 351
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
352 353
#endif /* CONFIG_ALTIVEC */

354
#ifdef CONFIG_VSX
355
static void __giveup_vsx(struct task_struct *tsk)
356
{
357 358 359 360 361 362 363 364 365 366
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
367
		__giveup_fpu(tsk);
368
	if (msr & MSR_VEC)
369
		__giveup_altivec(tsk);
370 371 372 373 374 375 376
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
377
	__giveup_vsx(tsk);
378
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
379
}
380

381 382
void enable_kernel_vsx(void)
{
383 384
	unsigned long cpumsr;

385 386
	WARN_ON(preemptible());

387
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
388

389 390
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
391
		check_if_tm_restore_required(current);
392 393 394 395 396 397 398 399 400
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
401
		__giveup_vsx(current);
402
	}
403 404 405 406 407 408 409
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
410
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 412 413 414 415 416
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
417
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418 419 420 421 422 423 424 425 426 427 428 429

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 431
#endif /* CONFIG_VSX */

432
#ifdef CONFIG_SPE
433 434 435 436
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

437
	msr_check_and_set(MSR_SPE);
438
	__giveup_spe(tsk);
439
	msr_check_and_clear(MSR_SPE);
440 441
}
EXPORT_SYMBOL(giveup_spe);
442 443 444 445 446

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

447
	msr_check_and_set(MSR_SPE);
448

449 450
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
451
		__giveup_spe(current);
452
	}
453 454 455 456 457 458 459 460 461
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
462
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463
			giveup_spe(tsk);
464 465 466 467 468 469
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
507
	check_if_tm_restore_required(tsk);
508

509 510
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

528 529 530 531
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

532 533
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

573 574 575 576 577 578 579
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
580 581 582 583 584 585 586

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

587 588 589 590 591
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
592
		save_all(tsk);
593 594 595 596 597 598 599 600 601 602 603

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

604 605
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
606
		  unsigned long error_code, int breakpt)
607
{
608
	current->thread.trap_nr = TRAP_HWBKPT;
609 610 611 612 613
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
614 615
	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
				    (void __user *)address);
616 617
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
618
void do_break (struct pt_regs *regs, unsigned long address,
619 620 621 622
		    unsigned long error_code)
{
	siginfo_t info;

623
	current->thread.trap_nr = TRAP_HWBKPT;
624 625 626 627
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

628
	if (debugger_break_match(regs))
629 630
		return;

631 632
	/* Clear the breakpoint */
	hw_breakpoint_disable();
633 634 635 636 637 638 639 640

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
641
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
642

643
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
644

645 646 647 648 649 650
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
651
	thread->debug.iac1 = thread->debug.iac2 = 0;
652
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
653
	thread->debug.iac3 = thread->debug.iac4 = 0;
654
#endif
655
	thread->debug.dac1 = thread->debug.dac2 = 0;
656
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
657
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
658
#endif
659
	thread->debug.dbcr0 = 0;
660 661 662 663
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
664
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
665 666 667 668 669
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
670
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
671
#else
672
	thread->debug.dbcr1 = 0;
673 674 675
#endif
}

676
static void prime_debug_regs(struct debug_reg *debug)
677
{
678 679 680 681 682 683 684
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

685 686
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
687
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
688 689
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
690
#endif
691 692
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
693
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
694 695
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
696
#endif
697 698
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
699
#ifdef CONFIG_BOOKE
700
	mtspr(SPRN_DBCR2, debug->dbcr2);
701 702 703 704 705 706 707
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
708
void switch_booke_debug_regs(struct debug_reg *new_debug)
709
{
710
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
711 712
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
713
}
714
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
715
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
716
#ifndef CONFIG_HAVE_HW_BREAKPOINT
717 718
static void set_debug_reg_defaults(struct thread_struct *thread)
{
719 720
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
721
	set_breakpoint(&thread->hw_brk);
722
}
723
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 725
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

726
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 728
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
729
	mtspr(SPRN_DAC1, dabr);
730 731 732
#ifdef CONFIG_PPC_47x
	isync();
#endif
733 734
	return 0;
}
735
#elif defined(CONFIG_PPC_BOOK3S)
736 737
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
738
	mtspr(SPRN_DABR, dabr);
739 740
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
741
	return 0;
742
}
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

785 786
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
787
	unsigned long dawr, dawrx, mrd;
788 789 790 791 792 793 794 795 796

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
797 798 799 800 801 802 803 804
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
805 806 807 808 809 810 811 812

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

813
void __set_breakpoint(struct arch_hw_breakpoint *brk)
814
{
815
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
816

817
	if (cpu_has_feature(CPU_FTR_DAWR))
818 819 820
		set_dawr(brk);
	else
		set_dabr(brk);
821
}
822

823 824 825 826 827 828 829
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

830 831 832 833 834 835 836 837 838 839 840 841
/* Check if we have DAWR or DABR hardware */
bool ppc_breakpoint_available(void)
{
	if (cpu_has_feature(CPU_FTR_DAWR))
		return true; /* POWER8 DAWR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		return false; /* POWER9 with DAWR disabled */
	/* DABR: Everything but POWER8 and POWER9 */
	return true;
}
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);

842 843 844
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
845

846 847 848 849 850 851 852 853 854 855 856
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
857

858
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
859 860 861 862 863 864

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

865 866 867
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
868 869 870 871 872 873 874 875 876 877 878 879 880
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
881
	 * benefit of checking for a potential TM bad thing exception.
882 883 884 885
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

886 887
	giveup_all(container_of(thr, struct task_struct, thread));

888 889
	tm_reclaim(thr, cause);

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
908 909 910 911 912 913 914 915
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

916 917 918 919 920 921 922
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
923 924
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
925 926 927 928 929 930 931 932 933 934 935
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

936 937
	WARN_ON(tm_suspend_disabled);

938 939 940 941 942 943
	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

944
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
945 946 947 948 949 950 951 952 953 954 955 956 957

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

958
extern void __tm_recheckpoint(struct thread_struct *thread);
959

960
void tm_recheckpoint(struct thread_struct *thread)
961 962 963
{
	unsigned long flags;

964 965 966
	if (!(thread->regs->msr & MSR_TM))
		return;

967 968 969 970 971 972 973 974 975 976 977 978
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

979
	__tm_recheckpoint(thread);
980 981 982 983

	local_irq_restore(flags);
}

984
static inline void tm_recheckpoint_new_task(struct task_struct *new)
985 986 987 988 989 990 991 992 993
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
994
	 * unavailable later, we are unable to determine which set of FP regs
995 996
	 * need to be restored.
	 */
997
	if (!tm_enabled(new))
998 999
		return;

1000 1001
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
1002
		return;
1003
	}
1004
	/* Recheckpoint to restore original checkpointed register state. */
1005 1006
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);
1007

1008
	tm_recheckpoint(&new->thread);
1009

1010 1011 1012 1013 1014 1015
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1016 1017 1018 1019 1020 1021

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1022 1023
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1024 1025
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1036
		tm_recheckpoint_new_task(new);
1037 1038
	}
}
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1058 1059 1060 1061 1062 1063
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1064 1065 1066 1067
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1068
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1069
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1070

1071 1072 1073
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1074
#ifdef CONFIG_ALTIVEC
1075 1076 1077
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1078 1079
	restore_math(regs);

1080 1081 1082
	regs->msr |= msr_diff;
}

1083 1084
#else
#define tm_recheckpoint_new_task(new)
1085
#define __switch_to_tm(prev, new)
1086
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1087

1088 1089 1090
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1091
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
1114 1115

	thread_pkey_regs_save(t);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1129
		if (new_thread->dscr_inherit)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1144 1145 1146
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1147 1148 1149
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1150 1151 1152 1153

	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);
1154
#endif
1155 1156

	thread_pkey_regs_restore(new_thread, old_thread);
1157 1158
}

1159 1160 1161 1162 1163
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1164 1165 1166 1167 1168
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
Peter Zijlstra's avatar
Peter Zijlstra committed
1169 1170 1171
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1172

1173 1174 1175
	new_thread = &new->thread;
	old_thread = &current->thread;

1176 1177
	WARN_ON(!irqs_disabled());

1178 1179 1180 1181 1182
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1183
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1184 1185 1186 1187 1188 1189
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
Peter Zijlstra's avatar
Peter Zijlstra committed
1190 1191
#endif /* CONFIG_PPC64 */

1192
#ifdef CONFIG_PPC_BOOK3S_64
1193
	batch = this_cpu_ptr(&ppc64_tlb_batch);
Peter Zijlstra's avatar
Peter Zijlstra committed
1194 1195 1196 1197 1198 1199
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1200
#endif /* CONFIG_PPC_BOOK3S_64 */
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1224 1225
	__switch_to_tm(prev, new);

1226 1227 1228 1229 1230 1231 1232 1233
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1234

1235 1236 1237 1238 1239 1240 1241
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
1242 1243
	restore_sprs(old_thread, new_thread);

1244 1245
	last = _switch(old_thread, new_thread);

1246
#ifdef CONFIG_PPC_BOOK3S_64
Peter Zijlstra's avatar
Peter Zijlstra committed
1247 1248
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1249
		batch = this_cpu_ptr(&ppc64_tlb_batch);
Peter Zijlstra's avatar
Peter Zijlstra committed
1250 1251
		batch->active = 1;
	}
1252

1253
	if (current_thread_info()->task->thread.regs) {
1254
		restore_math(current_thread_info()->task->thread.regs);
1255 1256 1257 1258 1259

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
1260 1261 1262 1263 1264 1265 1266
		 * mappings. If the new process has the foreign real address
		 * mappings, we must issue a cp_abort to clear any state and
		 * prevent snooping, corruption or a covert channel.
		 *
		 * DD1 allows paste into normal system memory so we do an
		 * unpaired copy, rather than cp_abort, to clear the buffer,
		 * since cp_abort is quite expensive.
1267
		 */
1268 1269 1270
		if (current_thread_info()->task->thread.used_vas) {
			asm volatile(PPC_CP_ABORT);
		} else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1271 1272 1273 1274
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1275
#endif /* CONFIG_PPC_BOOK3S_64 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1276

1277 1278 1279
	return last;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1294
			pr_cont("\n");
1295

1296 1297 1298 1299 1300 1301 1302 1303
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1304
		if (!__kernel_text_address(pc) ||
1305
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1306
			pr_cont("XXXXXXXX ");
1307 1308
		} else {
			if (regs->nip == pc)
1309
				pr_cont("<%08x> ", instr);
1310
			else
1311
				pr_cont("%08x ", instr);
1312 1313 1314 1315 1316
		}

		pc += sizeof(int);
	}

1317
	pr_cont("\n");
1318 1319
}

1320
struct regbit {
1321 1322
	unsigned long bit;
	const char *name;
1323 1324 1325
};

static struct regbit msr_bits[] = {
1326 1327 1328 1329 1330 1331 1332 1333 1334
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1335 1336 1337 1338
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1339
#ifdef CONFIG_BOOKE
1340
	{MSR_DE,	"DE"},
1341 1342 1343 1344
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1345 1346
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1347 1348 1349 1350 1351
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1352 1353 1354
	{0,		NULL}
};

1355
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1356
{
1357
	const char *s = "";
1358 1359 1360

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1361
			pr_cont("%s%s", s, bits->name);
1362
			s = sep;
1363
		}
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1384
		pr_cont(",TM[");
1385
		print_bits(val, msr_tm_bits, "");
1386
		pr_cont("]");
1387 1388 1389 1390 1391 1392 1393 1394
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1395
	pr_cont("<");
1396 1397
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1398
	pr_cont(">");
1399 1400 1401
}

#ifdef CONFIG_PPC64
1402
#define REG		"%016lx"
1403 1404 1405
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1406
#define REG		"%08lx"
1407 1408 1409 1410
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1411 1412 1413 1414
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1415 1416
	show_regs_print_info(KERN_DEFAULT);

1417
	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1418
	       regs->nip, regs->link, regs->ctr);
1419
	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1420
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1421
	printk("MSR:  "REG" ", regs->msr);
1422
	print_msr_bits(regs->msr);
1423
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1424
	trap = TRAP(regs);
1425
	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1426
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1427
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1428
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1429
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1430
#else
1431
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1432 1433
#endif
#ifdef CONFIG_PPC64
1434
	pr_cont("SOFTE: %ld ", regs->softe);
1435 1436
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1437
	if (MSR_TM_ACTIVE(regs->msr))
1438
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1439
#endif
1440 1441

	for (i = 0;  i < 32;  i++) {
1442
		if ((i % REGS_PER_LINE) == 0)
1443 1444
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1445
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1446 1447
			break;
	}
1448
	pr_cont("\n");
1449 1450 1451 1452 1453
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1454 1455
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1456
#endif
1457
	show_stack(current, (unsigned long *) regs->gpr[1]);
1458 1459
	if (!user_mode(regs))
		show_instructions(regs);
1460 1461 1462 1463
}

void flush_thread(void)
{
1464
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1465
	flush_ptrace_hw_breakpoint(current);
1466
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1467
	set_debug_reg_defaults(&current->thread);
1468
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	current->thread.used_vas = 1;

	/*
	 * Even a process that has no foreign real address mapping can use
	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
	 * to clear any pending COPY and prevent a covert channel.
	 *
	 * __switch_to() will issue CP_ABORT on future context switches.
	 */
	asm volatile(PPC_CP_ABORT);

#endif /* CONFIG_PPC_BOOK3S_64 */
	return 0;
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
#ifdef CONFIG_PPC64
static DEFINE_SPINLOCK(vas_thread_id_lock);
static DEFINE_IDA(vas_thread_ida);

/*
 * We need to assign a unique thread id to each thread in a process.
 *
 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
 * is intended to be used to direct an ASB_Notify from the hardware to the
 * thread, when a suitable event occurs in the system.
 *
 * One such event is a "paste" instruction in the context of Fast Thread
 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
 * (VAS) in POWER9.
 *
 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
 * the problem is that task_pid_nr() is not yet available copy_thread() is
 * called. Fixing that would require changing more intrusive arch-neutral
 * code in code path in copy_process()?.
 *
 * Further, to assign unique TIDRs within each process, we need an atomic
 * field (or an IDR) in task_struct, which again intrudes into the arch-
 * neutral code. So try to assign globally unique TIDRs for now.
 *
 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
 *	 For now, only threads that expect to be notified by the VAS
 *	 hardware need a TIDR value and we assign values > 0 for those.
 */
#define MAX_THREAD_CONTEXT	((1 << 16) - 1)
static int assign_thread_tidr(void)
{
	int index;
	int err;
1525
	unsigned long flags;
1526 1527 1528 1529 1530

again:
	if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
		return -ENOMEM;

1531
	spin_lock_irqsave(&vas_thread_id_lock, flags);
1532
	err = ida_get_new_above(&vas_thread_ida, 1, &index);
1533
	spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1534 1535 1536 1537 1538 1539 1540

	if (err == -EAGAIN)
		goto again;
	else if (err)
		return err;

	if (index > MAX_THREAD_CONTEXT) {
1541
		spin_lock_irqsave(&vas_thread_id_lock, flags);
1542
		ida_remove(&vas_thread_ida, index);
1543
		spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1544 1545 1546 1547 1548 1549 1550 1551
		return -ENOMEM;
	}

	return index;
}

static void free_thread_tidr(int id)
{
1552 1553 1554
	unsigned long flags;

	spin_lock_irqsave(&vas_thread_id_lock, flags);
1555
	ida_remove(&vas_thread_ida, id);
1556
	spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

/*
 * Clear any TIDR value assigned to this thread.
 */
void clear_thread_tidr(struct task_struct *t)
{
	if (!t->thread.tidr)
		return;

	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		WARN_ON_ONCE(1);
		return;
	}

	mtspr(SPRN_TIDR, 0);
	free_thread_tidr(t->thread.tidr);
	t->thread.tidr = 0;
}

void arch_release_task_struct(struct task_struct *t)
{
	clear_thread_tidr(t);
}

/*
 * Assign a unique TIDR (thread id) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
 */
int set_thread_tidr(struct task_struct *t)
{
1588 1589
	int rc;

1590 1591 1592 1593 1594 1595
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	if (t != current)
		return -EINVAL;

1596 1597 1598
	if (t->thread.tidr)
		return 0;

1599 1600 1601
	rc = assign_thread_tidr();
	if (rc < 0)
		return rc;
1602

1603
	t->thread.tidr = rc;
1604 1605 1606 1607
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}
1608
EXPORT_SYMBOL_GPL(set_thread_tidr);
1609 1610 1611

#endif /* CONFIG_PPC64 */

1612 1613 1614 1615 1616 1617
void
release_thread(struct task_struct *t)
{
}

/*
1618 1619
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1620
 */
1621
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1622
{
1623
	flush_all_to_thread(src);
1624 1625 1626 1627 1628 1629
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1630 1631 1632
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1633
	 */
1634
	__switch_to_tm(src, src);
1635

1636
	*dst = *src;
1637 1638 1639

	clear_task_ebb(dst);

1640
	return 0;
1641 1642
}

1643 1644
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
1645
#ifdef CONFIG_PPC_BOOK3S_64
1646 1647 1648
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1649 1650 1651
	if (radix_enabled())
		return;

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1663 1664 1665
/*
 * Copy a thread..
 */
1666

1667 1668 1669
/*
 * Copy architecture-specific thread state
 */
Alexey Dobriyan's avatar
Alexey Dobriyan committed
1670
int copy_thread(unsigned long clone_flags, unsigned long usp,
1671
		unsigned long kthread_arg, struct task_struct *p)
1672 1673 1674
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
Al Viro's avatar
Al Viro committed
1675 1676
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
Al Viro's avatar
Al Viro committed
1677
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1678 1679 1680
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1681 1682 1683 1684

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1685
	if (unlikely(p->flags & PF_KTHREAD)) {
1686
		/* kernel thread */
Al Viro's avatar
Al Viro committed
1687
		memset(childregs, 0, sizeof(struct pt_regs));
1688
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1689 1690 1691
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
Al Viro's avatar
Al Viro committed
1692
#ifdef CONFIG_PPC64
1693
		clear_tsk_thread_flag(p, TIF_32BIT);
1694
		childregs->softe = IRQS_ENABLED;
1695
#endif
1696
		childregs->gpr[15] = kthread_arg;
1697
		p->thread.regs = NULL;	/* no user register state */
1698
		ti->flags |= _TIF_RESTOREALL;
Al Viro's avatar
Al Viro committed
1699
		f = ret_from_kernel_thread;
1700
	} else {
1701
		/* user thread */
1702
		struct pt_regs *regs = current_pt_regs();
Al Viro's avatar
Al Viro committed
1703 1704
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1705 1706
		if (usp)
			childregs->gpr[1] = usp;
1707
		p->thread.regs = childregs;
Al Viro's avatar
Al Viro committed
1708
		childregs->gpr[3] = 0;  /* Result from fork() */
1709 1710
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1711
			if (!is_32bit_task())
1712 1713 1714 1715 1716
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
Al Viro's avatar
Al Viro committed
1717 1718

		f = ret_from_fork;
1719
	}
1720
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1731
	((unsigned long *)sp)[0] = 0;
1732 1733 1734 1735
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1736
#ifdef CONFIG_PPC32
1737 1738
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1739
#endif
1740 1741 1742 1743
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1744 1745 1746 1747 1748
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1749 1750
	setup_ksp_vsid(p, sp);

1751 1752
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1753
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1754
		p->thread.dscr = mfspr(SPRN_DSCR);
1755
	}
1756 1757
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1758 1759

	p->thread.tidr = 0;
1760
#endif
1761
	kregs->nip = ppc_function_entry(f);
1762 1763 1764 1765 1766 1767
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1768
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1769
{
1770 1771 1772 1773
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1774 1775 1776 1777 1778
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
Al Viro's avatar
Al Viro committed
1779 1780
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1781 1782
	}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1793 1794 1795 1796 1797 1798
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1799

1800 1801 1802 1803 1804 1805 1806
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1807 1808 1809
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1810
	regs->msr = MSR_USER;
1811
#else
1812
	if (!is_32bit_task()) {
1813
		unsigned long entry;
1814

1815 1816 1817
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1850 1851 1852
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
1853 1854 1855 1856
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1857 1858
	}
#endif
1859 1860 1861
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1862
	current->thread.load_fp = 0;
1863
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1864
	current->thread.fp_save_area = NULL;
1865
#ifdef CONFIG_ALTIVEC
1866 1867
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1868
	current->thread.vr_save_area = NULL;
1869 1870
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1871
	current->thread.load_vec = 0;
1872 1873 1874 1875 1876 1877 1878
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1879 1880 1881 1882
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1883
	current->thread.load_tm = 0;
1884
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1885 1886

	thread_pkey_regs_init(&current->thread);
1887
}
1888
EXPORT_SYMBOL(start_thread);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1903
		if (cpu_has_feature(CPU_FTR_SPE)) {
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1917 1918 1919 1920 1921 1922
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1923 1924 1925 1926
#else
		return -EINVAL;
#endif
	}
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1939 1940 1941 1942 1943 1944 1945 1946 1947
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1962
			val = tsk->thread.fpexc_mode;
1963
		} else
1964
			return -EINVAL;
1965 1966 1967 1968 1969 1970 1971 1972
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

2052
int validate_sp(unsigned long sp, struct task_struct *p,
2053 2054
		       unsigned long nbytes)
{
Al Viro's avatar
Al Viro committed
2055
	unsigned long stack_page = (unsigned long)task_stack_page(p);
2056 2057 2058 2059 2060

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

2061
	return valid_irq_stack(sp, p, nbytes);
2062 2063
}

2064 2065
EXPORT_SYMBOL(validate_sp);

2066 2067 2068 2069 2070 2071 2072 2073 2074
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
2075
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2076 2077 2078 2079
		return 0;

	do {
		sp = *(unsigned long *)sp;
2080 2081
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
2082 2083
			return 0;
		if (count > 0) {
2084
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2085 2086 2087 2088 2089 2090
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
2091

2092
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2093 2094 2095 2096 2097 2098

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
2099 2100 2101
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
2102
	unsigned long rth = (unsigned long)return_to_handler;
2103
#endif
2104 2105 2106 2107 2108 2109

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
2110
			sp = current_stack_pointer();
2111 2112 2113 2114 2115 2116 2117
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
2118
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2119 2120 2121 2122
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
2123
		ip = stack[STACK_FRAME_LR_SAVE];
2124
		if (!firstframe || ip != lr) {
2125
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2126
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2127
			if ((ip == rth) && curr_frame >= 0) {
2128
				pr_cont(" (%pS)",
2129 2130 2131 2132
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
2133
			if (firstframe)
2134 2135
				pr_cont(" (unreliable)");
			pr_cont("\n");
2136 2137 2138 2139 2140 2141 2142
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
2143 2144
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2145 2146 2147
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
2148
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2149
			       regs->trap, (void *)regs->nip, (void *)lr);
2150 2151 2152 2153 2154 2155 2156
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

2157
#ifdef CONFIG_PPC64
2158
/* Called with hard IRQs off */
2159
void notrace __ppc64_runlatch_on(void)
2160
{
2161
	struct thread_info *ti = current_thread_info();
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2181

2182
	ti->local_flags |= _TLF_RUNLATCH;
2183 2184
}

2185
/* Called with hard IRQs off */
2186
void notrace __ppc64_runlatch_off(void)
2187
{
2188
	struct thread_info *ti = current_thread_info();
2189

2190
	ti->local_flags &= ~_TLF_RUNLATCH;
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2201
}
2202
#endif /* CONFIG_PPC64 */
2203

2204 2205 2206 2207 2208 2209
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2210 2211 2212 2213 2214 2215 2216

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
2217
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2218
	else
2219
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2220 2221 2222 2223 2224 2225

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2226 2227 2228
	unsigned long base = mm->brk;
	unsigned long ret;

2229
#ifdef CONFIG_PPC_BOOK3S_64
2230 2231 2232 2233 2234
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2235 2236
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2237 2238 2239 2240 2241 2242
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2243 2244 2245 2246 2247 2248

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
Anton Blanchard's avatar
Anton Blanchard committed
2249