- 17 May, 2018 8 commits
-
-
Tom Lendacky authored
Some AMD processors only support a non-architectural means of enabling speculative store bypass disable (SSBD). To allow a simplified view of this to a guest, an architectural definition has been created through a new CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f. With this, a hypervisor can virtualize the existence of this definition and provide an architectural method for using SSBD to a guest. Add the new CPUID feature, the new MSR and update the existing SSBD support to use this MSR when present. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de>
-
Thomas Gleixner authored
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care about the bit position of the SSBD bit and thus facilitate migration. Also, the sibling coordination on Family 17H CPUs can only be done on the host. Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an extra argument for the VIRT_SPEC_CTRL MSR. Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU data structure which is going to be used in later patches for the actual implementation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
The AMD64_LS_CFG MSR is a per core MSR on Family 17H CPUs. That means when hyperthreading is enabled the SSBD bit toggle needs to take both cores into account. Otherwise the following situation can happen: CPU0 CPU1 disable SSB disable SSB enable SSB <- Enables it for the Core, i.e. for CPU0 as well So after the SSB enable on CPU1 the task on CPU0 runs with SSB enabled again. On Intel the SSBD control is per core as well, but the synchronization logic is implemented behind the per thread SPEC_CTRL MSR. It works like this: CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL i.e. if one of the threads enables a mitigation then this affects both and the mitigation is only disabled in the core when both threads disabled it. Add the necessary synchronization logic for AMD family 17H. Unfortunately that requires a spinlock to serialize the access to the MSR, but the locks are only shared between siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
Add a ZEN feature bit so family-dependent static_cpu_has() optimizations can be built for ZEN. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
The SSBD enumeration is similarly to the other bits magically shared between Intel and AMD though the mechanisms are different. Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific features or family dependent setup. Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is controlled via MSR_SPEC_CTRL and fix up the usage sites. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
The availability of the SPEC_CTRL MSR is enumerated by a CPUID bit on Intel and implied by IBRS or STIBP support on AMD. That's just confusing and in case an AMD CPU has IBRS not supported because the underlying problem has been fixed but has another bit valid in the SPEC_CTRL MSR, the thing falls apart. Add a synthetic feature bit X86_FEATURE_MSR_SPEC_CTRL to denote the availability on both Intel and AMD. While at it replace the boot_cpu_has() checks with static_cpu_has() where possible. This prevents late microcode loading from exposing SPEC_CTRL, but late loading is already very limited as it does not reevaluate the mitigation options and other bits and pieces. Having static_cpu_has() is the simplest and least fragile solution. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Borislav Petkov authored
Intel and AMD have different CPUID bits hence for those use synthetic bits which get set on the respective vendor's in init_speculation_control(). So that debacles like what the commit message of c65732e4 ("x86/cpu: Restore CPUID_8000_0008_EBX reload") talks about don't happen anymore. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Tested-by: Jörg Otte <jrg.otte@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
-
Thomas Gleixner authored
svm_vcpu_run() invokes x86_spec_ctrl_restore_host() after VMEXIT, but before the host GS is restored. x86_spec_ctrl_restore_host() uses 'current' to determine the host SSBD state of the thread. 'current' is GS based, but host GS is not yet restored and the access causes a triple fault. Move the call after the host GS restore. Fixes: 885f82bf x86/process: Allow runtime control of Speculative Store Bypass Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 14 May, 2018 1 commit
-
-
Jim Mattson authored
Cast val and (val >> 32) to (u32), so that they fit in a general-purpose register in both 32-bit and 64-bit code. [ tglx: Made it u32 instead of uintptr_t ] Fixes: c65732e4 ("x86/cpu: Restore CPUID_8000_0008_EBX reload") Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
-
- 12 May, 2018 1 commit
-
-
Konrad Rzeszutek Wilk authored
Fixes: 7bb4d366 ("x86/bugs: Make cpu_show_common() static") Fixes: 24f7fc83 ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation") Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
- 10 May, 2018 2 commits
-
-
Jiri Kosina authored
cpu_show_common() is not used outside of arch/x86/kernel/cpu/bugs.c, so make it static. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Jiri Kosina authored
__ssb_select_mitigation() returns one of the members of enum ssb_mitigation, not ssb_mitigation_cmd; fix the prototype to reflect that. Fixes: 24f7fc83 ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation") Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
- 09 May, 2018 3 commits
-
-
Borislav Petkov authored
Fix some typos, improve formulations, end sentences with a fullstop. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Konrad Rzeszutek Wilk authored
The style for the 'status' file is CamelCase or this. _. Fixes: fae1fa0f ("proc: Provide details on speculation flaw mitigations") Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Konrad Rzeszutek Wilk authored
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2] as SSBD (Speculative Store Bypass Disable). Hence changing it. It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name is going to be. Following the rename it would be SSBD_NO but that rolls out to Speculative Store Bypass Disable No. Also fixed the missing space in X86_FEATURE_AMD_SSBD. [ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
- 04 May, 2018 6 commits
-
-
Kees Cook authored
Unless explicitly opted out of, anything running under seccomp will have SSB mitigations enabled. Choosing the "prctl" mode will disable this. [ tglx: Adjusted it to the new arch_seccomp_spec_mitigate() mechanism ] Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Thomas Gleixner authored
The migitation control is simpler to implement in architecture code as it avoids the extra function call to check the mode. Aside of that having an explicit seccomp enabled mode in the architecture mitigations would require even more workarounds. Move it into architecture code and provide a weak function in the seccomp code. Remove the 'which' argument as this allows the architecture to decide which mitigations are relevant for seccomp. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Kees Cook authored
If a seccomp user is not interested in Speculative Store Bypass mitigation by default, it can set the new SECCOMP_FILTER_FLAG_SPEC_ALLOW flag when adding filters. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Thomas Gleixner authored
Use PR_SPEC_FORCE_DISABLE in seccomp() because seccomp does not allow to widen restrictions. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Thomas Gleixner authored
For certain use cases it is desired to enforce mitigations so they cannot be undone afterwards. That's important for loader stubs which want to prevent a child from disabling the mitigation again. Will also be used for seccomp(). The extra state preserving of the prctl state for SSB is a preparatory step for EBPF dymanic speculation control. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Kees Cook authored
There's no reason for these to be changed after boot. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
- 03 May, 2018 19 commits
-
-
Kees Cook authored
When speculation flaw mitigations are opt-in (via prctl), using seccomp will automatically opt-in to these protections, since using seccomp indicates at least some level of sandboxing is desired. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Kees Cook authored
As done with seccomp and no_new_privs, also show speculation flaw mitigation state in /proc/$pid/status. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Kees Cook authored
Adjust arch_prctl_get/set_spec_ctrl() to operate on tasks other than current. This is needed both for /proc/$pid/status queries and for seccomp (since thread-syncing can trigger seccomp in non-current threads). Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-
Thomas Gleixner authored
Add prctl based control for Speculative Store Bypass mitigation and make it the default mitigation for Intel and AMD. Andi Kleen provided the following rationale (slightly redacted): There are multiple levels of impact of Speculative Store Bypass: 1) JITed sandbox. It cannot invoke system calls, but can do PRIME+PROBE and may have call interfaces to other code 2) Native code process. No protection inside the process at this level. 3) Kernel. 4) Between processes. The prctl tries to protect against case (1) doing attacks. If the untrusted code can do random system calls then control is already lost in a much worse way. So there needs to be system call protection in some way (using a JIT not allowing them or seccomp). Or rather if the process can subvert its environment somehow to do the prctl it can already execute arbitrary code, which is much worse than SSB. To put it differently, the point of the prctl is to not allow JITed code to read data it shouldn't read from its JITed sandbox. If it already has escaped its sandbox then it can already read everything it wants in its address space, and do much worse. The ability to control Speculative Store Bypass allows to enable the protection selectively without affecting overall system performance. Based on an initial patch from Tim Chen. Completely rewritten. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
The Speculative Store Bypass vulnerability can be mitigated with the Reduced Data Speculation (RDS) feature. To allow finer grained control of this eventually expensive mitigation a per task mitigation control is required. Add a new TIF_RDS flag and put it into the group of TIF flags which are evaluated for mismatch in switch_to(). If these bits differ in the previous and the next task, then the slow path function __switch_to_xtra() is invoked. Implement the TIF_RDS dependent mitigation control in the slow path. If the prctl for controlling Speculative Store Bypass is disabled or no task uses the prctl then there is no overhead in the switch_to() fast path. Update the KVM related speculation control functions to take TID_RDS into account as well. Based on a patch from Tim Chen. Completely rewritten. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
Add two new prctls to control aspects of speculation related vulnerabilites and their mitigations to provide finer grained control over performance impacting mitigations. PR_GET_SPECULATION_CTRL returns the state of the speculation misfeature which is selected with arg2 of prctl(2). The return value uses bit 0-2 with the following meaning: Bit Define Description 0 PR_SPEC_PRCTL Mitigation can be controlled per task by PR_SET_SPECULATION_CTRL 1 PR_SPEC_ENABLE The speculation feature is enabled, mitigation is disabled 2 PR_SPEC_DISABLE The speculation feature is disabled, mitigation is enabled If all bits are 0 the CPU is not affected by the speculation misfeature. If PR_SPEC_PRCTL is set, then the per task control of the mitigation is available. If not set, prctl(PR_SET_SPECULATION_CTRL) for the speculation misfeature will fail. PR_SET_SPECULATION_CTRL allows to control the speculation misfeature, which is selected by arg2 of prctl(2) per task. arg3 is used to hand in the control value, i.e. either PR_SPEC_ENABLE or PR_SPEC_DISABLE. The common return values are: EINVAL prctl is not implemented by the architecture or the unused prctl() arguments are not 0 ENODEV arg2 is selecting a not supported speculation misfeature PR_SET_SPECULATION_CTRL has these additional return values: ERANGE arg3 is incorrect, i.e. it's not either PR_SPEC_ENABLE or PR_SPEC_DISABLE ENXIO prctl control of the selected speculation misfeature is disabled The first supported controlable speculation misfeature is PR_SPEC_STORE_BYPASS. Add the define so this can be shared between architectures. Based on an initial patch from Tim Chen and mostly rewritten. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
Thomas Gleixner authored
Having everything in nospec-branch.h creates a hell of dependencies when adding the prctl based switching mechanism. Move everything which is not required in nospec-branch.h to spec-ctrl.h and fix up the includes in the relevant files. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Expose the CPUID.7.EDX[31] bit to the guest, and also guard against various combinations of SPEC_CTRL MSR values. The handling of the MSR (to take into account the host value of SPEC_CTRL Bit(2)) is taken care of in patch: KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
AMD does not need the Speculative Store Bypass mitigation to be enabled. The parameters for this are already available and can be done via MSR C001_1020. Each family uses a different bit in that MSR for this. [ tglx: Expose the bit mask via a variable and move the actual MSR fiddling into the bugs code as that's the right thing to do and also required to prepare for dynamic enable/disable ] Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Intel and AMD SPEC_CTRL (0x48) MSR semantics may differ in the future (or in fact use different MSRs for the same functionality). As such a run-time mechanism is required to whitelist the appropriate MSR values. [ tglx: Made the variable __ro_after_init ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Intel CPUs expose methods to: - Detect whether RDS capability is available via CPUID.7.0.EDX[31], - The SPEC_CTRL MSR(0x48), bit 2 set to enable RDS. - MSR_IA32_ARCH_CAPABILITIES, Bit(4) no need to enable RRS. With that in mind if spec_store_bypass_disable=[auto,on] is selected set at boot-time the SPEC_CTRL MSR to enable RDS if the platform requires it. Note that this does not fix the KVM case where the SPEC_CTRL is exposed to guests which can muck with it, see patch titled : KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS. And for the firmware (IBRS to be set), see patch titled: x86/spectre_v2: Read SPEC_CTRL MSR during boot and re-use reserved bits [ tglx: Distangled it from the intel implementation and kept the call order ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Contemporary high performance processors use a common industry-wide optimization known as "Speculative Store Bypass" in which loads from addresses to which a recent store has occurred may (speculatively) see an older value. Intel refers to this feature as "Memory Disambiguation" which is part of their "Smart Memory Access" capability. Memory Disambiguation can expose a cache side-channel attack against such speculatively read values. An attacker can create exploit code that allows them to read memory outside of a sandbox environment (for example, malicious JavaScript in a web page), or to perform more complex attacks against code running within the same privilege level, e.g. via the stack. As a first step to mitigate against such attacks, provide two boot command line control knobs: nospec_store_bypass_disable spec_store_bypass_disable=[off,auto,on] By default affected x86 processors will power on with Speculative Store Bypass enabled. Hence the provided kernel parameters are written from the point of view of whether to enable a mitigation or not. The parameters are as follows: - auto - Kernel detects whether your CPU model contains an implementation of Speculative Store Bypass and picks the most appropriate mitigation. - on - disable Speculative Store Bypass - off - enable Speculative Store Bypass [ tglx: Reordered the checks so that the whole evaluation is not done when the CPU does not support RDS ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Add the CPU feature bit CPUID.7.0.EDX[31] which indicates whether the CPU supports Reduced Data Speculation. [ tglx: Split it out from a later patch ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Add the sysfs file for the new vulerability. It does not do much except show the words 'Vulnerable' for recent x86 cores. Intel cores prior to family 6 are known not to be vulnerable, and so are some Atoms and some Xeon Phi. It assumes that older Cyrix, Centaur, etc. cores are immune. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
A guest may modify the SPEC_CTRL MSR from the value used by the kernel. Since the kernel doesn't use IBRS, this means a value of zero is what is needed in the host. But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to the other bits as reserved so the kernel should respect the boot time SPEC_CTRL value and use that. This allows to deal with future extensions to the SPEC_CTRL interface if any at all. Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any difference as paravirt will over-write the callq *0xfff.. with the wrmsrl assembler code. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
The 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to all the other bits as reserved. The Intel SDM glossary defines reserved as implementation specific - aka unknown. As such at bootup this must be taken it into account and proper masking for the bits in use applied. A copy of this document is available at https://bugzilla.kernel.org/show_bug.cgi?id=199511 [ tglx: Made x86_spec_ctrl_base __ro_after_init ] Suggested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Those SysFS functions have a similar preamble, as such make common code to handle them. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Konrad Rzeszutek Wilk authored
Combine the various logic which goes through all those x86_cpu_id matching structures in one function. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-
Linus Torvalds authored
The macro is not type safe and I did look for why that "g" constraint for the asm doesn't work: it's because the asm is more fundamentally wrong. It does movl %[val], %%eax but "val" isn't a 32-bit value, so then gcc will pass it in a register, and generate code like movl %rsi, %eax and gas will complain about a nonsensical 'mov' instruction (it's moving a 64-bit register to a 32-bit one). Passing it through memory will just hide the real bug - gcc still thinks the memory location is 64-bit, but the "movl" will only load the first 32 bits and it all happens to work because x86 is little-endian. Convert it to a type safe inline function with a little trick which hands the feature into the ALTERNATIVE macro. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org>
-