cppc_acpi.c 42.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/delay.h>
37
#include <linux/iopoll.h>
38
#include <linux/ktime.h>
39 40
#include <linux/rwsem.h>
#include <linux/wait.h>
41
#include <linux/topology.h>
42 43

#include <acpi/cppc_acpi.h>
44

45
struct cppc_pcc_data {
46
	struct pcc_mbox_chan *pcc_channel;
47 48
	void __iomem *pcc_comm_addr;
	bool pcc_channel_acquired;
49
	unsigned int deadline_us;
50
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51

52
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
53
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
54
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
74 75 76 77
	ktime_t last_cmd_cmpl_time;
	ktime_t last_mpar_reset;
	int mpar_count;
	int refcount;
78
};
79

Bjorn Helgaas's avatar
Bjorn Helgaas committed
80
/* Array to represent the PCC channel per subspace ID */
81
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
Bjorn Helgaas's avatar
Bjorn Helgaas committed
82
/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84 85 86 87 88 89 90 91 92 93

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

94
/* pcc mapped address + header size + offset within PCC subspace */
95 96
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
						0x8 + (offs))
97

98
/* Check if a CPC register is in PCC */
99 100 101 102
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

103
/* Evaluates to True if reg is a NULL register descriptor */
104 105 106 107 108 109
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

110
/* Evaluates to True if an optional cpc field is supported */
111 112 113
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 115
/*
 * Arbitrary Retries in case the remote processor is slow to respond
116 117
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
118
 */
119
#define NUM_RETRIES 500ULL
120

121 122
#define OVER_16BTS_MASK ~0xFFFFULL

123
#define define_one_cppc_ro(_name)		\
124
static struct kobj_attribute _name =		\
125 126 127 128
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

129 130
#define show_cppc_data(access_fn, struct_name, member_name)		\
	static ssize_t show_##member_name(struct kobject *kobj,		\
131
				struct kobj_attribute *attr, char *buf)	\
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	{								\
		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
		struct struct_name st_name = {0};			\
		int ret;						\
									\
		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
		if (ret)						\
			return ret;					\
									\
		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
				(u64)st_name.member_name);		\
	}								\
	define_one_cppc_ro(member_name)

show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
150 151 152
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);

153 154 155
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);

156
static ssize_t show_feedback_ctrs(struct kobject *kobj,
157
		struct kobj_attribute *attr, char *buf)
158 159 160
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};
161
	int ret;
162

163 164 165
	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
	if (ret)
		return ret;
166 167 168 169 170 171 172 173 174 175

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
176 177 178 179
	&highest_perf.attr,
	&lowest_perf.attr,
	&lowest_nonlinear_perf.attr,
	&nominal_perf.attr,
180 181
	&nominal_freq.attr,
	&lowest_freq.attr,
182 183
	NULL
};
184
ATTRIBUTE_GROUPS(cppc);
185 186 187

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
188
	.default_groups = cppc_groups,
189 190
};

191
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
192
{
193
	int ret, status;
194 195 196
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
		pcc_ss_data->pcc_comm_addr;
197

198
	if (!pcc_ss_data->platform_owns_pcc)
199 200
		return 0;

201 202 203 204 205 206 207
	/*
	 * Poll PCC status register every 3us(delay_us) for maximum of
	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
	 */
	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
					status & PCC_CMD_COMPLETE_MASK, 3,
					pcc_ss_data->deadline_us);
208

209
	if (likely(!ret)) {
210
		pcc_ss_data->platform_owns_pcc = false;
211 212 213 214 215 216 217
		if (chk_err_bit && (status & PCC_ERROR_MASK))
			ret = -EIO;
	}

	if (unlikely(ret))
		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
		       pcc_ss_id, ret);
218

219 220 221
	return ret;
}

222 223 224 225
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
226
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
227
{
228
	int ret = -EIO, i;
229
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
230 231
	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
		pcc_ss_data->pcc_comm_addr;
232
	unsigned int time_delta;
233

234 235 236 237 238
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
239 240 241 242 243
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
244 245
		if (pcc_ss_data->pending_pcc_write_cmd)
			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
246

247
		ret = check_pcc_chan(pcc_ss_id, false);
248
		if (ret)
249 250
			goto end;
	} else /* CMD_WRITE */
251
		pcc_ss_data->pending_pcc_write_cmd = FALSE;
252

253 254 255 256 257
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
258 259 260 261 262
	if (pcc_ss_data->pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(),
					    pcc_ss_data->last_cmd_cmpl_time);
		if (pcc_ss_data->pcc_mrtt > time_delta)
			udelay(pcc_ss_data->pcc_mrtt - time_delta);
263 264 265 266 267 268 269 270 271 272 273 274 275
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
276 277 278 279 280
	if (pcc_ss_data->pcc_mpar) {
		if (pcc_ss_data->mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(),
						    pcc_ss_data->last_mpar_reset);
			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
281 282
				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
					 pcc_ss_id);
283 284
				ret = -EIO;
				goto end;
285
			}
286 287
			pcc_ss_data->last_mpar_reset = ktime_get();
			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
288
		}
289
		pcc_ss_data->mpar_count--;
290 291
	}

292
	/* Write to the shared comm region. */
293
	writew_relaxed(cmd, &generic_comm_base->command);
294 295

	/* Flip CMD COMPLETE bit */
296
	writew_relaxed(0, &generic_comm_base->status);
297

298
	pcc_ss_data->platform_owns_pcc = true;
299

300
	/* Ring doorbell */
301
	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
302
	if (ret < 0) {
303 304
		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
		       pcc_ss_id, cmd, ret);
305
		goto end;
306 307
	}

308
	/* wait for completion and check for PCC errro bit */
309
	ret = check_pcc_chan(pcc_ss_id, true);
310

311 312
	if (pcc_ss_data->pcc_mrtt)
		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
313

314 315
	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
316
	else
317
		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
318 319 320 321 322 323

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324

325 326 327
				if (!desc)
					continue;

328
				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
329 330 331
					desc->write_cmd_status = ret;
			}
		}
332 333
		pcc_ss_data->pcc_write_cnt++;
		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
334 335
	}

336
	return ret;
337 338 339 340
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
341
	if (ret < 0)
342 343 344 345 346 347 348
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

349
static struct mbox_client cppc_mbox_cl = {
350 351 352 353 354 355 356 357 358 359 360 361 362 363
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

364 365 366 367
	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
					    &buffer, ACPI_TYPE_PACKAGE);
	if (status == AE_NOT_FOUND)	/* _PSD is optional */
		return 0;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

412 413 414 415 416
bool acpi_cpc_valid(void)
{
	struct cpc_desc *cpc_ptr;
	int cpu;

417
	for_each_present_cpu(cpu) {
418 419 420 421 422 423 424 425 426
		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
		if (!cpc_ptr)
			return false;
	}

	return true;
}
EXPORT_SYMBOL_GPL(acpi_cpc_valid);

427
/**
428 429 430
 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
 * @cpu: Find all CPUs that share a domain with cpu.
 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
431 432 433
 *
 *	Return: 0 for success or negative value for err.
 */
434
int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
435 436
{
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
437 438 439
	struct acpi_psd_package *match_pdomain;
	struct acpi_psd_package *pdomain;
	int count_target, i;
440 441

	/*
Bjorn Helgaas's avatar
Bjorn Helgaas committed
442
	 * Now that we have _PSD data from all CPUs, let's setup P-state
443 444
	 * domain info.
	 */
445 446 447
	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
	if (!cpc_ptr)
		return -EFAULT;
448

449 450 451 452
	pdomain = &(cpc_ptr->domain_info);
	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
	if (pdomain->num_processors <= 1)
		return 0;
453

454 455 456 457 458 459 460 461
	/* Validate the Domain info */
	count_target = pdomain->num_processors;
	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
462

463 464 465
	for_each_possible_cpu(i) {
		if (i == cpu)
			continue;
466

467 468 469
		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
		if (!match_cpc_ptr)
			goto err_fault;
470

471 472 473
		match_pdomain = &(match_cpc_ptr->domain_info);
		if (match_pdomain->domain != pdomain->domain)
			continue;
474

475 476 477
		/* Here i and cpu are in the same domain */
		if (match_pdomain->num_processors != count_target)
			goto err_fault;
478

479 480
		if (pdomain->coord_type != match_pdomain->coord_type)
			goto err_fault;
481

482
		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
483 484
	}

485
	return 0;
486

487 488 489 490 491 492 493
err_fault:
	/* Assume no coordination on any error parsing domain info */
	cpumask_clear(cpu_data->shared_cpu_map);
	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;

	return -EFAULT;
494 495 496
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

497
static int register_pcc_channel(int pcc_ss_idx)
498
{
499
	struct pcc_mbox_chan *pcc_chan;
500
	u64 usecs_lat;
501

502
	if (pcc_ss_idx >= 0) {
503
		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
504

505
		if (IS_ERR(pcc_chan)) {
506 507
			pr_err("Failed to find PCC channel for subspace %d\n",
			       pcc_ss_idx);
508 509 510
			return -ENODEV;
		}

511
		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
512 513 514 515 516
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
517
		usecs_lat = NUM_RETRIES * pcc_chan->latency;
518
		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
519 520 521
		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
522 523

		pcc_data[pcc_ss_idx]->pcc_comm_addr =
524 525
			acpi_os_ioremap(pcc_chan->shmem_base_addr,
					pcc_chan->shmem_size);
526
		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
527 528
			pr_err("Failed to ioremap PCC comm region mem for %d\n",
			       pcc_ss_idx);
529 530 531
			return -ENOMEM;
		}

Bjorn Helgaas's avatar
Bjorn Helgaas committed
532
		/* Set flag so that we don't come here for each CPU. */
533
		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
534 535 536 537 538
	}

	return 0;
}

539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

552 553 554 555 556
/**
 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 *
 * Check and allocate the cppc_pcc_data memory.
 * In some processor configurations it is possible that same subspace
Bjorn Helgaas's avatar
Bjorn Helgaas committed
557
 * is shared between multiple CPUs. This is seen especially in CPUs
558 559 560 561
 * with hardware multi-threading support.
 *
 * Return: 0 for success, errno for failure
 */
562
static int pcc_data_alloc(int pcc_ss_id)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
{
	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
		return -EINVAL;

	if (pcc_data[pcc_ss_id]) {
		pcc_data[pcc_ss_id]->refcount++;
	} else {
		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
					      GFP_KERNEL);
		if (!pcc_data[pcc_ss_id])
			return -ENOMEM;
		pcc_data[pcc_ss_id]->refcount++;
	}

	return 0;
}
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

/* Check if CPPC revision + num_ent combination is supported */
static bool is_cppc_supported(int revision, int num_ent)
{
	int expected_num_ent;

	switch (revision) {
	case CPPC_V2_REV:
		expected_num_ent = CPPC_V2_NUM_ENT;
		break;
	case CPPC_V3_REV:
		expected_num_ent = CPPC_V3_NUM_ENT;
		break;
	default:
		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
			revision);
		return false;
	}

	if (expected_num_ent != num_ent) {
		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
			num_ent, expected_num_ent, revision);
		return false;
	}

	return true;
}

607 608 609
/*
 * An example CPC table looks like the following.
 *
610 611 612 613 614 615 616 617 618 619 620 621 622 623
 *  Name (_CPC, Package() {
 *      17,							// NumEntries
 *      1,							// Revision
 *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
 *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
 *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
 *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
 *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
 *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
 *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
 *      ...
 *      ...
 *      ...
 *  }
624 625 626
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
627 628 629 630 631 632 633
 *  Register (
 *      PCC,	// AddressSpaceKeyword
 *      8,	// RegisterBitWidth
 *      8,	// RegisterBitOffset
 *      0x30,	// RegisterAddress
 *      9,	// AccessSize (subspace ID)
 *  )
634 635
 */

636 637
#ifndef arch_init_invariance_cppc
static inline void arch_init_invariance_cppc(void) { }
638 639
#endif

640 641
/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
Bjorn Helgaas's avatar
Bjorn Helgaas committed
642
 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
643 644 645 646 647 648 649 650 651
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
652
	struct device *cpu_dev;
653 654
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
655
	int pcc_subspace_id = -1;
656 657 658
	acpi_status status;
	int ret = -EFAULT;

659 660 661
	if (osc_sb_cppc_not_supported)
		return -ENODEV;

Bjorn Helgaas's avatar
Bjorn Helgaas committed
662
	/* Parse the ACPI _CPC table for this CPU. */
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}
687 688
	cpc_ptr->num_entries = num_ent;

689 690 691 692 693 694 695 696 697
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}
698
	cpc_ptr->version = cpc_rev;
699

700
	if (!is_cppc_supported(cpc_rev, num_ent))
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		goto out_free;

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
721 722 723 724 725
				if (pcc_subspace_id < 0) {
					pcc_subspace_id = gas_t->access_width;
					if (pcc_data_alloc(pcc_subspace_id))
						goto out_free;
				} else if (pcc_subspace_id != gas_t->access_width) {
726 727 728
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
729 730 731 732 733 734 735 736 737
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
					/*
					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
					 * SystemIO doesn't implement 64-bit
					 * registers.
					 */
					pr_debug("Invalid access width %d for SystemIO register\n",
						gas_t->access_width);
					goto out_free;
				}
				if (gas_t->address & OVER_16BTS_MASK) {
					/* SystemIO registers use 16-bit integer addresses */
					pr_debug("Invalid IO port %llu for SystemIO register\n",
						gas_t->address);
					goto out_free;
				}
755
			} else {
756
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
757
					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
758 759 760
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
761 762 763 764 765
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
766
			pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
767 768 769
			goto out_free;
		}
	}
770
	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
771 772 773 774 775 776 777 778 779 780 781 782

	/*
	 * Initialize the remaining cpc_regs as unsupported.
	 * Example: In case FW exposes CPPC v2, the below loop will initialize
	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
	 */
	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
	}


783 784 785 786 787 788 789 790
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

Bjorn Helgaas's avatar
Bjorn Helgaas committed
791
	/* Register PCC channel once for all PCC subspace ID. */
792 793
	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_id);
794 795
		if (ret)
			goto out_free;
796

797 798
		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
799 800 801 802 803
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

804 805
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
806 807
	if (!cpu_dev) {
		ret = -EINVAL;
808
		goto out_free;
809
	}
810

Bjorn Helgaas's avatar
Bjorn Helgaas committed
811
	/* Plug PSD data into this CPU's CPC descriptor. */
812 813
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

814 815
	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
816 817
	if (ret) {
		per_cpu(cpc_desc_ptr, pr->id) = NULL;
818
		kobject_put(&cpc_ptr->kobj);
819
		goto out_free;
820
	}
821

822
	arch_init_invariance_cppc();
823

824 825 826 827
	kfree(output.pointer);
	return 0;

out_free:
828 829 830 831 832 833 834
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
835 836 837 838 839 840 841 842 843 844
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
Bjorn Helgaas's avatar
Bjorn Helgaas committed
845
 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
846 847 848 849 850 851
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
852 853
	unsigned int i;
	void __iomem *addr;
854 855
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);

856
	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
857 858 859 860 861
		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
			pcc_data[pcc_ss_id]->refcount--;
			if (!pcc_data[pcc_ss_id]->refcount) {
				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
				kfree(pcc_data[pcc_ss_id]);
862
				pcc_data[pcc_ss_id] = NULL;
863 864 865
			}
		}
	}
866

867
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
868 869
	if (!cpc_ptr)
		return;
870 871 872 873 874 875 876 877

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

878
	kobject_put(&cpc_ptr->kobj);
879 880 881 882
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

883 884
/**
 * cpc_read_ffh() - Read FFH register
Bjorn Helgaas's avatar
Bjorn Helgaas committed
885
 * @cpunum:	CPU number to read
886 887 888 889 890 891 892 893 894 895 896 897 898 899
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
Bjorn Helgaas's avatar
Bjorn Helgaas committed
900
 * @cpunum:	CPU number to write
901 902 903 904 905 906 907 908 909 910 911 912
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

913 914 915 916 917
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
918

919
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
920
{
921
	void __iomem *vaddr = NULL;
922
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
923 924 925 926
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
927
		return 0;
928
	}
929 930

	*val = 0;
931 932 933

	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
		u32 width = 8 << (reg->access_width - 1);
934
		u32 val_u32;
935 936 937
		acpi_status status;

		status = acpi_os_read_port((acpi_io_address)reg->address,
938
					   &val_u32, width);
939 940 941 942 943 944
		if (ACPI_FAILURE(status)) {
			pr_debug("Error: Failed to read SystemIO port %llx\n",
				 reg->address);
			return -EFAULT;
		}

945
		*val = val_u32;
946 947
		return 0;
	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
948
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
949 950
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
951 952
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
953 954 955
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
956

957
	switch (reg->bit_width) {
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	case 8:
		*val = readb_relaxed(vaddr);
		break;
	case 16:
		*val = readw_relaxed(vaddr);
		break;
	case 32:
		*val = readl_relaxed(vaddr);
		break;
	case 64:
		*val = readq_relaxed(vaddr);
		break;
	default:
		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
			 reg->bit_width, pcc_ss_id);
973
		return -EFAULT;
974 975
	}

976
	return 0;
977 978
}

979
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
980
{
981
	int ret_val = 0;
982
	void __iomem *vaddr = NULL;
983
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
984
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999
	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
		u32 width = 8 << (reg->access_width - 1);
		acpi_status status;

		status = acpi_os_write_port((acpi_io_address)reg->address,
					    (u32)val, width);
		if (ACPI_FAILURE(status)) {
			pr_debug("Error: Failed to write SystemIO port %llx\n",
				 reg->address);
			return -EFAULT;
		}

		return 0;
	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1000
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1001 1002
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
1003 1004
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
1005 1006 1007
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
1008

1009
	switch (reg->bit_width) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	case 8:
		writeb_relaxed(val, vaddr);
		break;
	case 16:
		writew_relaxed(val, vaddr);
		break;
	case 32:
		writel_relaxed(val, vaddr);
		break;
	case 64:
		writeq_relaxed(val, vaddr);
		break;
	default:
		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
			 reg->bit_width, pcc_ss_id);
		ret_val = -EFAULT;
		break;
1027 1028
	}

1029
	return ret_val;
1030 1031
}

1032
static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1033 1034
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1035 1036 1037 1038 1039 1040 1041 1042
	struct cpc_register_resource *reg;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	reg = &cpc_desc->cpc_regs[reg_idx];
1043

1044 1045 1046
	if (CPC_IN_PCC(reg)) {
		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
		struct cppc_pcc_data *pcc_ss_data = NULL;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		int ret = 0;

		if (pcc_ss_id < 0)
			return -EIO;

		pcc_ss_data = pcc_data[pcc_ss_id];

		down_write(&pcc_ss_data->pcc_lock);

		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1057
			cpc_read(cpunum, reg, perf);
1058 1059 1060 1061 1062 1063 1064 1065
		else
			ret = -EIO;

		up_write(&pcc_ss_data->pcc_lock);

		return ret;
	}

1066
	cpc_read(cpunum, reg, perf);
1067 1068 1069

	return 0;
}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

/**
 * cppc_get_desired_perf - Get the desired performance register value.
 * @cpunum: CPU from which to get desired performance.
 * @desired_perf: Return address.
 *
 * Return: 0 for success, -EIO otherwise.
 */
int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
{
	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
}
1082 1083
EXPORT_SYMBOL_GPL(cppc_get_desired_perf);

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * cppc_get_nominal_perf - Get the nominal performance register value.
 * @cpunum: CPU from which to get nominal performance.
 * @nominal_perf: Return address.
 *
 * Return: 0 for success, -EIO otherwise.
 */
int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
{
	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
}

1096
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1097
 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1098 1099 1100 1101 1102 1103 1104 1105
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1106
	struct cpc_register_resource *highest_reg, *lowest_reg,
1107
		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1108
		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1109
	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1110
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1111
	struct cppc_pcc_data *pcc_ss_data = NULL;
1112
	int ret = 0, regs_in_pcc = 0;
1113

1114
	if (!cpc_desc) {
1115 1116 1117 1118 1119 1120
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1121 1122
	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1123 1124
	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1125
	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1126 1127

	/* Are any of the regs PCC ?*/
1128
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1129 1130
		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1131 1132 1133 1134 1135
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1136
		regs_in_pcc = 1;
1137
		down_write(&pcc_ss_data->pcc_lock);
1138
		/* Ring doorbell once to update PCC subspace */
1139
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1140 1141 1142 1143 1144
			ret = -EIO;
			goto out_err;
		}
	}

1145
	cpc_read(cpunum, highest_reg, &high);
1146 1147
	perf_caps->highest_perf = high;

1148
	cpc_read(cpunum, lowest_reg, &low);
1149 1150
	perf_caps->lowest_perf = low;

1151
	cpc_read(cpunum, nominal_reg, &nom);
1152 1153
	perf_caps->nominal_perf = nom;

1154 1155 1156 1157 1158 1159 1160
	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
		perf_caps->guaranteed_perf = 0;
	} else {
		cpc_read(cpunum, guaranteed_reg, &guaranteed);
		perf_caps->guaranteed_perf = guaranteed;
	}
1161

1162 1163 1164 1165
	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
	perf_caps->lowest_nonlinear_perf = min_nonlinear;

	if (!high || !low || !nom || !min_nonlinear)
1166 1167
		ret = -EFAULT;

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	/* Read optional lowest and nominal frequencies if present */
	if (CPC_SUPPORTED(low_freq_reg))
		cpc_read(cpunum, low_freq_reg, &low_f);

	if (CPC_SUPPORTED(nom_freq_reg))
		cpc_read(cpunum, nom_freq_reg, &nom_f);

	perf_caps->lowest_freq = low_f;
	perf_caps->nominal_freq = nom_f;


1179
out_err:
1180
	if (regs_in_pcc)
1181
		up_write(&pcc_ss_data->pcc_lock);
1182 1183 1184 1185 1186
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1187
 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1188 1189 1190 1191 1192 1193 1194 1195
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1196 1197
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
1198
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1199
	struct cppc_pcc_data *pcc_ss_data = NULL;
1200
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1201
	int ret = 0, regs_in_pcc = 0;
1202

1203
	if (!cpc_desc) {
1204 1205 1206 1207 1208 1209
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1210 1211 1212 1213
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1214
	 * If reference perf register is not supported then we should
1215 1216 1217 1218
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1219 1220

	/* Are any of the regs PCC ?*/
1221 1222
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1223 1224 1225 1226 1227
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1228
		down_write(&pcc_ss_data->pcc_lock);
1229
		regs_in_pcc = 1;
1230
		/* Ring doorbell once to update PCC subspace */
1231
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1232 1233 1234 1235 1236
			ret = -EIO;
			goto out_err;
		}
	}

1237 1238 1239
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1240 1241 1242 1243 1244 1245 1246 1247

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1248
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1249

1250
	if (!delivered || !reference ||	!ref_perf) {
1251 1252 1253 1254 1255 1256
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1257
	perf_fb_ctrs->reference_perf = ref_perf;
1258
	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1259
out_err:
1260
	if (regs_in_pcc)
1261
		up_write(&pcc_ss_data->pcc_lock);
1262 1263 1264 1265
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/**
 * cppc_set_enable - Set to enable CPPC on the processor by writing the
 * Continuous Performance Control package EnableRegister field.
 * @cpu: CPU for which to enable CPPC register.
 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
 *
 * Return: 0 for success, -ERRNO or -EIO otherwise.
 */
int cppc_set_enable(int cpu, bool enable)
{
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
	struct cpc_register_resource *enable_reg;
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cppc_pcc_data *pcc_ss_data = NULL;
	int ret = -EINVAL;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -EINVAL;
	}

	enable_reg = &cpc_desc->cpc_regs[ENABLE];

	if (CPC_IN_PCC(enable_reg)) {

		if (pcc_ss_id < 0)
			return -EIO;

		ret = cpc_write(cpu, enable_reg, enable);
		if (ret)
			return ret;

		pcc_ss_data = pcc_data[pcc_ss_id];

		down_write(&pcc_ss_data->pcc_lock);
		/* after writing CPC, transfer the ownership of PCC to platfrom */
		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
		up_write(&pcc_ss_data->pcc_lock);
		return ret;
	}

	return cpc_write(cpu, enable_reg, enable);
}
EXPORT_SYMBOL_GPL(cppc_set_enable);

1311
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1312
 * cppc_set_perf - Set a CPU's performance controls.
1313 1314 1315 1316 1317 1318 1319 1320 1321
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
1322
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1323
	struct cppc_pcc_data *pcc_ss_data = NULL;
1324 1325
	int ret = 0;

1326
	if (!cpc_desc) {
1327 1328 1329 1330 1331 1332
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1333 1334 1335 1336 1337 1338 1339 1340
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1341 1342 1343 1344 1345
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1346 1347 1348
		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
		if (pcc_ss_data->platform_owns_pcc) {
			ret = check_pcc_chan(pcc_ss_id, false);
1349
			if (ret) {
1350
				up_read(&pcc_ss_data->pcc_lock);
1351 1352 1353
				return ret;
			}
		}
1354 1355 1356 1357
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
1358 1359
		pcc_ss_data->pending_pcc_write_cmd = true;
		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1360
		cpc_desc->write_cmd_status = 0;
1361 1362
	}

1363 1364 1365 1366
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1367
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1368

1369
	if (CPC_IN_PCC(desired_reg))
1370
		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1393
	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1413
	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1414 1415 1416 1417
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1418
		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1419
			/* Update only if there are pending write commands */
1420 1421 1422
			if (pcc_ss_data->pending_pcc_write_cmd)
				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1423 1424
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1425 1426
			wait_event(pcc_ss_data->pcc_write_wait_q,
				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1427 1428 1429

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1430 1431 1432 1433
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1434 1435 1436 1437

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
1438 1439
 * ACPI CPPC does not explicitly specify how a platform can specify the
 * transition latency for performance change requests. The closest we have
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;
1459
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1460
	struct cppc_pcc_data *pcc_ss_data;
1461 1462 1463 1464 1465 1466 1467 1468 1469

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1470 1471 1472 1473
	if (pcc_ss_id < 0)
		return CPUFREQ_ETERNAL;

	pcc_ss_data = pcc_data[pcc_ss_id];
1474 1475
	if (pcc_ss_data->pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1476

1477 1478
	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1479 1480 1481 1482

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);