io_uring.c 120 KB
Newer Older
Jens Axboe's avatar
Jens Axboe committed
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0
/*
 * Shared application/kernel submission and completion ring pairs, for
 * supporting fast/efficient IO.
 *
 * A note on the read/write ordering memory barriers that are matched between
7 8 9 10 11 12 13
 * the application and kernel side.
 *
 * After the application reads the CQ ring tail, it must use an
 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
 * before writing the tail (using smp_load_acquire to read the tail will
 * do). It also needs a smp_mb() before updating CQ head (ordering the
 * entry load(s) with the head store), pairing with an implicit barrier
14
 * through a control-dependency in io_get_cqe (smp_store_release to
15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * store head will do). Failure to do so could lead to reading invalid
 * CQ entries.
 *
 * Likewise, the application must use an appropriate smp_wmb() before
 * writing the SQ tail (ordering SQ entry stores with the tail store),
 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
 * to store the tail will do). And it needs a barrier ordering the SQ
 * head load before writing new SQ entries (smp_load_acquire to read
 * head will do).
 *
 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
 * updating the SQ tail; a full memory barrier smp_mb() is needed
 * between.
Jens Axboe's avatar
Jens Axboe committed
29 30 31 32 33 34 35 36 37 38 39
 *
 * Also see the examples in the liburing library:
 *
 *	git://git.kernel.dk/liburing
 *
 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
 * from data shared between the kernel and application. This is done both
 * for ordering purposes, but also to ensure that once a value is loaded from
 * data that the application could potentially modify, it remains stable.
 *
 * Copyright (C) 2018-2019 Jens Axboe
40
 * Copyright (c) 2018-2019 Christoph Hellwig
Jens Axboe's avatar
Jens Axboe committed
41 42 43 44 45
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
46
#include <net/compat.h>
Jens Axboe's avatar
Jens Axboe committed
47 48
#include <linux/refcount.h>
#include <linux/uio.h>
49
#include <linux/bits.h>
Jens Axboe's avatar
Jens Axboe committed
50 51 52 53 54 55 56 57 58

#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/percpu.h>
#include <linux/slab.h>
59
#include <linux/bvec.h>
Jens Axboe's avatar
Jens Axboe committed
60 61 62
#include <linux/net.h>
#include <net/sock.h>
#include <net/af_unix.h>
63
#include <net/scm.h>
Jens Axboe's avatar
Jens Axboe committed
64 65 66 67
#include <linux/anon_inodes.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>
#include <linux/nospec.h>
68
#include <linux/highmem.h>
69
#include <linux/fsnotify.h>
70
#include <linux/fadvise.h>
71
#include <linux/task_work.h>
72
#include <linux/io_uring.h>
73
#include <linux/audit.h>
74
#include <linux/security.h>
75
#include <asm/shmparam.h>
Jens Axboe's avatar
Jens Axboe committed
76

77 78 79
#define CREATE_TRACE_POINTS
#include <trace/events/io_uring.h>

Jens Axboe's avatar
Jens Axboe committed
80 81
#include <uapi/linux/io_uring.h>

82
#include "io-wq.h"
Jens Axboe's avatar
Jens Axboe committed
83

84
#include "io_uring.h"
85
#include "opdef.h"
86
#include "refs.h"
87
#include "tctx.h"
88
#include "sqpoll.h"
89
#include "fdinfo.h"
90
#include "kbuf.h"
91
#include "rsrc.h"
92
#include "cancel.h"
Jens Axboe's avatar
Jens Axboe committed
93
#include "net.h"
94
#include "notif.h"
95

96
#include "timeout.h"
97
#include "poll.h"
98
#include "rw.h"
99
#include "alloc_cache.h"
100

101
#define IORING_MAX_ENTRIES	32768
102
#define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103

104 105
#define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
				 IORING_REGISTER_LAST + IORING_OP_LAST)
Jens Axboe's avatar
Jens Axboe committed
106

107 108 109
#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)

110 111
#define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112

113
#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 115
				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
				REQ_F_ASYNC_DATA)
116

117 118 119
#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
				 IO_REQ_CLEAN_FLAGS)

120 121
#define IO_TCTX_REFS_CACHE_NR	(1U << 10)

122
#define IO_COMPL_BATCH			32
123
#define IO_REQ_ALLOC_BATCH		8
124

125 126
enum {
	IO_CHECK_CQ_OVERFLOW_BIT,
127
	IO_CHECK_CQ_DROPPED_BIT,
128 129
};

130 131 132 133 134
enum {
	IO_EVENTFD_OP_SIGNAL_BIT,
	IO_EVENTFD_OP_FREE_BIT,
};

135 136 137
struct io_defer_entry {
	struct list_head	list;
	struct io_kiocb		*req;
138
	u32			seq;
Jens Axboe's avatar
Jens Axboe committed
139 140
};

141 142
/* requests with any of those set should undergo io_disarm_next() */
#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143
#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144

145
static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146
					 struct task_struct *task,
147
					 bool cancel_all);
148

149
static void io_queue_sqe(struct io_kiocb *req);
150
static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151
static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152

153
struct kmem_cache *req_cachep;
Jens Axboe's avatar
Jens Axboe committed
154 155 156 157

struct sock *io_uring_get_socket(struct file *file)
{
#if defined(CONFIG_UNIX)
158
	if (io_is_uring_fops(file)) {
Jens Axboe's avatar
Jens Axboe committed
159 160 161 162 163 164 165 166 167
		struct io_ring_ctx *ctx = file->private_data;

		return ctx->ring_sock->sk;
	}
#endif
	return NULL;
}
EXPORT_SYMBOL(io_uring_get_socket);

168 169
static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
{
170 171
	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
	    ctx->submit_state.cqes_count)
172 173 174
		__io_submit_flush_completions(ctx);
}

175 176 177 178 179
static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
{
	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
}

180 181 182 183 184
static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
{
	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
}

185 186 187 188 189 190 191 192 193
static bool io_match_linked(struct io_kiocb *head)
{
	struct io_kiocb *req;

	io_for_each_link(req, head) {
		if (req->flags & REQ_F_INFLIGHT)
			return true;
	}
	return false;
194 195 196 197 198 199
}

/*
 * As io_match_task() but protected against racing with linked timeouts.
 * User must not hold timeout_lock.
 */
200 201
bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
			bool cancel_all)
202
{
203 204
	bool matched;

205 206
	if (task && head->task != task)
		return false;
207 208 209 210 211 212 213 214 215 216 217 218 219 220
	if (cancel_all)
		return true;

	if (head->flags & REQ_F_LINK_TIMEOUT) {
		struct io_ring_ctx *ctx = head->ctx;

		/* protect against races with linked timeouts */
		spin_lock_irq(&ctx->timeout_lock);
		matched = io_match_linked(head);
		spin_unlock_irq(&ctx->timeout_lock);
	} else {
		matched = io_match_linked(head);
	}
	return matched;
221 222
}

223 224 225
static inline void req_fail_link_node(struct io_kiocb *req, int res)
{
	req_set_fail(req);
226
	io_req_set_res(req, res, 0);
227 228
}

229 230 231
static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
{
	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
232
	kasan_poison_object_data(req_cachep, req);
233 234
}

235
static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
Jens Axboe's avatar
Jens Axboe committed
236 237 238
{
	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);

239
	complete(&ctx->ref_comp);
Jens Axboe's avatar
Jens Axboe committed
240 241
}

242
static __cold void io_fallback_req_func(struct work_struct *work)
243 244 245 246 247
{
	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
						fallback_work.work);
	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
	struct io_kiocb *req, *tmp;
248
	struct io_tw_state ts = { .locked = true, };
249

250
	mutex_lock(&ctx->uring_lock);
251
	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 253
		req->io_task_work.func(req, &ts);
	if (WARN_ON_ONCE(!ts.locked))
254 255 256
		return;
	io_submit_flush_completions(ctx);
	mutex_unlock(&ctx->uring_lock);
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272
static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
{
	unsigned hash_buckets = 1U << bits;
	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);

	table->hbs = kmalloc(hash_size, GFP_KERNEL);
	if (!table->hbs)
		return -ENOMEM;

	table->hash_bits = bits;
	init_hash_table(table, hash_buckets);
	return 0;
}

273
static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
Jens Axboe's avatar
Jens Axboe committed
274 275
{
	struct io_ring_ctx *ctx;
276
	int hash_bits;
Jens Axboe's avatar
Jens Axboe committed
277 278 279 280 281

	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return NULL;

282 283
	xa_init(&ctx->io_bl_xa);

284 285
	/*
	 * Use 5 bits less than the max cq entries, that should give us around
286 287
	 * 32 entries per hash list if totally full and uniformly spread, but
	 * don't keep too many buckets to not overconsume memory.
288
	 */
289 290
	hash_bits = ilog2(p->cq_entries) - 5;
	hash_bits = clamp(hash_bits, 1, 8);
291
	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
292
		goto err;
293 294
	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
		goto err;
295

296 297 298 299 300 301
	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
	if (!ctx->dummy_ubuf)
		goto err;
	/* set invalid range, so io_import_fixed() fails meeting it */
	ctx->dummy_ubuf->ubuf = -1UL;

302
	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
303
			    0, GFP_KERNEL))
304
		goto err;
Jens Axboe's avatar
Jens Axboe committed
305 306

	ctx->flags = p->flags;
307
	init_waitqueue_head(&ctx->sqo_sq_wait);
308
	INIT_LIST_HEAD(&ctx->sqd_list);
309
	INIT_LIST_HEAD(&ctx->cq_overflow_list);
310
	INIT_LIST_HEAD(&ctx->io_buffers_cache);
311 312 313 314 315 316
	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
			    sizeof(struct io_rsrc_node));
	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
			    sizeof(struct async_poll));
	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
			    sizeof(struct io_async_msghdr));
317
	init_completion(&ctx->ref_comp);
318
	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
Jens Axboe's avatar
Jens Axboe committed
319
	mutex_init(&ctx->uring_lock);
320
	init_waitqueue_head(&ctx->cq_wait);
321
	init_waitqueue_head(&ctx->poll_wq);
322
	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
Jens Axboe's avatar
Jens Axboe committed
323
	spin_lock_init(&ctx->completion_lock);
324
	spin_lock_init(&ctx->timeout_lock);
325
	INIT_WQ_LIST(&ctx->iopoll_list);
326 327
	INIT_LIST_HEAD(&ctx->io_buffers_pages);
	INIT_LIST_HEAD(&ctx->io_buffers_comp);
328
	INIT_LIST_HEAD(&ctx->defer_list);
329
	INIT_LIST_HEAD(&ctx->timeout_list);
330
	INIT_LIST_HEAD(&ctx->ltimeout_list);
331
	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
332
	init_llist_head(&ctx->work_llist);
333
	INIT_LIST_HEAD(&ctx->tctx_list);
334 335
	ctx->submit_state.free_list.next = NULL;
	INIT_WQ_LIST(&ctx->locked_free_list);
336
	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337
	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
Jens Axboe's avatar
Jens Axboe committed
338
	return ctx;
339
err:
340
	kfree(ctx->dummy_ubuf);
341
	kfree(ctx->cancel_table.hbs);
342
	kfree(ctx->cancel_table_locked.hbs);
343 344
	kfree(ctx->io_bl);
	xa_destroy(&ctx->io_bl_xa);
345 346
	kfree(ctx);
	return NULL;
Jens Axboe's avatar
Jens Axboe committed
347 348
}

349 350 351 352 353 354 355 356
static void io_account_cq_overflow(struct io_ring_ctx *ctx)
{
	struct io_rings *r = ctx->rings;

	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
	ctx->cq_extra--;
}

357
static bool req_need_defer(struct io_kiocb *req, u32 seq)
358
{
359 360
	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
		struct io_ring_ctx *ctx = req->ctx;
361

362
		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363
	}
364

365
	return false;
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static void io_clean_op(struct io_kiocb *req)
{
	if (req->flags & REQ_F_BUFFER_SELECTED) {
		spin_lock(&req->ctx->completion_lock);
		io_put_kbuf_comp(req);
		spin_unlock(&req->ctx->completion_lock);
	}

	if (req->flags & REQ_F_NEED_CLEANUP) {
		const struct io_cold_def *def = &io_cold_defs[req->opcode];

		if (def->cleanup)
			def->cleanup(req);
	}
	if ((req->flags & REQ_F_POLLED) && req->apoll) {
		kfree(req->apoll->double_poll);
		kfree(req->apoll);
		req->apoll = NULL;
	}
	if (req->flags & REQ_F_INFLIGHT) {
		struct io_uring_task *tctx = req->task->io_uring;

		atomic_dec(&tctx->inflight_tracked);
	}
	if (req->flags & REQ_F_CREDS)
		put_cred(req->creds);
	if (req->flags & REQ_F_ASYNC_DATA) {
		kfree(req->async_data);
		req->async_data = NULL;
	}
	req->flags &= ~IO_REQ_CLEAN_FLAGS;
}

401 402 403 404
static inline void io_req_track_inflight(struct io_kiocb *req)
{
	if (!(req->flags & REQ_F_INFLIGHT)) {
		req->flags |= REQ_F_INFLIGHT;
405
		atomic_inc(&req->task->io_uring->inflight_tracked);
406 407 408
	}
}

409 410
static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
{
411 412 413
	if (WARN_ON_ONCE(!req->link))
		return NULL;

414 415
	req->flags &= ~REQ_F_ARM_LTIMEOUT;
	req->flags |= REQ_F_LINK_TIMEOUT;
416 417

	/* linked timeouts should have two refs once prep'ed */
418
	io_req_set_refcount(req);
419 420
	__io_req_set_refcount(req->link, 2);
	return req->link;
421 422 423 424
}

static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
{
425
	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
426 427 428 429
		return NULL;
	return __io_prep_linked_timeout(req);
}

430 431 432 433 434 435 436 437 438 439 440
static noinline void __io_arm_ltimeout(struct io_kiocb *req)
{
	io_queue_linked_timeout(__io_prep_linked_timeout(req));
}

static inline void io_arm_ltimeout(struct io_kiocb *req)
{
	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
		__io_arm_ltimeout(req);
}

441 442
static void io_prep_async_work(struct io_kiocb *req)
{
443
	const struct io_issue_def *def = &io_issue_defs[req->opcode];
444 445
	struct io_ring_ctx *ctx = req->ctx;

446 447
	if (!(req->flags & REQ_F_CREDS)) {
		req->flags |= REQ_F_CREDS;
448
		req->creds = get_current_cred();
449
	}
450

451 452
	req->work.list.next = NULL;
	req->work.flags = 0;
453
	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
454 455 456
	if (req->flags & REQ_F_FORCE_ASYNC)
		req->work.flags |= IO_WQ_WORK_CONCURRENT;

457
	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
458
		req->flags |= io_file_get_flags(req->file);
459

460
	if (req->file && (req->flags & REQ_F_ISREG)) {
461 462 463 464 465 466 467
		bool should_hash = def->hash_reg_file;

		/* don't serialize this request if the fs doesn't need it */
		if (should_hash && (req->file->f_flags & O_DIRECT) &&
		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
			should_hash = false;
		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
468
			io_wq_hash_work(&req->work, file_inode(req->file));
469
	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
470 471 472
		if (def->unbound_nonreg_file)
			req->work.flags |= IO_WQ_WORK_UNBOUND;
	}
473
}
474

475
static void io_prep_async_link(struct io_kiocb *req)
476
{
477
	struct io_kiocb *cur;
478

479 480 481
	if (req->flags & REQ_F_LINK_TIMEOUT) {
		struct io_ring_ctx *ctx = req->ctx;

482
		spin_lock_irq(&ctx->timeout_lock);
483 484
		io_for_each_link(cur, req)
			io_prep_async_work(cur);
485
		spin_unlock_irq(&ctx->timeout_lock);
486 487 488 489
	} else {
		io_for_each_link(cur, req)
			io_prep_async_work(cur);
	}
490 491
}

492
void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
493
{
494
	struct io_kiocb *link = io_prep_linked_timeout(req);
495
	struct io_uring_task *tctx = req->task->io_uring;
496

497 498
	BUG_ON(!tctx);
	BUG_ON(!tctx->io_wq);
499

500 501
	/* init ->work of the whole link before punting */
	io_prep_async_link(req);
502 503 504 505 506 507 508 509 510 511 512

	/*
	 * Not expected to happen, but if we do have a bug where this _can_
	 * happen, catch it here and ensure the request is marked as
	 * canceled. That will make io-wq go through the usual work cancel
	 * procedure rather than attempt to run this request (or create a new
	 * worker for it).
	 */
	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
		req->work.flags |= IO_WQ_WORK_CANCEL;

513
	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
514
	io_wq_enqueue(tctx->io_wq, &req->work);
515 516
	if (link)
		io_queue_linked_timeout(link);
517 518
}

519
static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
520
{
521
	while (!list_empty(&ctx->defer_list)) {
522 523
		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
						struct io_defer_entry, list);
524

525
		if (req_need_defer(de->req, de->seq))
526
			break;
527
		list_del_init(&de->list);
528
		io_req_task_queue(de->req);
529
		kfree(de);
530
	}
531 532
}

533 534

static void io_eventfd_ops(struct rcu_head *rcu)
535
{
536
	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
537
	int ops = atomic_xchg(&ev_fd->ops, 0);
538

539
	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
540
		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
541

542 543 544
	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
	 * ordering in a race but if references are 0 we know we have to free
	 * it regardless.
545
	 */
546 547 548 549
	if (atomic_dec_and_test(&ev_fd->refs)) {
		eventfd_ctx_put(ev_fd->cq_ev_fd);
		kfree(ev_fd);
	}
550 551
}

552
static void io_eventfd_signal(struct io_ring_ctx *ctx)
553
{
554
	struct io_ev_fd *ev_fd = NULL;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

	rcu_read_lock();
	/*
	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
	 * and eventfd_signal
	 */
	ev_fd = rcu_dereference(ctx->io_ev_fd);

	/*
	 * Check again if ev_fd exists incase an io_eventfd_unregister call
	 * completed between the NULL check of ctx->io_ev_fd at the start of
	 * the function and rcu_read_lock.
	 */
	if (unlikely(!ev_fd))
		goto out;
570
	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
571
		goto out;
572 573
	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
		goto out;
574

575
	if (likely(eventfd_signal_allowed())) {
576
		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
577 578 579
	} else {
		atomic_inc(&ev_fd->refs);
		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
580
			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
581 582 583 584
		else
			atomic_dec(&ev_fd->refs);
	}

585 586
out:
	rcu_read_unlock();
587 588
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
{
	bool skip;

	spin_lock(&ctx->completion_lock);

	/*
	 * Eventfd should only get triggered when at least one event has been
	 * posted. Some applications rely on the eventfd notification count
	 * only changing IFF a new CQE has been added to the CQ ring. There's
	 * no depedency on 1:1 relationship between how many times this
	 * function is called (and hence the eventfd count) and number of CQEs
	 * posted to the CQ ring.
	 */
	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
	spin_unlock(&ctx->completion_lock);
	if (skip)
		return;

	io_eventfd_signal(ctx);
}

612 613
void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
{
614 615
	if (ctx->poll_activated)
		io_poll_wq_wake(ctx);
616 617 618
	if (ctx->off_timeout_used)
		io_flush_timeouts(ctx);
	if (ctx->drain_active) {
619
		spin_lock(&ctx->completion_lock);
620
		io_queue_deferred(ctx);
621 622 623
		spin_unlock(&ctx->completion_lock);
	}
	if (ctx->has_evfd)
624
		io_eventfd_flush_signal(ctx);
625 626
}

627 628 629 630 631 632
static inline void __io_cq_lock(struct io_ring_ctx *ctx)
{
	if (!ctx->task_complete)
		spin_lock(&ctx->completion_lock);
}

633 634 635 636 637 638
static inline void io_cq_lock(struct io_ring_ctx *ctx)
	__acquires(ctx->completion_lock)
{
	spin_lock(&ctx->completion_lock);
}

639
static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
640 641 642
{
	io_commit_cqring(ctx);

643 644 645 646 647 648 649 650
	if (ctx->task_complete) {
		/*
		 * ->task_complete implies that only current might be waiting
		 * for CQEs, and obviously, we currently don't. No one is
		 * waiting, wakeups are futile, skip them.
		 */
		io_commit_cqring_flush(ctx);
	} else {
651
		spin_unlock(&ctx->completion_lock);
652
		io_commit_cqring_flush(ctx);
653
		io_cqring_wake(ctx);
654 655 656
	}
}

657
static void io_cq_unlock_post(struct io_ring_ctx *ctx)
658
	__releases(ctx->completion_lock)
659
{
660 661 662 663
	io_commit_cqring(ctx);
	spin_unlock(&ctx->completion_lock);
	io_commit_cqring_flush(ctx);
	io_cqring_wake(ctx);
664 665
}

666
/* Returns true if there are no backlogged entries after the flush */
667 668 669 670 671
static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
{
	struct io_overflow_cqe *ocqe;
	LIST_HEAD(list);

672
	spin_lock(&ctx->completion_lock);
673 674
	list_splice_init(&ctx->cq_overflow_list, &list);
	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675
	spin_unlock(&ctx->completion_lock);
676 677 678 679 680 681 682 683

	while (!list_empty(&list)) {
		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
		list_del(&ocqe->list);
		kfree(ocqe);
	}
}

684
static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
685
{
686
	size_t cqe_size = sizeof(struct io_uring_cqe);
687

688
	if (__io_cqring_events(ctx) == ctx->cq_entries)
689
		return;
690

691 692 693
	if (ctx->flags & IORING_SETUP_CQE32)
		cqe_size <<= 1;

694
	io_cq_lock(ctx);
695
	while (!list_empty(&ctx->cq_overflow_list)) {
696
		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
697
		struct io_overflow_cqe *ocqe;
698

699
		if (!cqe)
700
			break;
701 702
		ocqe = list_first_entry(&ctx->cq_overflow_list,
					struct io_overflow_cqe, list);
703
		memcpy(cqe, &ocqe->cqe, cqe_size);
704 705
		list_del(&ocqe->list);
		kfree(ocqe);
706 707
	}

708
	if (list_empty(&ctx->cq_overflow_list)) {
709
		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
710
		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
711
	}
712
	io_cq_unlock_post(ctx);
713 714
}

715 716 717 718 719 720 721 722 723 724
static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
{
	/* iopoll syncs against uring_lock, not completion_lock */
	if (ctx->flags & IORING_SETUP_IOPOLL)
		mutex_lock(&ctx->uring_lock);
	__io_cqring_overflow_flush(ctx);
	if (ctx->flags & IORING_SETUP_IOPOLL)
		mutex_unlock(&ctx->uring_lock);
}

725
static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
726
{
727 728
	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
		io_cqring_do_overflow_flush(ctx);
729 730
}

731
/* can be called by any task */
732
static void io_put_task_remote(struct task_struct *task)
733 734 735
{
	struct io_uring_task *tctx = task->io_uring;

736
	percpu_counter_sub(&tctx->inflight, 1);
737
	if (unlikely(atomic_read(&tctx->in_cancel)))
738
		wake_up(&tctx->wait);
739
	put_task_struct(task);
740 741
}

742
/* used by a task to put its own references */
743
static void io_put_task_local(struct task_struct *task)
744
{
745
	task->io_uring->cached_refs++;
746 747
}

748
/* must to be called somewhat shortly after putting a request */
749
static inline void io_put_task(struct task_struct *task)
750 751
{
	if (likely(task == current))
752
		io_put_task_local(task);
753
	else
754
		io_put_task_remote(task);
755 756
}

757
void io_task_refs_refill(struct io_uring_task *tctx)
758 759 760 761 762 763 764 765
{
	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;

	percpu_counter_add(&tctx->inflight, refill);
	refcount_add(refill, &current->usage);
	tctx->cached_refs += refill;
}

766 767 768 769 770 771 772 773 774 775 776 777
static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
{
	struct io_uring_task *tctx = task->io_uring;
	unsigned int refs = tctx->cached_refs;

	if (refs) {
		tctx->cached_refs = 0;
		percpu_counter_sub(&tctx->inflight, refs);
		put_task_struct_many(task, refs);
	}
}

778 779
static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
				     s32 res, u32 cflags, u64 extra1, u64 extra2)
Jens Axboe's avatar
Jens Axboe committed
780
{
781
	struct io_overflow_cqe *ocqe;
782 783
	size_t ocq_size = sizeof(struct io_overflow_cqe);
	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
Jens Axboe's avatar
Jens Axboe committed
784

785 786
	lockdep_assert_held(&ctx->completion_lock);

787 788
	if (is_cqe32)
		ocq_size += sizeof(struct io_uring_cqe);
Jens Axboe's avatar
Jens Axboe committed
789

790
	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
791
	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
792 793 794 795 796 797
	if (!ocqe) {
		/*
		 * If we're in ring overflow flush mode, or in task cancel mode,
		 * or cannot allocate an overflow entry, then we need to drop it
		 * on the floor.
		 */
798
		io_account_cq_overflow(ctx);
799
		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
800
		return false;
Jens Axboe's avatar
Jens Axboe committed
801
	}
802
	if (list_empty(&ctx->cq_overflow_list)) {
803
		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
804
		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
805

806
	}
807
	ocqe->cqe.user_data = user_data;
808 809
	ocqe->cqe.res = res;
	ocqe->cqe.flags = cflags;
810 811 812 813
	if (is_cqe32) {
		ocqe->cqe.big_cqe[0] = extra1;
		ocqe->cqe.big_cqe[1] = extra2;
	}
814 815
	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
	return true;
Jens Axboe's avatar
Jens Axboe committed
816 817
}

818 819 820 821 822 823 824 825 826 827 828
bool io_req_cqe_overflow(struct io_kiocb *req)
{
	if (!(req->flags & REQ_F_CQE32_INIT)) {
		req->extra1 = 0;
		req->extra2 = 0;
	}
	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
					req->cqe.res, req->cqe.flags,
					req->extra1, req->extra2);
}

829 830 831 832 833
/*
 * writes to the cq entry need to come after reading head; the
 * control dependency is enough as we're using WRITE_ONCE to
 * fill the cq entry
 */
834
struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
835 836 837 838 839
{
	struct io_rings *rings = ctx->rings;
	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
	unsigned int free, queued, len;

840 841 842 843 844 845 846
	/*
	 * Posting into the CQ when there are pending overflowed CQEs may break
	 * ordering guarantees, which will affect links, F_MORE users and more.
	 * Force overflow the completion.
	 */
	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
		return NULL;
847 848 849 850 851 852 853 854 855

	/* userspace may cheat modifying the tail, be safe and do min */
	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
	free = ctx->cq_entries - queued;
	/* we need a contiguous range, limit based on the current array offset */
	len = min(free, ctx->cq_entries - off);
	if (!len)
		return NULL;

856 857 858 859 860
	if (ctx->flags & IORING_SETUP_CQE32) {
		off <<= 1;
		len <<= 1;
	}

861 862
	ctx->cqe_cached = &rings->cqes[off];
	ctx->cqe_sentinel = ctx->cqe_cached + len;
863 864

	ctx->cached_cq_tail++;
865
	ctx->cqe_cached++;
866 867 868
	if (ctx->flags & IORING_SETUP_CQE32)
		ctx->cqe_cached++;
	return &rings->cqes[off];
869 870
}

871 872
static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
			      u32 cflags)
873
{
874 875
	struct io_uring_cqe *cqe;

876
	ctx->cq_extra++;
877 878 879 880 881 882 883 884

	/*
	 * If we can't get a cq entry, userspace overflowed the
	 * submission (by quite a lot). Increment the overflow count in
	 * the ring.
	 */
	cqe = io_get_cqe(ctx);
	if (likely(cqe)) {
885 886
		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);

887 888 889
		WRITE_ONCE(cqe->user_data, user_data);
		WRITE_ONCE(cqe->res, res);
		WRITE_ONCE(cqe->flags, cflags);
890 891 892 893 894

		if (ctx->flags & IORING_SETUP_CQE32) {
			WRITE_ONCE(cqe->big_cqe[0], 0);
			WRITE_ONCE(cqe->big_cqe[1], 0);
		}
895 896
		return true;
	}
897
	return false;
898 899
}

900 901 902 903 904 905 906 907 908 909
static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
	__must_hold(&ctx->uring_lock)
{
	struct io_submit_state *state = &ctx->submit_state;
	unsigned int i;

	lockdep_assert_held(&ctx->uring_lock);
	for (i = 0; i < state->cqes_count; i++) {
		struct io_uring_cqe *cqe = &state->cqes[i];

910 911 912 913 914 915 916 917 918 919 920
		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
			if (ctx->task_complete) {
				spin_lock(&ctx->completion_lock);
				io_cqring_event_overflow(ctx, cqe->user_data,
							cqe->res, cqe->flags, 0, 0);
				spin_unlock(&ctx->completion_lock);
			} else {
				io_cqring_event_overflow(ctx, cqe->user_data,
							cqe->res, cqe->flags, 0, 0);
			}
		}
921 922 923 924
	}
	state->cqes_count = 0;
}

925 926
static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
			      bool allow_overflow)
927 928 929
{
	bool filled;

930
	io_cq_lock(ctx);
931 932 933 934
	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
	if (!filled && allow_overflow)
		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);

935
	io_cq_unlock_post(ctx);
936 937 938
	return filled;
}

939 940 941 942 943
bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
{
	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
}

944
bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
945
		bool allow_overflow)
Jens Axboe's avatar
Jens Axboe committed
946
{
947 948
	struct io_ring_ctx *ctx = req->ctx;
	u64 user_data = req->cqe.user_data;
949 950 951
	struct io_uring_cqe *cqe;

	if (!defer)
952
		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
953 954 955

	lockdep_assert_held(&ctx->uring_lock);

956
	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
957
		__io_cq_lock(ctx);
958 959
		__io_flush_post_cqes(ctx);
		/* no need to flush - flush is deferred */
960
		__io_cq_unlock_post(ctx);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	}

	/* For defered completions this is not as strict as it is otherwise,
	 * however it's main job is to prevent unbounded posted completions,
	 * and in that it works just as well.
	 */
	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
		return false;

	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
	cqe->user_data = user_data;
	cqe->res = res;
	cqe->flags = cflags;
	return true;
}

977
static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
Jens Axboe's avatar
Jens Axboe committed
978
{
979
	struct io_ring_ctx *ctx = req->ctx;
980
	struct io_rsrc_node *rsrc_node = NULL;
981 982 983

	io_cq_lock(ctx);
	if (!(req->flags & REQ_F_CQE_SKIP))
984
		io_fill_cqe_req(ctx, req);
985

986 987 988 989
	/*
	 * If we're the last reference to this request, add to our locked
	 * free_list cache.
	 */
990
	if (req_ref_put_and_test(req)) {
991
		if (req->flags & IO_REQ_LINK_FLAGS) {
992
			if (req->flags & IO_DISARM_MASK)
993 994 995 996 997 998
				io_disarm_next(req);
			if (req->link) {
				io_req_task_queue(req->link);
				req->link = NULL;
			}
		}
999
		io_put_kbuf_comp(req);
1000 1001 1002 1003 1004
		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
			io_clean_op(req);
		if (!(req->flags & REQ_F_FIXED_FILE))
			io_put_file(req->file);

1005
		rsrc_node = req->rsrc_node;
1006 1007 1008 1009 1010
		/*
		 * Selected buffer deallocation in io_clean_op() assumes that
		 * we don't hold ->completion_lock. Clean them here to avoid
		 * deadlocks.
		 */
1011
		io_put_task_remote(req->task);
1012
		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1013
		ctx->locked_free_nr++;
1014
	}
1015
	io_cq_unlock_post(ctx);
1016

1017 1018
	if (rsrc_node) {
		io_ring_submit_lock(ctx, issue_flags);
1019
		io_put_rsrc_node(ctx, rsrc_node);
1020 1021
		io_ring_submit_unlock(ctx, issue_flags);
	}
1022 1023
}

1024
void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1025
{
1026
	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1027 1028 1029 1030
		req->io_task_work.func = io_req_task_complete;
		io_req_task_work_add(req);
	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1031
		__io_req_complete_post(req, issue_flags);
1032 1033 1034 1035
	} else {
		struct io_ring_ctx *ctx = req->ctx;

		mutex_lock(&ctx->uring_lock);
1036
		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1037 1038
		mutex_unlock(&ctx->uring_lock);
	}
1039 1040
}

1041
void io_req_defer_failed(struct io_kiocb *req, s32 res)
1042
	__must_hold(&ctx->uring_lock)
1043
{
1044
	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1045

1046 1047
	lockdep_assert_held(&req->ctx->uring_lock);

1048
	req_set_fail(req);
1049
	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1050 1051
	if (def->fail)
		def->fail(req);
1052
	io_req_complete_defer(req);
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/*
 * Don't initialise the fields below on every allocation, but do that in
 * advance and keep them valid across allocations.
 */
static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
{
	req->ctx = ctx;
	req->link = NULL;
	req->async_data = NULL;
	/* not necessary, but safer to zero */
1065
	req->cqe.res = 0;
1066 1067
}

1068
static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1069
					struct io_submit_state *state)
1070
{
1071
	spin_lock(&ctx->completion_lock);
1072
	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1073
	ctx->locked_free_nr = 0;
1074
	spin_unlock(&ctx->completion_lock);
1075 1076
}

1077 1078 1079 1080 1081 1082
/*
 * A request might get retired back into the request caches even before opcode
 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
 * Because of that, io_alloc_req() should be called only under ->uring_lock
 * and with extra caution to not get a request that is still worked on.
 */
1083
__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1084
	__must_hold(&ctx->uring_lock)
Jens Axboe's avatar
Jens Axboe committed
1085
{
1086
	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1087
	void *reqs[IO_REQ_ALLOC_BATCH];
1088
	int ret, i;
1089

1090 1091 1092 1093 1094
	/*
	 * If we have more than a batch's worth of requests in our IRQ side
	 * locked cache, grab the lock and move them over to our submission
	 * side cache.
	 */
1095
	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1096
		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1097
		if (!io_req_cache_empty(ctx))
1098 1099
			return true;
	}
1100

1101
	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1102

1103 1104 1105 1106 1107
	/*
	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
	 * retry single alloc to be on the safe side.
	 */
	if (unlikely(ret <= 0)) {
1108 1109
		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
		if (!reqs[0])
1110
			return false;
1111
		ret = 1;
Jens Axboe's avatar
Jens Axboe committed
1112
	}
1113

1114
	percpu_ref_get_many(&ctx->refs, ret);
1115
	for (i = 0; i < ret; i++) {
1116
		struct io_kiocb *req = reqs[i];
1117 1118

		io_preinit_req(req, ctx);
1119
		io_req_add_to_cache(req, ctx);
1120
	}
1121 1122 1123
	return true;
}

1124 1125
__cold void io_free_req(struct io_kiocb *req)
{
1126 1127 1128 1129 1130
	/* refs were already put, restore them for io_req_task_complete() */
	req->flags &= ~REQ_F_REFCOUNT;
	/* we only want to free it, don't post CQEs */
	req->flags |= REQ_F_CQE_SKIP;
	req->io_task_work.func = io_req_task_complete;
1131 1132 1133
	io_req_task_work_add(req);
}

1134 1135 1136 1137
static void __io_req_find_next_prep(struct io_kiocb *req)
{
	struct io_ring_ctx *ctx = req->ctx;

1138
	spin_lock(&ctx->completion_lock);
1139
	io_disarm_next(req);
1140
	spin_unlock(&ctx->completion_lock);
1141 1142 1143
}

static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1144
{
1145
	struct io_kiocb *nxt;
1146

1147 1148 1149 1150 1151 1152
	/*
	 * If LINK is set, we have dependent requests in this chain. If we
	 * didn't fail this request, queue the first one up, moving any other
	 * dependencies to the next request. In case of failure, fail the rest
	 * of the chain.
	 */
1153 1154
	if (unlikely(req->flags & IO_DISARM_MASK))
		__io_req_find_next_prep(req);
1155 1156 1157
	nxt = req->link;
	req->link = NULL;
	return nxt;
1158
}
1159

1160
static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1161 1162 1163
{
	if (!ctx)
		return;
1164 1165
	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1166
	if (ts->locked) {
1167
		io_submit_flush_completions(ctx);
1168
		mutex_unlock(&ctx->uring_lock);
1169
		ts->locked = false;
1170 1171 1172 1173
	}
	percpu_ref_put(&ctx->refs);
}

1174
static unsigned int handle_tw_list(struct llist_node *node,
1175 1176
				   struct io_ring_ctx **ctx,
				   struct io_tw_state *ts,
1177
				   struct llist_node *last)
1178
{
1179 1180
	unsigned int count = 0;

1181
	while (node && node != last) {
1182
		struct llist_node *next = node->next;
1183 1184 1185
		struct io_kiocb *req = container_of(node, struct io_kiocb,
						    io_task_work.node);

1186 1187
		prefetch(container_of(next, struct io_kiocb, io_task_work.node));

1188
		if (req->ctx != *ctx) {
1189
			ctx_flush_and_put(*ctx, ts);
1190 1191
			*ctx = req->ctx;
			/* if not contended, grab and improve batching */
1192
			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1193
			percpu_ref_get(&(*ctx)->refs);
1194
		}
1195 1196 1197
		INDIRECT_CALL_2(req->io_task_work.func,
				io_poll_task_func, io_req_rw_complete,
				req, ts);
1198
		node = next;
1199
		count++;
1200
		if (unlikely(need_resched())) {
1201
			ctx_flush_and_put(*ctx, ts);
1202 1203 1204
			*ctx = NULL;
			cond_resched();
		}
Dylan Yudaken's avatar
Dylan Yudaken committed
1205
	}
1206 1207

	return count;
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**
 * io_llist_xchg - swap all entries in a lock-less list
 * @head:	the head of lock-less list to delete all entries
 * @new:	new entry as the head of the list
 *
 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
 * The order of entries returned is from the newest to the oldest added one.
 */
static inline struct llist_node *io_llist_xchg(struct llist_head *head,
					       struct llist_node *new)
{
	return xchg(&head->first, new);
}

/**
 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
 * @head:	the head of lock-less list to delete all entries
 * @old:	expected old value of the first entry of the list
 * @new:	new entry as the head of the list
 *
 * perform a cmpxchg on the first entry of the list.
 */

static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
						  struct llist_node *old,
						  struct llist_node *new)
{
	return cmpxchg(&head->first, old, new);
}

1240
static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1241 1242
{
	struct llist_node *node = llist_del_all(&tctx->task_list);
1243
	struct io_ring_ctx *last_ctx = NULL;
1244 1245 1246 1247 1248
	struct io_kiocb *req;

	while (node) {
		req = container_of(node, struct io_kiocb, io_task_work.node);
		node = node->next;
1249 1250 1251 1252 1253 1254 1255 1256
		if (sync && last_ctx != req->ctx) {
			if (last_ctx) {
				flush_delayed_work(&last_ctx->fallback_work);
				percpu_ref_put(&last_ctx->refs);
			}
			last_ctx = req->ctx;
			percpu_ref_get(&last_ctx->refs);
		}
1257 1258 1259 1260
		if (llist_add(&req->io_task_work.node,
			      &req->ctx->fallback_llist))
			schedule_delayed_work(&req->ctx->fallback_work, 1);
	}
1261 1262 1263 1264 1265

	if (last_ctx) {
		flush_delayed_work(&last_ctx->fallback_work);
		percpu_ref_put(&last_ctx->refs);
	}
1266 1267
}

1268
void tctx_task_work(struct callback_head *cb)
1269
{
1270
	struct io_tw_state ts = {};
1271
	struct io_ring_ctx *ctx = NULL;
1272 1273
	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
						  task_work);
Dylan Yudaken's avatar
Dylan Yudaken committed
1274
	struct llist_node fake = {};
1275
	struct llist_node *node;
1276 1277
	unsigned int loops = 0;
	unsigned int count = 0;
Dylan Yudaken's avatar
Dylan Yudaken committed
1278

1279
	if (unlikely(current->flags & PF_EXITING)) {
1280
		io_fallback_tw(tctx, true);
1281 1282
		return;
	}
Dylan Yudaken's avatar
Dylan Yudaken committed
1283

1284
	do {
1285
		loops++;
Dylan Yudaken's avatar
Dylan Yudaken committed
1286
		node = io_llist_xchg(&tctx->task_list, &fake);
1287
		count += handle_tw_list(node, &ctx, &ts, &fake);
1288 1289 1290 1291

		/* skip expensive cmpxchg if there are items in the list */
		if (READ_ONCE(tctx->task_list.first) != &fake)
			continue;
1292
		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1293 1294 1295 1296
			io_submit_flush_completions(ctx);
			if (READ_ONCE(tctx->task_list.first) != &fake)
				continue;
		}
Dylan Yudaken's avatar
Dylan Yudaken committed
1297
		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1298
	} while (node != &fake);
1299

1300
	ctx_flush_and_put(ctx, &ts);
1301

1302 1303
	/* relaxed read is enough as only the task itself sets ->in_cancel */
	if (unlikely(atomic_read(&tctx->in_cancel)))
1304
		io_uring_drop_tctx_refs(current);
1305 1306

	trace_io_uring_task_work_run(tctx, count, loops);
1307 1308
}

1309
static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1310 1311
{
	struct io_ring_ctx *ctx = req->ctx;
1312
	unsigned nr_wait, nr_tw, nr_tw_prev;
1313
	struct llist_node *first;
1314

1315 1316
	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1317

1318 1319
	first = READ_ONCE(ctx->work_llist.first);
	do {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		nr_tw_prev = 0;
		if (first) {
			struct io_kiocb *first_req = container_of(first,
							struct io_kiocb,
							io_task_work.node);
			/*
			 * Might be executed at any moment, rely on
			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
			 */
			nr_tw_prev = READ_ONCE(first_req->nr_tw);
		}
		nr_tw = nr_tw_prev + 1;
		/* Large enough to fail the nr_wait comparison below */
		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
			nr_tw = -1U;

		req->nr_tw = nr_tw;
1337 1338 1339 1340
		req->io_task_work.node.next = first;
	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
			      &req->io_task_work.node));

1341 1342 1343 1344 1345
	if (!first) {
		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
		if (ctx->has_evfd)
			io_eventfd_signal(ctx);
1346 1347
	}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	nr_wait = atomic_read(&ctx->cq_wait_nr);
	/* no one is waiting */
	if (!nr_wait)
		return;
	/* either not enough or the previous add has already woken it up */
	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
		return;
	/* pairs with set_current_state() in io_cqring_wait() */
	smp_mb__after_atomic();
	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1358 1359
}

1360
static void io_req_normal_work_add(struct io_kiocb *req)
1361
{
1362
	struct io_uring_task *tctx = req->task->io_uring;
1363
	struct io_ring_ctx *ctx = req->ctx;
1364 1365

	/* task_work already pending, we're done */
1366
	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1367
		return;
1368

1369 1370 1371
	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);

1372
	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1373
		return;
1374

1375
	io_fallback_tw(tctx, false);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
{
	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
		rcu_read_lock();
		io_req_local_work_add(req, flags);
		rcu_read_unlock();
	} else {
		io_req_normal_work_add(req);
	}
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
{
	struct llist_node *node;

	node = llist_del_all(&ctx->work_llist);
	while (node) {
		struct io_kiocb *req = container_of(node, struct io_kiocb,
						    io_task_work.node);

		node = node->next;
1399
		io_req_normal_work_add(req);
1400 1401 1402
	}
}

1403
static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1404 1405
{
	struct llist_node *node;
1406
	unsigned int loops = 0;
1407
	int ret = 0;
1408

1409
	if (WARN_ON_ONCE(ctx->submitter_task != current))
1410
		return -EEXIST;
1411 1412
	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1413
again:
1414 1415 1416 1417 1418
	/*
	 * llists are in reverse order, flip it back the right way before
	 * running the pending items.
	 */
	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1419
	while (node) {
1420 1421 1422 1423
		struct llist_node *next = node->next;
		struct io_kiocb *req = container_of(node, struct io_kiocb,
						    io_task_work.node);
		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1424 1425 1426
		INDIRECT_CALL_2(req->io_task_work.func,
				io_poll_task_func, io_req_rw_complete,
				req, ts);
1427 1428 1429
		ret++;
		node = next;
	}
1430
	loops++;
1431

1432
	if (!llist_empty(&ctx->work_llist))
1433
		goto again;
1434
	if (ts->locked) {
1435
		io_submit_flush_completions(ctx);
1436 1437 1438
		if (!llist_empty(&ctx->work_llist))
			goto again;
	}
1439
	trace_io_uring_local_work_run(ctx, ret, loops);
1440
	return ret;
1441 1442
}

1443 1444
static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
{
1445
	struct io_tw_state ts = { .locked = true, };
1446 1447 1448 1449 1450
	int ret;

	if (llist_empty(&ctx->work_llist))
		return 0;

1451
	ret = __io_run_local_work(ctx, &ts);
1452
	/* shouldn't happen! */
1453
	if (WARN_ON_ONCE(!ts.locked))
1454 1455 1456 1457
		mutex_lock(&ctx->uring_lock);
	return ret;
}

1458
static int io_run_local_work(struct io_ring_ctx *ctx)
1459
{
1460
	struct io_tw_state ts = {};
1461 1462
	int ret;

1463 1464 1465
	ts.locked = mutex_trylock(&ctx->uring_lock);
	ret = __io_run_local_work(ctx, &ts);
	if (ts.locked)
1466 1467 1468
		mutex_unlock(&ctx->uring_lock);

	return ret;
1469 1470
}

1471
static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1472
{
1473
	io_tw_lock(req->ctx, ts);
1474
	io_req_defer_failed(req, req->cqe.res);
1475 1476
}

1477
void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1478
{
1479
	io_tw_lock(req->ctx, ts);
1480
	/* req->task == current here, checking PF_EXITING is safe */
1481
	if (unlikely(req->task->flags & PF_EXITING))
1482
		io_req_defer_failed(req, -EFAULT);
1483
	else if (req->flags & REQ_F_FORCE_ASYNC)
1484
		io_queue_iowq(req, ts);
1485 1486
	else
		io_queue_sqe(req);
1487 1488
}

1489
void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1490
{
1491
	io_req_set_res(req, ret, 0);
1492
	req->io_task_work.func = io_req_task_cancel;
1493
	io_req_task_work_add(req);
1494 1495
}

1496
void io_req_task_queue(struct io_kiocb *req)
1497
{
1498
	req->io_task_work.func = io_req_task_submit;
1499
	io_req_task_work_add(req);
1500 1501
}

1502
void io_queue_next(struct io_kiocb *req)
1503
{
1504
	struct io_kiocb *nxt = io_req_find_next(req);
1505 1506

	if (nxt)
1507
		io_req_task_queue(nxt);
1508 1509
}

1510
void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1511
	__must_hold(&ctx->uring_lock)
1512
{
1513 1514 1515
	do {
		struct io_kiocb *req = container_of(node, struct io_kiocb,
						    comp_list);
1516

1517 1518 1519 1520 1521 1522
		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
			if (req->flags & REQ_F_REFCOUNT) {
				node = req->comp_list.next;
				if (!req_ref_put_and_test(req))
					continue;
			}
1523 1524 1525 1526 1527
			if ((req->flags & REQ_F_POLLED) && req->apoll) {
				struct async_poll *apoll = req->apoll;

				if (apoll->double_poll)
					kfree(apoll->double_poll);
1528 1529
				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
					kfree(apoll);
1530 1531
				req->flags &= ~REQ_F_POLLED;
			}
1532
			if (req->flags & IO_REQ_LINK_FLAGS)
1533
				io_queue_next(req);
1534 1535
			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
				io_clean_op(req);
1536
		}
1537 1538
		if (!(req->flags & REQ_F_FIXED_FILE))
			io_put_file(req->file);
1539

1540
		io_req_put_rsrc_locked(req, ctx);
1541

1542
		io_put_task(req->task);
1543
		node = req->comp_list.next;
1544
		io_req_add_to_cache(req, ctx);
1545
	} while (node);
1546 1547
}

1548
static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1549
	__must_hold(&ctx->uring_lock)
1550
{
1551
	struct io_submit_state *state = &ctx->submit_state;
1552
	struct io_wq_work_node *node;
1553

1554
	__io_cq_lock(ctx);
1555 1556 1557
	/* must come first to preserve CQE ordering in failure cases */
	if (state->cqes_count)
		__io_flush_post_cqes(ctx);
1558
	__wq_list_for_each(node, &state->compl_reqs) {
1559 1560
		struct io_kiocb *req = container_of(node, struct io_kiocb,
					    comp_list);
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		if (!(req->flags & REQ_F_CQE_SKIP) &&
		    unlikely(!__io_fill_cqe_req(ctx, req))) {
			if (ctx->task_complete) {
				spin_lock(&ctx->completion_lock);
				io_req_cqe_overflow(req);
				spin_unlock(&ctx->completion_lock);
			} else {
				io_req_cqe_overflow(req);
			}
		}
1572
	}
1573
	__io_cq_unlock_post(ctx);
1574

1575 1576 1577 1578
	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
		io_free_batch_list(ctx, state->compl_reqs.first);
		INIT_WQ_LIST(&state->compl_reqs);
	}
1579 1580
}

1581
static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1582 1583 1584
{
	/* See comment at the top of this file */
	smp_rmb();
1585
	return __io_cqring_events(ctx);
1586 1587
}

1588 1589 1590 1591
/*
 * We can't just wait for polled events to come to us, we have to actively
 * find and complete them.
 */
1592
static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1593 1594 1595 1596 1597
{
	if (!(ctx->flags & IORING_SETUP_IOPOLL))
		return;

	mutex_lock(&ctx->uring_lock);
1598
	while (!wq_list_empty(&ctx->iopoll_list)) {
1599
		/* let it sleep and repeat later if can't complete a request */
1600
		if (io_do_iopoll(ctx, true) == 0)
1601
			break;
1602 1603 1604
		/*
		 * Ensure we allow local-to-the-cpu processing to take place,
		 * in this case we need to ensure that we reap all events.
1605
		 * Also let task_work, etc. to progress by releasing the mutex
1606
		 */
1607 1608 1609 1610 1611
		if (need_resched()) {
			mutex_unlock(&ctx->uring_lock);
			cond_resched();
			mutex_lock(&ctx->uring_lock);
		}
1612 1613 1614 1615
	}
	mutex_unlock(&ctx->uring_lock);
}

1616
static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1617
{
1618
	unsigned int nr_events = 0;
1619
	int ret = 0;
1620
	unsigned long check_cq;
1621

1622 1623 1624
	if (!io_allowed_run_tw(ctx))
		return -EEXIST;

1625 1626 1627
	check_cq = READ_ONCE(ctx->check_cq);
	if (unlikely(check_cq)) {
		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1628
			__io_cqring_overflow_flush(ctx);
1629 1630 1631 1632 1633 1634 1635
		/*
		 * Similarly do not spin if we have not informed the user of any
		 * dropped CQE.
		 */
		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
			return -EBADR;
	}
1636 1637 1638 1639 1640 1641
	/*
	 * Don't enter poll loop if we already have events pending.
	 * If we do, we can potentially be spinning for commands that
	 * already triggered a CQE (eg in error).
	 */
	if (io_cqring_events(ctx))
1642
		return 0;
1643

1644
	do {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		/*
		 * If a submit got punted to a workqueue, we can have the
		 * application entering polling for a command before it gets
		 * issued. That app will hold the uring_lock for the duration
		 * of the poll right here, so we need to take a breather every
		 * now and then to ensure that the issue has a chance to add
		 * the poll to the issued list. Otherwise we can spin here
		 * forever, while the workqueue is stuck trying to acquire the
		 * very same mutex.
		 */
1655 1656
		if (wq_list_empty(&ctx->iopoll_list) ||
		    io_task_work_pending(ctx)) {
1657 1658
			u32 tail = ctx->cached_cq_tail;

1659
			(void) io_run_local_work_locked(ctx);
1660

1661 1662 1663
			if (task_work_pending(current) ||
			    wq_list_empty(&ctx->iopoll_list)) {
				mutex_unlock(&ctx->uring_lock);
1664
				io_run_task_work();
1665 1666
				mutex_lock(&ctx->uring_lock);
			}
1667 1668
			/* some requests don't go through iopoll_list */
			if (tail != ctx->cached_cq_tail ||
1669
			    wq_list_empty(&ctx->iopoll_list))
1670
				break;
1671
		}
1672 1673 1674 1675 1676 1677
		ret = io_do_iopoll(ctx, !min);
		if (ret < 0)
			break;
		nr_events += ret;
		ret = 0;
	} while (nr_events < min && !need_resched());
1678

1679 1680
	return ret;
}
1681

1682
void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1683
{
1684
	if (ts->locked)
1685
		io_req_complete_defer(req);
1686
	else
1687
		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1688 1689
}

1690 1691 1692
/*
 * After the iocb has been issued, it's safe to be found on the poll list.
 * Adding the kiocb to the list AFTER submission ensures that we don't
1693
 * find it from a io_do_iopoll() thread before the issuer is done
1694 1695
 * accessing the kiocb cookie.
 */
1696
static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1697 1698
{
	struct io_ring_ctx *ctx = req->ctx;
1699
	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1700 1701

	/* workqueue context doesn't hold uring_lock, grab it now */
1702
	if (unlikely(needs_lock))
1703
		mutex_lock(&ctx->uring_lock);
1704 1705 1706 1707 1708 1709

	/*
	 * Track whether we have multiple files in our lists. This will impact
	 * how we do polling eventually, not spinning if we're on potentially
	 * different devices.
	 */
1710
	if (wq_list_empty(&ctx->iopoll_list)) {
1711 1712
		ctx->poll_multi_queue = false;
	} else if (!ctx->poll_multi_queue) {
1713 1714
		struct io_kiocb *list_req;

1715 1716
		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
					comp_list);
1717
		if (list_req->file != req->file)
1718
			ctx->poll_multi_queue = true;
1719 1720 1721 1722 1723 1724
	}

	/*
	 * For fast devices, IO may have already completed. If it has, add
	 * it to the front so we find it first.
	 */
1725
	if (READ_ONCE(req->iopoll_completed))
1726
		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1727
	else
1728
		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1729

1730
	if (unlikely(needs_lock)) {
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		/*
		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
		 * in sq thread task context or in io worker task context. If
		 * current task context is sq thread, we don't need to check
		 * whether should wake up sq thread.
		 */
		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
		    wq_has_sleeper(&ctx->sq_data->wait))
			wake_up(&ctx->sq_data->wait);

		mutex_unlock(&ctx->uring_lock);
	}
1743 1744
}

1745
unsigned int io_file_get_flags(struct file *file)
1746 1747
{
	unsigned int res = 0;
1748

1749
	if (S_ISREG(file_inode(file)->i_mode))
1750
		res |= REQ_F_ISREG;
1751
	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1752
		res |= REQ_F_SUPPORT_NOWAIT;
1753
	return res;
Jens Axboe's avatar
Jens Axboe committed
1754 1755
}

1756
bool io_alloc_async_data(struct io_kiocb *req)
1757
{
1758 1759
	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1760 1761 1762 1763 1764
	if (req->async_data) {
		req->flags |= REQ_F_ASYNC_DATA;
		return false;
	}
	return true;
1765 1766
}

1767
int io_req_prep_async(struct io_kiocb *req)
1768
{
1769
	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1770
	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1771 1772

	/* assign early for deferred execution for non-fixed file */
1773
	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1774
		req->file = io_file_get_normal(req, req->cqe.fd);
1775
	if (!cdef->prep_async)
1776 1777 1778
		return 0;
	if (WARN_ON_ONCE(req_has_async_data(req)))
		return -EFAULT;
1779
	if (!def->manual_alloc) {
1780 1781 1782
		if (io_alloc_async_data(req))
			return -EAGAIN;
	}
1783
	return cdef->prep_async(req);
1784 1785
}

1786 1787
static u32 io_get_sequence(struct io_kiocb *req)
{
1788
	u32 seq = req->ctx->cached_sq_head;
1789
	struct io_kiocb *cur;
1790

1791
	/* need original cached_sq_head, but it was increased for each req */
1792
	io_for_each_link(cur, req)
1793 1794
		seq--;
	return seq;
1795 1796
}

1797
static __cold void io_drain_req(struct io_kiocb *req)
1798
	__must_hold(&ctx->uring_lock)
1799
{
1800
	struct io_ring_ctx *ctx = req->ctx;
1801
	struct io_defer_entry *de;
1802
	int ret;
1803
	u32 seq = io_get_sequence(req);
1804

1805
	/* Still need defer if there is pending req in defer list. */
1806
	spin_lock(&ctx->completion_lock);
1807
	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1808
		spin_unlock(&ctx->completion_lock);
1809
queue:
1810
		ctx->drain_active = false;
1811 1812
		io_req_task_queue(req);
		return;
1813
	}
1814
	spin_unlock(&ctx->completion_lock);
1815

1816
	io_prep_async_link(req);
1817
	de = kmalloc(sizeof(*de), GFP_KERNEL);
1818
	if (!de) {
1819
		ret = -ENOMEM;
1820 1821
		io_req_defer_failed(req, ret);
		return;
1822
	}
1823

1824
	spin_lock(&ctx->completion_lock);
1825
	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1826
		spin_unlock(&ctx->completion_lock);
1827
		kfree(de);
1828
		goto queue;
1829 1830
	}

1831
	trace_io_uring_defer(req);
1832
	de->req = req;
1833
	de->seq = seq;
1834
	list_add_tail(&de->list, &ctx->defer_list);
1835
	spin_unlock(&ctx->completion_lock);
1836 1837
}

1838 1839
static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
			   unsigned int issue_flags)
1840
{
1841
	if (req->file || !def->needs_file)
1842 1843 1844
		return true;

	if (req->flags & REQ_F_FIXED_FILE)
1845
		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1846
	else
1847
		req->file = io_file_get_normal(req, req->cqe.fd);
1848

1849
	return !!req->file;
1850 1851
}

1852
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
Jens Axboe's avatar
Jens Axboe committed
1853
{
1854
	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1855
	const struct cred *creds = NULL;
1856
	int ret;
Jens Axboe's avatar
Jens Axboe committed
1857

1858
	if (unlikely(!io_assign_file(req, def, issue_flags)))
1859 1860
		return -EBADF;

1861
	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1862
		creds = override_creds(req->creds);
1863

1864
	if (!def->audit_skip)
1865 1866
		audit_uring_entry(req->opcode);

1867
	ret = def->issue(req, issue_flags);
Jens Axboe's avatar
Jens Axboe committed
1868

1869
	if (!def->audit_skip)
1870 1871
		audit_uring_exit(!ret, ret);

1872 1873
	if (creds)
		revert_creds(creds);
1874

1875 1876
	if (ret == IOU_OK) {
		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1877
			io_req_complete_defer(req);
1878
		else
1879
			io_req_complete_post(req, issue_flags);
1880
	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1881
		return ret;
1882

1883
	/* If the op doesn't have a file, we're not polling for it */
1884
	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1885
		io_iopoll_req_issued(req, issue_flags);
1886 1887

	return 0;
Jens Axboe's avatar
Jens Axboe committed
1888 1889
}

1890
int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1891
{
1892
	io_tw_lock(req->ctx, ts);
1893 1894
	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
				 IO_URING_F_COMPLETE_DEFER);
1895 1896
}

1897
struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1898 1899
{
	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1900
	struct io_kiocb *nxt = NULL;
1901

1902 1903 1904 1905 1906 1907
	if (req_ref_put_and_test(req)) {
		if (req->flags & IO_REQ_LINK_FLAGS)
			nxt = io_req_find_next(req);
		io_free_req(req);
	}
	return nxt ? &nxt->work : NULL;
1908 1909
}

1910
void io_wq_submit_work(struct io_wq_work *work)
Jens Axboe's avatar
Jens Axboe committed
1911 1912
{
	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1913
	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1914
	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1915
	bool needs_poll = false;
1916
	int ret = 0, err = -ECANCELED;
Jens Axboe's avatar
Jens Axboe committed
1917

1918
	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1919 1920 1921 1922
	if (!(req->flags & REQ_F_REFCOUNT))
		__io_req_set_refcount(req, 2);
	else
		req_ref_get(req);
1923

1924
	io_arm_ltimeout(req);
1925

1926
	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1927
	if (work->flags & IO_WQ_WORK_CANCEL) {
1928
fail:
1929
		io_req_task_queue_fail(req, err);
1930 1931
		return;
	}
1932
	if (!io_assign_file(req, def, issue_flags)) {
1933 1934 1935 1936
		err = -EBADF;
		work->flags |= IO_WQ_WORK_CANCEL;
		goto fail;
	}
1937

1938
	if (req->flags & REQ_F_FORCE_ASYNC) {
1939 1940 1941 1942
		bool opcode_poll = def->pollin || def->pollout;

		if (opcode_poll && file_can_poll(req->file)) {
			needs_poll = true;
1943
			issue_flags |= IO_URING_F_NONBLOCK;
1944
		}
1945
	}
1946

1947 1948 1949 1950
	do {
		ret = io_issue_sqe(req, issue_flags);
		if (ret != -EAGAIN)
			break;
1951 1952 1953 1954 1955 1956 1957 1958

		/*
		 * If REQ_F_NOWAIT is set, then don't wait or retry with
		 * poll. -EAGAIN is final for that case.
		 */
		if (req->flags & REQ_F_NOWAIT)
			break;

1959 1960 1961 1962 1963 1964
		/*
		 * We can get EAGAIN for iopolled IO even though we're
		 * forcing a sync submission from here, since we can't
		 * wait for request slots on the block side.
		 */
		if (!needs_poll) {
1965 1966
			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
				break;
1967 1968
			cond_resched();
			continue;
1969 1970
		}

1971
		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1972 1973 1974 1975 1976
			return;
		/* aborted or ready, in either case retry blocking */
		needs_poll = false;
		issue_flags &= ~IO_URING_F_NONBLOCK;
	} while (1);
1977

1978
	/* avoid locking problems by failing it from a clean context */
1979
	if (ret < 0)
1980
		io_req_task_queue_fail(req, ret);
Jens Axboe's avatar
Jens Axboe committed
1981 1982
}

1983 1984
inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
				      unsigned int issue_flags)
1985
{
1986
	struct io_ring_ctx *ctx = req->ctx;
1987
	struct io_fixed_file *slot;
1988
	struct file *file = NULL;
1989

1990
	io_ring_submit_lock(ctx, issue_flags);
1991

1992
	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1993
		goto out;
1994
	fd = array_index_nospec(fd, ctx->nr_user_files);
1995 1996 1997
	slot = io_fixed_file_slot(&ctx->file_table, fd);
	file = io_slot_file(slot);
	req->flags |= io_slot_flags(slot);
1998 1999
	io_req_set_rsrc_node(req, ctx, 0);
out:
2000
	io_ring_submit_unlock(ctx, issue_flags);
2001 2002
	return file;
}
2003

2004
struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2005
{
2006
	struct file *file = fget(fd);
2007

2008
	trace_io_uring_file_get(req, fd);
2009

2010
	/* we don't allow fixed io_uring files */
2011
	if (file && io_is_uring_fops(file))
2012
		io_req_track_inflight(req);
2013
	return file;
2014 2015
}

2016
static void io_queue_async(struct io_kiocb *req, int ret)
2017 2018
	__must_hold(&req->ctx->uring_lock)
{
2019 2020 2021
	struct io_kiocb *linked_timeout;

	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2022
		io_req_defer_failed(req, ret);
2023 2024 2025 2026
		return;
	}

	linked_timeout = io_prep_linked_timeout(req);
2027

2028
	switch (io_arm_poll_handler(req, 0)) {
2029
	case IO_APOLL_READY:
2030
		io_kbuf_recycle(req, 0);
2031 2032 2033
		io_req_task_queue(req);
		break;
	case IO_APOLL_ABORTED:
2034
		io_kbuf_recycle(req, 0);
2035
		io_queue_iowq(req, NULL);
2036
		break;
2037 2038
	case IO_APOLL_OK:
		break;
2039 2040 2041 2042 2043 2044
	}

	if (linked_timeout)
		io_queue_linked_timeout(linked_timeout);
}

2045
static inline void io_queue_sqe(struct io_kiocb *req)
2046
	__must_hold(&req->ctx->uring_lock)
Jens Axboe's avatar
Jens Axboe committed
2047
{
2048
	int ret;
Jens Axboe's avatar
Jens Axboe committed
2049

2050
	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2051

2052 2053 2054 2055
	/*
	 * We async punt it if the file wasn't marked NOWAIT, or if the file
	 * doesn't support non-blocking read/write attempts
	 */
2056
	if (likely(!ret))
2057
		io_arm_ltimeout(req);
2058 2059
	else
		io_queue_async(req, ret);
Jens Axboe's avatar
Jens Axboe committed
2060 2061
}

2062
static void io_queue_sqe_fallback(struct io_kiocb *req)
2063
	__must_hold(&req->ctx->uring_lock)
2064
{
2065 2066 2067 2068 2069 2070 2071
	if (unlikely(req->flags & REQ_F_FAIL)) {
		/*
		 * We don't submit, fail them all, for that replace hardlinks
		 * with normal links. Extra REQ_F_LINK is tolerated.
		 */
		req->flags &= ~REQ_F_HARDLINK;
		req->flags |= REQ_F_LINK;
2072
		io_req_defer_failed(req, req->cqe.res);
2073 2074 2075
	} else {
		int ret = io_req_prep_async(req);

2076
		if (unlikely(ret)) {
2077
			io_req_defer_failed(req, ret);
2078 2079 2080 2081 2082
			return;
		}

		if (unlikely(req->ctx->drain_active))
			io_drain_req(req);
2083
		else
2084
			io_queue_iowq(req, NULL);
Jens Axboe's avatar
Jens Axboe committed
2085
	}
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095
/*
 * Check SQE restrictions (opcode and flags).
 *
 * Returns 'true' if SQE is allowed, 'false' otherwise.
 */
static inline bool io_check_restriction(struct io_ring_ctx *ctx,
					struct io_kiocb *req,
					unsigned int sqe_flags)
2096
{
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
		return false;

	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
	    ctx->restrictions.sqe_flags_required)
		return false;

	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
			  ctx->restrictions.sqe_flags_required))
		return false;

	return true;
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static void io_init_req_drain(struct io_kiocb *req)
{
	struct io_ring_ctx *ctx = req->ctx;
	struct io_kiocb *head = ctx->submit_state.link.head;

	ctx->drain_active = true;
	if (head) {
		/*
		 * If we need to drain a request in the middle of a link, drain
		 * the head request and the next request/link after the current
		 * link. Considering sequential execution of links,
2122
		 * REQ_F_IO_DRAIN will be maintained for every request of our
2123 2124
		 * link.
		 */
2125
		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2126 2127 2128 2129
		ctx->drain_next = true;
	}
}

2130 2131
static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
		       const struct io_uring_sqe *sqe)
2132
	__must_hold(&ctx->uring_lock)
2133
{
2134
	const struct io_issue_def *def;
2135
	unsigned int sqe_flags;
2136
	int personality;
2137
	u8 opcode;
2138

2139
	/* req is partially pre-initialised, see io_preinit_req() */
2140
	req->opcode = opcode = READ_ONCE(sqe->opcode);
2141 2142
	/* same numerical values with corresponding REQ_F_*, safe to copy */
	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2143
	req->cqe.user_data = READ_ONCE(sqe->user_data);
2144
	req->file = NULL;
2145
	req->rsrc_node = NULL;
2146 2147
	req->task = current;

2148 2149
	if (unlikely(opcode >= IORING_OP_LAST)) {
		req->opcode = 0;
2150
		return -EINVAL;
2151
	}
2152
	def = &io_issue_defs[opcode];
2153 2154 2155 2156
	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
		/* enforce forwards compatibility on users */
		if (sqe_flags & ~SQE_VALID_FLAGS)
			return -EINVAL;
2157
		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2158
			if (!def->buffer_select)
2159 2160 2161
				return -EOPNOTSUPP;
			req->buf_index = READ_ONCE(sqe->buf_group);
		}
2162 2163 2164 2165 2166
		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
			ctx->drain_disabled = true;
		if (sqe_flags & IOSQE_IO_DRAIN) {
			if (ctx->drain_disabled)
				return -EOPNOTSUPP;
2167
			io_init_req_drain(req);
2168
		}
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	}
	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
			return -EACCES;
		/* knock it to the slow queue path, will be drained there */
		if (ctx->drain_active)
			req->flags |= REQ_F_FORCE_ASYNC;
		/* if there is no link, we're at "next" request and need to drain */
		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
			ctx->drain_next = false;
			ctx->drain_active = true;
2180
			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2181
		}
2182
	}
2183

2184
	if (!def->ioprio && sqe->ioprio)
2185
		return -EINVAL;
2186
	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2187 2188
		return -EINVAL;

2189
	if (def->needs_file) {
2190 2191
		struct io_submit_state *state = &ctx->submit_state;

2192
		req->cqe.fd = READ_ONCE(sqe->fd);
2193

2194 2195 2196 2197
		/*
		 * Plug now if we have more than 2 IO left after this, and the
		 * target is potentially a read/write to block based storage.
		 */
2198
		if (state->need_plug && def->plug) {
2199 2200
			state->plug_started = true;
			state->need_plug = false;
2201
			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2202
		}
2203
	}
2204

2205 2206
	personality = READ_ONCE(sqe->personality);
	if (personality) {
2207 2208
		int ret;

2209 2210
		req->creds = xa_load(&ctx->personalities, personality);
		if (!req->creds)
2211
			return -EINVAL;
2212
		get_cred(req->creds);
2213 2214 2215 2216 2217
		ret = security_uring_override_creds(req->creds);
		if (ret) {
			put_cred(req->creds);
			return ret;
		}
2218
		req->flags |= REQ_F_CREDS;
2219
	}
2220

2221
	return def->prep(req, sqe);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230
static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
				      struct io_kiocb *req, int ret)
{
	struct io_ring_ctx *ctx = req->ctx;
	struct io_submit_link *link = &ctx->submit_state.link;
	struct io_kiocb *head = link->head;

2231
	trace_io_uring_req_failed(sqe, req, ret);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	/*
	 * Avoid breaking links in the middle as it renders links with SQPOLL
	 * unusable. Instead of failing eagerly, continue assembling the link if
	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
	 * should find the flag and handle the rest.
	 */
	req_fail_link_node(req, ret);
	if (head && !(head->flags & REQ_F_FAIL))
		req_fail_link_node(head, -ECANCELED);

	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
		if (head) {
			link->last->link = req;
			link->head = NULL;
			req = head;
		}
		io_queue_sqe_fallback(req);
		return ret;
	}

	if (head)
		link->last->link = req;
	else
		link->head = req;
	link->last = req;
	return 0;
}

static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2262
			 const struct io_uring_sqe *sqe)
2263
	__must_hold(&ctx->uring_lock)
2264
{
2265
	struct io_submit_link *link = &ctx->submit_state.link;
2266
	int ret;
2267

2268
	ret = io_init_req(ctx, req, sqe);
2269 2270
	if (unlikely(ret))
		return io_submit_fail_init(sqe, req, ret);
2271

2272
	trace_io_uring_submit_req(req);
2273

2274 2275 2276 2277 2278 2279 2280
	/*
	 * If we already have a head request, queue this one for async
	 * submittal once the head completes. If we don't have a head but
	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
	 * submitted sync once the chain is complete. If none of those
	 * conditions are true (normal request), then just queue it.
	 */
2281
	if (unlikely(link->head)) {
2282 2283 2284 2285
		ret = io_req_prep_async(req);
		if (unlikely(ret))
			return io_submit_fail_init(sqe, req, ret);

2286
		trace_io_uring_link(req, link->head);
2287
		link->last->link = req;
2288
		link->last = req;
2289

2290
		if (req->flags & IO_REQ_LINK_FLAGS)
2291
			return 0;
2292 2293
		/* last request of the link, flush it */
		req = link->head;
2294
		link->head = NULL;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
			goto fallback;

	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
		if (req->flags & IO_REQ_LINK_FLAGS) {
			link->head = req;
			link->last = req;
		} else {
fallback:
			io_queue_sqe_fallback(req);
		}
2307
		return 0;
2308
	}
2309

2310
	io_queue_sqe(req);
2311
	return 0;
2312 2313
}

2314 2315 2316
/*
 * Batched submission is done, ensure local IO is flushed out.
 */
2317
static void io_submit_state_end(struct io_ring_ctx *ctx)
2318
{
2319 2320
	struct io_submit_state *state = &ctx->submit_state;

2321 2322
	if (unlikely(state->link.head))
		io_queue_sqe_fallback(state->link.head);
2323
	/* flush only after queuing links as they can generate completions */
2324
	io_submit_flush_completions(ctx);
2325 2326
	if (state->plug_started)
		blk_finish_plug(&state->plug);
2327 2328 2329 2330 2331 2332
}

/*
 * Start submission side cache.
 */
static void io_submit_state_start(struct io_submit_state *state,
2333
				  unsigned int max_ios)
2334
{
2335
	state->plug_started = false;
2336
	state->need_plug = max_ios > 2;
2337
	state->submit_nr = max_ios;
2338 2339
	/* set only head, no need to init link_last in advance */
	state->link.head = NULL;
2340 2341
}

Jens Axboe's avatar
Jens Axboe committed
2342 2343
static void io_commit_sqring(struct io_ring_ctx *ctx)
{
2344
	struct io_rings *rings = ctx->rings;
Jens Axboe's avatar
Jens Axboe committed
2345

2346 2347 2348 2349 2350 2351
	/*
	 * Ensure any loads from the SQEs are done at this point,
	 * since once we write the new head, the application could
	 * write new data to them.
	 */
	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
Jens Axboe's avatar
Jens Axboe committed
2352 2353 2354
}

/*
2355
 * Fetch an sqe, if one is available. Note this returns a pointer to memory
Jens Axboe's avatar
Jens Axboe committed
2356 2357 2358 2359 2360 2361
 * that is mapped by userspace. This means that care needs to be taken to
 * ensure that reads are stable, as we cannot rely on userspace always
 * being a good citizen. If members of the sqe are validated and then later
 * used, it's important that those reads are done through READ_ONCE() to
 * prevent a re-load down the line.
 */
2362
static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
Jens Axboe's avatar
Jens Axboe committed
2363
{
2364
	unsigned head, mask = ctx->sq_entries - 1;
2365
	unsigned sq_idx = ctx->cached_sq_head++ & mask;
Jens Axboe's avatar
Jens Axboe committed
2366 2367 2368 2369 2370 2371 2372 2373 2374

	/*
	 * The cached sq head (or cq tail) serves two purposes:
	 *
	 * 1) allows us to batch the cost of updating the user visible
	 *    head updates.
	 * 2) allows the kernel side to track the head on its own, even
	 *    though the application is the one updating it.
	 */
2375
	head = READ_ONCE(ctx->sq_array[sq_idx]);
2376 2377 2378 2379
	if (likely(head < ctx->sq_entries)) {
		/* double index for 128-byte SQEs, twice as long */
		if (ctx->flags & IORING_SETUP_SQE128)
			head <<= 1;
2380 2381
		*sqe = &ctx->sq_sqes[head];
		return true;
2382
	}
Jens Axboe's avatar
Jens Axboe committed
2383 2384

	/* drop invalid entries */
2385 2386 2387
	ctx->cq_extra--;
	WRITE_ONCE(ctx->rings->sq_dropped,
		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2388
	return false;
2389 2390
}

2391
int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2392
	__must_hold(&ctx->uring_lock)
2393
{
2394
	unsigned int entries = io_sqring_entries(ctx);
2395 2396
	unsigned int left;
	int ret;
2397

2398
	if (unlikely(!entries))
2399
		return 0;
2400
	/* make sure SQ entry isn't read before tail */
2401
	ret = left = min(nr, entries);
2402 2403
	io_get_task_refs(left);
	io_submit_state_start(&ctx->submit_state, left);
2404

2405
	do {
2406
		const struct io_uring_sqe *sqe;
2407
		struct io_kiocb *req;
2408

2409
		if (unlikely(!io_alloc_req(ctx, &req)))
2410
			break;
2411
		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2412
			io_req_add_to_cache(req, ctx);
2413 2414
			break;
		}
2415

2416 2417 2418 2419 2420 2421 2422 2423
		/*
		 * Continue submitting even for sqe failure if the
		 * ring was setup with IORING_SETUP_SUBMIT_ALL
		 */
		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
			left--;
			break;
2424
		}
2425
	} while (--left);
2426

2427 2428 2429 2430 2431 2432
	if (unlikely(left)) {
		ret -= left;
		/* try again if it submitted nothing and can't allocate a req */
		if (!ret && io_req_cache_empty(ctx))
			ret = -EAGAIN;
		current->io_uring->cached_refs += left;
2433
	}
2434

2435
	io_submit_state_end(ctx);
2436 2437
	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
	io_commit_sqring(ctx);
2438
	return ret;
2439 2440
}

2441 2442 2443
struct io_wait_queue {
	struct wait_queue_entry wq;
	struct io_ring_ctx *ctx;
2444
	unsigned cq_tail;
2445
	unsigned nr_timeouts;
2446
	ktime_t timeout;
2447 2448
};

2449 2450
static inline bool io_has_work(struct io_ring_ctx *ctx)
{
2451
	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2452
	       !llist_empty(&ctx->work_llist);
2453 2454
}

2455
static inline bool io_should_wake(struct io_wait_queue *iowq)
2456 2457
{
	struct io_ring_ctx *ctx = iowq->ctx;
2458
	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2459 2460

	/*
2461
	 * Wake up if we have enough events, or if a timeout occurred since we
2462 2463 2464
	 * started waiting. For timeouts, we always want to return to userspace,
	 * regardless of event count.
	 */
2465
	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2466 2467 2468 2469 2470
}

static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
			    int wake_flags, void *key)
{
2471
	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2472

2473 2474 2475 2476
	/*
	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
	 * the task, and the next invocation will do it.
	 */
2477
	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2478 2479
		return autoremove_wake_function(curr, mode, wake_flags, key);
	return -1;
2480 2481
}

2482
int io_run_task_work_sig(struct io_ring_ctx *ctx)
2483
{
2484
	if (!llist_empty(&ctx->work_llist)) {
2485
		__set_current_state(TASK_RUNNING);
2486 2487 2488 2489
		if (io_run_local_work(ctx) > 0)
			return 1;
	}
	if (io_run_task_work() > 0)
2490
		return 1;
2491 2492 2493
	if (task_sigpending(current))
		return -EINTR;
	return 0;
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504
static bool current_pending_io(void)
{
	struct io_uring_task *tctx = current->io_uring;

	if (!tctx)
		return false;
	return percpu_counter_read_positive(&tctx->inflight);
}

2505 2506
/* when returns >0, the caller should retry */
static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2507
					  struct io_wait_queue *iowq)
2508
{
2509
	int io_wait, ret;
2510

2511 2512
	if (unlikely(READ_ONCE(ctx->check_cq)))
		return 1;
2513 2514 2515 2516 2517 2518 2519 2520
	if (unlikely(!llist_empty(&ctx->work_llist)))
		return 1;
	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
		return 1;
	if (unlikely(task_sigpending(current)))
		return -EINTR;
	if (unlikely(io_should_wake(iowq)))
		return 0;
2521 2522

	/*
2523 2524 2525
	 * Mark us as being in io_wait if we have pending requests, so cpufreq
	 * can take into account that the task is waiting for IO - turns out
	 * to be important for low QD IO.
2526
	 */
2527 2528 2529
	io_wait = current->in_iowait;
	if (current_pending_io())
		current->in_iowait = 1;
2530
	ret = 0;
2531
	if (iowq->timeout == KTIME_MAX)
2532
		schedule();
2533
	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2534
		ret = -ETIME;
2535
	current->in_iowait = io_wait;
2536
	return ret;
2537 2538
}

Jens Axboe's avatar
Jens Axboe committed
2539 2540 2541 2542 2543
/*
 * Wait until events become available, if we don't already have some. The
 * application must reap them itself, as they reside on the shared cq ring.
 */
static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2544 2545
			  const sigset_t __user *sig, size_t sigsz,
			  struct __kernel_timespec __user *uts)
Jens Axboe's avatar
Jens Axboe committed
2546
{
2547
	struct io_wait_queue iowq;
2548
	struct io_rings *rings = ctx->rings;
2549
	int ret;
Jens Axboe's avatar
Jens Axboe committed
2550

2551 2552
	if (!io_allowed_run_tw(ctx))
		return -EEXIST;
2553 2554
	if (!llist_empty(&ctx->work_llist))
		io_run_local_work(ctx);
2555 2556 2557 2558 2559
	io_run_task_work();
	io_cqring_overflow_flush(ctx);
	/* if user messes with these they will just get an early return */
	if (__io_cqring_events_user(ctx) >= min_events)
		return 0;
Jens Axboe's avatar
Jens Axboe committed
2560 2561

	if (sig) {
2562 2563 2564
#ifdef CONFIG_COMPAT
		if (in_compat_syscall())
			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2565
						      sigsz);
2566 2567
		else
#endif
2568
			ret = set_user_sigmask(sig, sigsz);
2569

Jens Axboe's avatar
Jens Axboe committed
2570 2571 2572 2573
		if (ret)
			return ret;
	}

2574 2575 2576 2577
	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
	iowq.wq.private = current;
	INIT_LIST_HEAD(&iowq.wq.entry);
	iowq.ctx = ctx;
2578
	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2579
	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2580 2581 2582 2583 2584 2585 2586 2587 2588
	iowq.timeout = KTIME_MAX;

	if (uts) {
		struct timespec64 ts;

		if (get_timespec64(&ts, uts))
			return -EFAULT;
		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
	}
2589

2590
	trace_io_uring_cqring_wait(ctx, min_events);
2591
	do {
2592 2593
		unsigned long check_cq;

2594
		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2595 2596 2597
			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);

			atomic_set(&ctx->cq_wait_nr, nr_wait);
2598 2599 2600 2601 2602 2603
			set_current_state(TASK_INTERRUPTIBLE);
		} else {
			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
							TASK_INTERRUPTIBLE);
		}

2604
		ret = io_cqring_wait_schedule(ctx, &iowq);
2605
		__set_current_state(TASK_RUNNING);
2606
		atomic_set(&ctx->cq_wait_nr, 0);
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		if (ret < 0)
			break;
		/*
		 * Run task_work after scheduling and before io_should_wake().
		 * If we got woken because of task_work being processed, run it
		 * now rather than let the caller do another wait loop.
		 */
		io_run_task_work();
		if (!llist_empty(&ctx->work_llist))
			io_run_local_work(ctx);
2618 2619 2620 2621

		check_cq = READ_ONCE(ctx->check_cq);
		if (unlikely(check_cq)) {
			/* let the caller flush overflows, retry */
2622
			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2623 2624 2625 2626 2627 2628 2629
				io_cqring_do_overflow_flush(ctx);
			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
				ret = -EBADR;
				break;
			}
		}

2630 2631
		if (io_should_wake(&iowq)) {
			ret = 0;
2632
			break;
2633
		}
2634
		cond_resched();
2635
	} while (1);
2636

2637 2638
	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
		finish_wait(&ctx->cq_wait, &iowq.wq);
2639
	restore_saved_sigmask_unless(ret == -EINTR);
Jens Axboe's avatar
Jens Axboe committed
2640

2641
	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
Jens Axboe's avatar
Jens Axboe committed
2642 2643
}

2644
static void io_mem_free(void *ptr)
2645
{
2646
	struct page *page;
2647

2648 2649
	if (!ptr)
		return;
2650

2651 2652 2653
	page = virt_to_head_page(ptr);
	if (put_page_testzero(page))
		free_compound_page(page);
2654 2655
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static void io_pages_free(struct page ***pages, int npages)
{
	struct page **page_array;
	int i;

	if (!pages)
		return;
	page_array = *pages;
	for (i = 0; i < npages; i++)
		unpin_user_page(page_array[i]);
	kvfree(page_array);
	*pages = NULL;
}

static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
			    unsigned long uaddr, size_t size)
{
	struct page **page_array;
	unsigned int nr_pages;
	int ret;

	*npages = 0;

	if (uaddr & (PAGE_SIZE - 1) || !size)
		return ERR_PTR(-EINVAL);

	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (nr_pages > USHRT_MAX)
		return ERR_PTR(-EINVAL);
	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
	if (!page_array)
		return ERR_PTR(-ENOMEM);

	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
					page_array);
	if (ret != nr_pages) {
err:
		io_pages_free(&page_array, ret > 0 ? ret : 0);
		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
	}
	/*
	 * Should be a single page. If the ring is small enough that we can
	 * use a normal page, that is fine. If we need multiple pages, then
	 * userspace should use a huge page. That's the only way to guarantee
	 * that we get contigious memory, outside of just being lucky or
	 * (currently) having low memory fragmentation.
	 */
	if (page_array[0] != page_array[ret - 1])
		goto err;
	*pages = page_array;
	*npages = nr_pages;
	return page_to_virt(page_array[0]);
}

static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
			  size_t size)
{
	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
				size);
}

static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
			 size_t size)
{
	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
				size);
}

2724 2725
static void io_rings_free(struct io_ring_ctx *ctx)
{
2726 2727 2728 2729 2730 2731 2732 2733 2734
	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
		io_mem_free(ctx->rings);
		io_mem_free(ctx->sq_sqes);
		ctx->rings = NULL;
		ctx->sq_sqes = NULL;
	} else {
		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
	}
2735 2736
}

2737
static void *io_mem_alloc(size_t size)
2738
{
2739
	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2740
	void *ret;
2741

2742 2743 2744 2745
	ret = (void *) __get_free_pages(gfp, get_order(size));
	if (ret)
		return ret;
	return ERR_PTR(-ENOMEM);
2746 2747
}

2748 2749
static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
				unsigned int cq_entries, size_t *sq_offset)
2750
{
2751 2752
	struct io_rings *rings;
	size_t off, sq_array_size;
2753

2754 2755 2756 2757 2758 2759 2760
	off = struct_size(rings, cqes, cq_entries);
	if (off == SIZE_MAX)
		return SIZE_MAX;
	if (ctx->flags & IORING_SETUP_CQE32) {
		if (check_shl_overflow(off, 1, &off))
			return SIZE_MAX;
	}
2761

2762 2763 2764 2765 2766
#ifdef CONFIG_SMP
	off = ALIGN(off, SMP_CACHE_BYTES);
	if (off == 0)
		return SIZE_MAX;
#endif
2767

2768 2769
	if (sq_offset)
		*sq_offset = off;
2770

2771 2772 2773
	sq_array_size = array_size(sizeof(u32), sq_entries);
	if (sq_array_size == SIZE_MAX)
		return SIZE_MAX;
2774

2775 2776
	if (check_add_overflow(off, sq_array_size, &off))
		return SIZE_MAX;
2777

2778
	return off;
2779 2780
}

2781 2782
static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
			       unsigned int eventfd_async)
2783
{
2784 2785 2786
	struct io_ev_fd *ev_fd;
	__s32 __user *fds = arg;
	int fd;
2787

2788 2789 2790 2791
	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
					lockdep_is_held(&ctx->uring_lock));
	if (ev_fd)
		return -EBUSY;
2792

2793 2794
	if (copy_from_user(&fd, fds, sizeof(*fds)))
		return -EFAULT;
2795

2796 2797 2798
	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
	if (!ev_fd)
		return -ENOMEM;
2799

2800 2801 2802 2803 2804 2805
	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
	if (IS_ERR(ev_fd->cq_ev_fd)) {
		int ret = PTR_ERR(ev_fd->cq_ev_fd);
		kfree(ev_fd);
		return ret;
	}
2806 2807 2808 2809 2810

	spin_lock(&ctx->completion_lock);
	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
	spin_unlock(&ctx->completion_lock);

2811 2812 2813
	ev_fd->eventfd_async = eventfd_async;
	ctx->has_evfd = true;
	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2814 2815
	atomic_set(&ev_fd->refs, 1);
	atomic_set(&ev_fd->ops, 0);
2816
	return 0;
2817 2818
}

2819
static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2820
{
2821 2822 2823 2824 2825 2826 2827
	struct io_ev_fd *ev_fd;

	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
					lockdep_is_held(&ctx->uring_lock));
	if (ev_fd) {
		ctx->has_evfd = false;
		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2828 2829
		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2830 2831
		return 0;
	}
2832

2833
	return -ENXIO;
2834 2835
}

2836
static void io_req_caches_free(struct io_ring_ctx *ctx)
Jens Axboe's avatar
Jens Axboe committed
2837
{
2838
	struct io_kiocb *req;
2839
	int nr = 0;
2840

2841
	mutex_lock(&ctx->uring_lock);
2842
	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2843

2844
	while (!io_req_cache_empty(ctx)) {
2845
		req = io_extract_req(ctx);
2846
		kmem_cache_free(req_cachep, req);
2847
		nr++;
2848
	}
2849 2850
	if (nr)
		percpu_ref_put_many(&ctx->refs, nr);
2851 2852 2853
	mutex_unlock(&ctx->uring_lock);
}

2854 2855 2856 2857 2858
static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
{
	kfree(container_of(entry, struct io_rsrc_node, cache));
}

2859
static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
Jens Axboe's avatar
Jens Axboe committed
2860
{
2861
	io_sq_thread_finish(ctx);
2862
	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2863 2864
	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
		return;
2865

2866
	mutex_lock(&ctx->uring_lock);
2867
	if (ctx->buf_data)
2868
		__io_sqe_buffers_unregister(ctx);
2869
	if (ctx->file_data)
2870
		__io_sqe_files_unregister(ctx);
2871
	io_cqring_overflow_kill(ctx);
2872
	io_eventfd_unregister(ctx);
2873
	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
Jens Axboe's avatar
Jens Axboe committed
2874
	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2875
	io_destroy_buffers(ctx);
2876
	mutex_unlock(&ctx->uring_lock);
2877 2878
	if (ctx->sq_creds)
		put_cred(ctx->sq_creds);
2879 2880
	if (ctx->submitter_task)
		put_task_struct(ctx->submitter_task);
2881

2882 2883
	/* there are no registered resources left, nobody uses it */
	if (ctx->rsrc_node)
2884
		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2885 2886

	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2887

Jens Axboe's avatar
Jens Axboe committed
2888
#if defined(CONFIG_UNIX)
2889 2890
	if (ctx->ring_sock) {
		ctx->ring_sock->file = NULL; /* so that iput() is called */
Jens Axboe's avatar
Jens Axboe committed
2891
		sock_release(ctx->ring_sock);
2892
	}
Jens Axboe's avatar
Jens Axboe committed
2893
#endif
2894
	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
Jens Axboe's avatar
Jens Axboe committed
2895

2896
	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2897 2898 2899 2900
	if (ctx->mm_account) {
		mmdrop(ctx->mm_account);
		ctx->mm_account = NULL;
	}
2901
	io_rings_free(ctx);
Jens Axboe's avatar
Jens Axboe committed
2902 2903 2904

	percpu_ref_exit(&ctx->refs);
	free_uid(ctx->user);
2905
	io_req_caches_free(ctx);
2906 2907
	if (ctx->hash_map)
		io_wq_put_hash(ctx->hash_map);
2908
	kfree(ctx->cancel_table.hbs);
2909
	kfree(ctx->cancel_table_locked.hbs);
2910
	kfree(ctx->dummy_ubuf);
2911 2912
	kfree(ctx->io_bl);
	xa_destroy(&ctx->io_bl_xa);
Jens Axboe's avatar
Jens Axboe committed
2913 2914 2915
	kfree(ctx);
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
static __cold void io_activate_pollwq_cb(struct callback_head *cb)
{
	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
					       poll_wq_task_work);

	mutex_lock(&ctx->uring_lock);
	ctx->poll_activated = true;
	mutex_unlock(&ctx->uring_lock);

	/*
	 * Wake ups for some events between start of polling and activation
	 * might've been lost due to loose synchronisation.
	 */
	wake_up_all(&ctx->poll_wq);
	percpu_ref_put(&ctx->refs);
}

static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
{
	spin_lock(&ctx->completion_lock);
	/* already activated or in progress */
	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
		goto out;
	if (WARN_ON_ONCE(!ctx->task_complete))
		goto out;
	if (!ctx->submitter_task)
		goto out;
	/*
	 * with ->submitter_task only the submitter task completes requests, we
	 * only need to sync with it, which is done by injecting a tw
	 */
	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
	percpu_ref_get(&ctx->refs);
	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
		percpu_ref_put(&ctx->refs);
out:
	spin_unlock(&ctx->completion_lock);
}

Jens Axboe's avatar
Jens Axboe committed
2955 2956 2957 2958 2959
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
{
	struct io_ring_ctx *ctx = file->private_data;
	__poll_t mask = 0;

2960 2961 2962
	if (unlikely(!ctx->poll_activated))
		io_activate_pollwq(ctx);

2963
	poll_wait(file, &ctx->poll_wq, wait);
2964 2965 2966 2967
	/*
	 * synchronizes with barrier from wq_has_sleeper call in
	 * io_commit_cqring
	 */
Jens Axboe's avatar
Jens Axboe committed
2968
	smp_rmb();
2969
	if (!io_sqring_full(ctx))
Jens Axboe's avatar
Jens Axboe committed
2970
		mask |= EPOLLOUT | EPOLLWRNORM;
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	/*
	 * Don't flush cqring overflow list here, just do a simple check.
	 * Otherwise there could possible be ABBA deadlock:
	 *      CPU0                    CPU1
	 *      ----                    ----
	 * lock(&ctx->uring_lock);
	 *                              lock(&ep->mtx);
	 *                              lock(&ctx->uring_lock);
	 * lock(&ep->mtx);
	 *
	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
Dylan Yudaken's avatar
Dylan Yudaken committed
2983
	 * pushes them to do the flush.
2984
	 */
2985

2986
	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
Jens Axboe's avatar
Jens Axboe committed
2987 2988 2989 2990 2991
		mask |= EPOLLIN | EPOLLRDNORM;

	return mask;
}

2992
static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2993
{
Jens Axboe's avatar
Jens Axboe committed
2994
	const struct cred *creds;
2995

2996
	creds = xa_erase(&ctx->personalities, id);
Jens Axboe's avatar
Jens Axboe committed
2997 2998
	if (creds) {
		put_cred(creds);
2999
		return 0;
3000
	}
3001 3002 3003 3004

	return -EINVAL;
}

3005 3006 3007
struct io_tctx_exit {
	struct callback_head		task_work;
	struct completion		completion;
3008
	struct io_ring_ctx		*ctx;
3009 3010
};

3011
static __cold void io_tctx_exit_cb(struct callback_head *cb)
3012 3013 3014 3015 3016 3017
{
	struct io_uring_task *tctx = current->io_uring;
	struct io_tctx_exit *work;

	work = container_of(cb, struct io_tctx_exit, task_work);
	/*
3018
	 * When @in_cancel, we're in cancellation and it's racy to remove the
3019
	 * node. It'll be removed by the end of cancellation, just ignore it.
3020 3021
	 * tctx can be NULL if the queueing of this task_work raced with
	 * work cancelation off the exec path.
3022
	 */
3023
	if (tctx && !atomic_read(&tctx->in_cancel))
3024
		io_uring_del_tctx_node((unsigned long)work->ctx);
3025 3026 3027
	complete(&work->completion);
}

3028
static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3029 3030 3031 3032 3033 3034
{
	struct io_kiocb *req = container_of(work, struct io_kiocb, work);

	return req->ctx == data;
}

3035
static __cold void io_ring_exit_work(struct work_struct *work)
3036
{
3037
	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3038
	unsigned long timeout = jiffies + HZ * 60 * 5;
3039
	unsigned long interval = HZ / 20;
3040 3041 3042
	struct io_tctx_exit exit;
	struct io_tctx_node *node;
	int ret;
3043

3044 3045 3046 3047 3048 3049
	/*
	 * If we're doing polled IO and end up having requests being
	 * submitted async (out-of-line), then completions can come in while
	 * we're waiting for refs to drop. We need to reap these manually,
	 * as nobody else will be looking for them.
	 */
3050
	do {
3051 3052 3053 3054 3055 3056
		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
			mutex_lock(&ctx->uring_lock);
			io_cqring_overflow_kill(ctx);
			mutex_unlock(&ctx->uring_lock);
		}

3057 3058 3059
		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
			io_move_task_work_from_local(ctx);

3060 3061 3062
		while (io_uring_try_cancel_requests(ctx, NULL, true))
			cond_resched();

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		if (ctx->sq_data) {
			struct io_sq_data *sqd = ctx->sq_data;
			struct task_struct *tsk;

			io_sq_thread_park(sqd);
			tsk = sqd->thread;
			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
				io_wq_cancel_cb(tsk->io_uring->io_wq,
						io_cancel_ctx_cb, ctx, true);
			io_sq_thread_unpark(sqd);
		}
3074

3075 3076
		io_req_caches_free(ctx);

3077 3078 3079 3080
		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
			/* there is little hope left, don't run it too often */
			interval = HZ * 60;
		}
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		/*
		 * This is really an uninterruptible wait, as it has to be
		 * complete. But it's also run from a kworker, which doesn't
		 * take signals, so it's fine to make it interruptible. This
		 * avoids scenarios where we knowingly can wait much longer
		 * on completions, for example if someone does a SIGSTOP on
		 * a task that needs to finish task_work to make this loop
		 * complete. That's a synthetic situation that should not
		 * cause a stuck task backtrace, and hence a potential panic
		 * on stuck tasks if that is enabled.
		 */
	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3093

3094 3095 3096
	init_completion(&exit.completion);
	init_task_work(&exit.task_work, io_tctx_exit_cb);
	exit.ctx = ctx;
3097 3098 3099
	/*
	 * Some may use context even when all refs and requests have been put,
	 * and they are free to do so while still holding uring_lock or
3100
	 * completion_lock, see io_req_task_submit(). Apart from other work,
3101 3102
	 * this lock/unlock section also waits them to finish.
	 */
3103 3104
	mutex_lock(&ctx->uring_lock);
	while (!list_empty(&ctx->tctx_list)) {
3105 3106
		WARN_ON_ONCE(time_after(jiffies, timeout));

3107 3108
		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
					ctx_node);
3109 3110
		/* don't spin on a single task if cancellation failed */
		list_rotate_left(&ctx->tctx_list);
3111 3112 3113 3114 3115
		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
		if (WARN_ON_ONCE(ret))
			continue;

		mutex_unlock(&ctx->uring_lock);
3116 3117 3118 3119 3120 3121
		/*
		 * See comment above for
		 * wait_for_completion_interruptible_timeout() on why this
		 * wait is marked as interruptible.
		 */
		wait_for_completion_interruptible(&exit.completion);
3122 3123 3124
		mutex_lock(&ctx->uring_lock);
	}
	mutex_unlock(&ctx->uring_lock);
3125 3126
	spin_lock(&ctx->completion_lock);
	spin_unlock(&ctx->completion_lock);
3127

3128 3129 3130 3131
	/* pairs with RCU read section in io_req_local_work_add() */
	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
		synchronize_rcu();

3132 3133 3134
	io_ring_ctx_free(ctx);
}

3135
static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
Jens Axboe's avatar
Jens Axboe committed
3136
{
3137 3138 3139
	unsigned long index;
	struct creds *creds;

Jens Axboe's avatar
Jens Axboe committed
3140 3141
	mutex_lock(&ctx->uring_lock);
	percpu_ref_kill(&ctx->refs);
3142 3143
	xa_for_each(&ctx->personalities, index, creds)
		io_unregister_personality(ctx, index);
3144 3145
	if (ctx->rings)
		io_poll_remove_all(ctx, NULL, true);
Jens Axboe's avatar
Jens Axboe committed
3146 3147
	mutex_unlock(&ctx->uring_lock);

3148 3149 3150 3151 3152
	/*
	 * If we failed setting up the ctx, we might not have any rings
	 * and therefore did not submit any requests
	 */
	if (ctx->rings)
3153
		io_kill_timeouts(ctx, NULL, true);
3154

3155 3156
	flush_delayed_work(&ctx->fallback_work);

3157
	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3158 3159 3160 3161 3162 3163 3164
	/*
	 * Use system_unbound_wq to avoid spawning tons of event kworkers
	 * if we're exiting a ton of rings at the same time. It just adds
	 * noise and overhead, there's no discernable change in runtime
	 * over using system_wq.
	 */
	queue_work(system_unbound_wq, &ctx->exit_work);
Jens Axboe's avatar
Jens Axboe committed
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
}

static int io_uring_release(struct inode *inode, struct file *file)
{
	struct io_ring_ctx *ctx = file->private_data;

	file->private_data = NULL;
	io_ring_ctx_wait_and_kill(ctx);
	return 0;
}

3176 3177
struct io_task_cancel {
	struct task_struct *task;
3178
	bool all;
3179
};
3180

3181
static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3182
{
3183
	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3184
	struct io_task_cancel *cancel = data;
3185

3186
	return io_match_task_safe(req, cancel->task, cancel->all);
3187 3188
}

3189 3190 3191
static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
					 struct task_struct *task,
					 bool cancel_all)
3192
{
3193
	struct io_defer_entry *de;
3194 3195
	LIST_HEAD(list);

3196
	spin_lock(&ctx->completion_lock);
3197
	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3198
		if (io_match_task_safe(de->req, task, cancel_all)) {
3199 3200 3201 3202
			list_cut_position(&list, &ctx->defer_list, &de->list);
			break;
		}
	}
3203
	spin_unlock(&ctx->completion_lock);
3204 3205
	if (list_empty(&list))
		return false;
3206 3207 3208 3209

	while (!list_empty(&list)) {
		de = list_first_entry(&list, struct io_defer_entry, list);
		list_del_init(&de->list);
3210
		io_req_task_queue_fail(de->req, -ECANCELED);
3211 3212
		kfree(de);
	}
3213
	return true;
3214 3215
}

3216
static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
{
	struct io_tctx_node *node;
	enum io_wq_cancel cret;
	bool ret = false;

	mutex_lock(&ctx->uring_lock);
	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
		struct io_uring_task *tctx = node->task->io_uring;

		/*
		 * io_wq will stay alive while we hold uring_lock, because it's
		 * killed after ctx nodes, which requires to take the lock.
		 */
		if (!tctx || !tctx->io_wq)
			continue;
		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
	}
	mutex_unlock(&ctx->uring_lock);

	return ret;
}

3240
static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3241 3242
						struct task_struct *task,
						bool cancel_all)
3243
{
3244
	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3245
	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3246 3247
	enum io_wq_cancel cret;
	bool ret = false;
3248

3249 3250 3251 3252 3253 3254
	/* set it so io_req_local_work_add() would wake us up */
	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
		atomic_set(&ctx->cq_wait_nr, 1);
		smp_mb();
	}

3255 3256
	/* failed during ring init, it couldn't have issued any requests */
	if (!ctx->rings)
3257
		return false;
3258

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	if (!task) {
		ret |= io_uring_try_cancel_iowq(ctx);
	} else if (tctx && tctx->io_wq) {
		/*
		 * Cancels requests of all rings, not only @ctx, but
		 * it's fine as the task is in exit/exec.
		 */
		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
				       &cancel, true);
		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
	}
3270

3271 3272 3273 3274 3275 3276
	/* SQPOLL thread does its own polling */
	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
	    (ctx->sq_data && ctx->sq_data->thread == current)) {
		while (!wq_list_empty(&ctx->iopoll_list)) {
			io_iopoll_try_reap_events(ctx);
			ret = true;
3277
			cond_resched();
3278 3279
		}
	}
3280

3281 3282
	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
	    io_allowed_defer_tw_run(ctx))
3283
		ret |= io_run_local_work(ctx) > 0;
3284 3285 3286 3287 3288 3289
	ret |= io_cancel_defer_files(ctx, task, cancel_all);
	mutex_lock(&ctx->uring_lock);
	ret |= io_poll_remove_all(ctx, task, cancel_all);
	mutex_unlock(&ctx->uring_lock);
	ret |= io_kill_timeouts(ctx, task, cancel_all);
	if (task)
3290
		ret |= io_run_task_work() > 0;
3291
	return ret;
3292 3293
}

3294
static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3295
{
3296
	if (tracked)
3297
		return atomic_read(&tctx->inflight_tracked);
3298 3299 3300
	return percpu_counter_sum(&tctx->inflight);
}

3301 3302
/*
 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3303
 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3304
 */
3305
__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3306
{
3307
	struct io_uring_task *tctx = current->io_uring;
3308
	struct io_ring_ctx *ctx;
3309 3310
	struct io_tctx_node *node;
	unsigned long index;
3311 3312
	s64 inflight;
	DEFINE_WAIT(wait);
3313

3314 3315
	WARN_ON_ONCE(sqd && sqd->thread != current);

3316 3317
	if (!current->io_uring)
		return;
3318 3319 3320
	if (tctx->io_wq)
		io_wq_exit_start(tctx->io_wq);

3321
	atomic_inc(&tctx->in_cancel);
3322
	do {
3323 3324
		bool loop = false;

3325
		io_uring_drop_tctx_refs(current);
3326
		/* read completions before cancelations */
3327
		inflight = tctx_inflight(tctx, !cancel_all);
3328 3329
		if (!inflight)
			break;
3330

3331 3332 3333 3334 3335
		if (!sqd) {
			xa_for_each(&tctx->xa, index, node) {
				/* sqpoll task will cancel all its requests */
				if (node->ctx->sq_data)
					continue;
3336 3337
				loop |= io_uring_try_cancel_requests(node->ctx,
							current, cancel_all);
3338 3339 3340
			}
		} else {
			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3341 3342 3343 3344 3345 3346 3347 3348
				loop |= io_uring_try_cancel_requests(ctx,
								     current,
								     cancel_all);
		}

		if (loop) {
			cond_resched();
			continue;
3349
		}
3350

3351 3352
		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
		io_run_task_work();
3353
		io_uring_drop_tctx_refs(current);
3354 3355 3356 3357 3358 3359 3360
		xa_for_each(&tctx->xa, index, node) {
			if (!llist_empty(&node->ctx->work_llist)) {
				WARN_ON_ONCE(node->ctx->submitter_task &&
					     node->ctx->submitter_task != current);
				goto end_wait;
			}
		}
3361
		/*
3362 3363 3364
		 * If we've seen completions, retry without waiting. This
		 * avoids a race where a completion comes in before we did
		 * prepare_to_wait().
3365
		 */
3366
		if (inflight == tctx_inflight(tctx, !cancel_all))
3367
			schedule();
3368
end_wait:
3369
		finish_wait(&tctx->wait, &wait);
3370
	} while (1);
3371

3372
	io_uring_clean_tctx(tctx);
3373
	if (cancel_all) {
3374 3375
		/*
		 * We shouldn't run task_works after cancel, so just leave
3376
		 * ->in_cancel set for normal exit.
3377
		 */
3378
		atomic_dec(&tctx->in_cancel);
3379 3380 3381
		/* for exec all current's requests should be gone, kill tctx */
		__io_uring_free(current);
	}
3382 3383
}

3384
void __io_uring_cancel(bool cancel_all)
3385
{
3386
	io_uring_cancel_generic(cancel_all, NULL);
3387 3388
}

3389 3390
static void *io_uring_validate_mmap_request(struct file *file,
					    loff_t pgoff, size_t sz)
Jens Axboe's avatar
Jens Axboe committed
3391 3392
{
	struct io_ring_ctx *ctx = file->private_data;
3393
	loff_t offset = pgoff << PAGE_SHIFT;
Jens Axboe's avatar
Jens Axboe committed
3394 3395 3396
	struct page *page;
	void *ptr;

3397 3398 3399 3400
	/* Don't allow mmap if the ring was setup without it */
	if (ctx->flags & IORING_SETUP_NO_MMAP)
		return ERR_PTR(-EINVAL);

3401
	switch (offset & IORING_OFF_MMAP_MASK) {
Jens Axboe's avatar
Jens Axboe committed
3402
	case IORING_OFF_SQ_RING:
3403 3404
	case IORING_OFF_CQ_RING:
		ptr = ctx->rings;
Jens Axboe's avatar
Jens Axboe committed
3405 3406 3407 3408
		break;
	case IORING_OFF_SQES:
		ptr = ctx->sq_sqes;
		break;
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	case IORING_OFF_PBUF_RING: {
		unsigned int bgid;

		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
		mutex_lock(&ctx->uring_lock);
		ptr = io_pbuf_get_address(ctx, bgid);
		mutex_unlock(&ctx->uring_lock);
		if (!ptr)
			return ERR_PTR(-EINVAL);
		break;
		}
Jens Axboe's avatar
Jens Axboe committed
3420
	default:
3421
		return ERR_PTR(-EINVAL);
Jens Axboe's avatar
Jens Axboe committed
3422 3423 3424
	}

	page = virt_to_head_page(ptr);
3425
	if (sz > page_size(page))
3426 3427 3428 3429 3430 3431 3432
		return ERR_PTR(-EINVAL);

	return ptr;
}

#ifdef CONFIG_MMU

3433
static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3434 3435 3436 3437 3438 3439 3440 3441
{
	size_t sz = vma->vm_end - vma->vm_start;
	unsigned long pfn;
	void *ptr;

	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
	if (IS_ERR(ptr))
		return PTR_ERR(ptr);
Jens Axboe's avatar
Jens Axboe committed
3442 3443 3444 3445 3446

	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
			unsigned long addr, unsigned long len,
			unsigned long pgoff, unsigned long flags)
{
	void *ptr;

	/*
	 * Do not allow to map to user-provided address to avoid breaking the
	 * aliasing rules. Userspace is not able to guess the offset address of
	 * kernel kmalloc()ed memory area.
	 */
	if (addr)
		return -EINVAL;

	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
	if (IS_ERR(ptr))
		return -ENOMEM;

3465 3466 3467 3468 3469 3470 3471 3472
	/*
	 * Some architectures have strong cache aliasing requirements.
	 * For such architectures we need a coherent mapping which aliases
	 * kernel memory *and* userspace memory. To achieve that:
	 * - use a NULL file pointer to reference physical memory, and
	 * - use the kernel virtual address of the shared io_uring context
	 *   (instead of the userspace-provided address, which has to be 0UL
	 *   anyway).
3473 3474
	 * - use the same pgoff which the get_unmapped_area() uses to
	 *   calculate the page colouring.
3475 3476 3477 3478 3479 3480
	 * For architectures without such aliasing requirements, the
	 * architecture will return any suitable mapping because addr is 0.
	 */
	filp = NULL;
	flags |= MAP_SHARED;
	pgoff = 0;	/* has been translated to ptr above */
3481
#ifdef SHM_COLOUR
3482
	addr = (uintptr_t) ptr;
3483
	pgoff = addr >> PAGE_SHIFT;
3484
#else
3485
	addr = 0UL;
3486
#endif
3487
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3488 3489
}

3490 3491 3492 3493
#else /* !CONFIG_MMU */

static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
3494
	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
}

static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
{
	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
}

static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
	unsigned long addr, unsigned long len,
	unsigned long pgoff, unsigned long flags)
{
	void *ptr;

	ptr = io_uring_validate_mmap_request(file, pgoff, len);
	if (IS_ERR(ptr))
		return PTR_ERR(ptr);

	return (unsigned long) ptr;
}

#endif /* !CONFIG_MMU */

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
{
	if (flags & IORING_ENTER_EXT_ARG) {
		struct io_uring_getevents_arg arg;

		if (argsz != sizeof(arg))
			return -EINVAL;
		if (copy_from_user(&arg, argp, sizeof(arg)))
			return -EFAULT;
	}
	return 0;
}

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
			  struct __kernel_timespec __user **ts,
			  const sigset_t __user **sig)
{
	struct io_uring_getevents_arg arg;

	/*
	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
	 * is just a pointer to the sigset_t.
	 */
	if (!(flags & IORING_ENTER_EXT_ARG)) {
		*sig = (const sigset_t __user *) argp;
		*ts = NULL;
		return 0;
	}

	/*
	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
	 * timespec and sigset_t pointers if good.
	 */
	if (*argsz != sizeof(arg))
		return -EINVAL;
	if (copy_from_user(&arg, argp, sizeof(arg)))
		return -EFAULT;
3554 3555
	if (arg.pad)
		return -EINVAL;
3556 3557 3558 3559 3560 3561
	*sig = u64_to_user_ptr(arg.sigmask);
	*argsz = arg.sigmask_sz;
	*ts = u64_to_user_ptr(arg.ts);
	return 0;
}

Jens Axboe's avatar
Jens Axboe committed
3562
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3563 3564
		u32, min_complete, u32, flags, const void __user *, argp,
		size_t, argsz)
Jens Axboe's avatar
Jens Axboe committed
3565 3566 3567
{
	struct io_ring_ctx *ctx;
	struct fd f;
3568
	long ret;
Jens Axboe's avatar
Jens Axboe committed
3569

3570
	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3571 3572
			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
			       IORING_ENTER_REGISTERED_RING)))
Jens Axboe's avatar
Jens Axboe committed
3573 3574
		return -EINVAL;

3575 3576 3577 3578 3579 3580 3581
	/*
	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
	 * need only dereference our task private array to find it.
	 */
	if (flags & IORING_ENTER_REGISTERED_RING) {
		struct io_uring_task *tctx = current->io_uring;

3582
		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3583 3584 3585
			return -EINVAL;
		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
		f.file = tctx->registered_rings[fd];
3586
		f.flags = 0;
3587 3588
		if (unlikely(!f.file))
			return -EBADF;
3589 3590
	} else {
		f = fdget(fd);
3591 3592 3593 3594
		if (unlikely(!f.file))
			return -EBADF;
		ret = -EOPNOTSUPP;
		if (unlikely(!io_is_uring_fops(f.file)))
3595
			goto out;
3596
	}
Jens Axboe's avatar
Jens Axboe committed
3597 3598

	ctx = f.file->private_data;
3599
	ret = -EBADFD;
3600
	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3601 3602
		goto out;

3603 3604 3605 3606 3607
	/*
	 * For SQ polling, the thread will do all submissions and completions.
	 * Just return the requested submit count, and wake the thread if
	 * we were asked to.
	 */
3608
	ret = 0;
3609
	if (ctx->flags & IORING_SETUP_SQPOLL) {
3610
		io_cqring_overflow_flush(ctx);
3611

3612 3613
		if (unlikely(ctx->sq_data->thread == NULL)) {
			ret = -EOWNERDEAD;
3614
			goto out;
3615
		}
3616
		if (flags & IORING_ENTER_SQ_WAKEUP)
3617
			wake_up(&ctx->sq_data->wait);
3618 3619 3620
		if (flags & IORING_ENTER_SQ_WAIT)
			io_sqpoll_wait_sq(ctx);

3621
		ret = to_submit;
3622
	} else if (to_submit) {
3623
		ret = io_uring_add_tctx_node(ctx);
3624 3625
		if (unlikely(ret))
			goto out;
3626

Jens Axboe's avatar
Jens Axboe committed
3627
		mutex_lock(&ctx->uring_lock);
3628 3629
		ret = io_submit_sqes(ctx, to_submit);
		if (ret != to_submit) {
3630
			mutex_unlock(&ctx->uring_lock);
3631
			goto out;
3632
		}
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		if (flags & IORING_ENTER_GETEVENTS) {
			if (ctx->syscall_iopoll)
				goto iopoll_locked;
			/*
			 * Ignore errors, we'll soon call io_cqring_wait() and
			 * it should handle ownership problems if any.
			 */
			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
				(void)io_run_local_work_locked(ctx);
		}
3643
		mutex_unlock(&ctx->uring_lock);
Jens Axboe's avatar
Jens Axboe committed
3644
	}
3645

Jens Axboe's avatar
Jens Axboe committed
3646
	if (flags & IORING_ENTER_GETEVENTS) {
3647
		int ret2;
3648

3649
		if (ctx->syscall_iopoll) {
3650 3651 3652 3653 3654 3655 3656 3657
			/*
			 * We disallow the app entering submit/complete with
			 * polling, but we still need to lock the ring to
			 * prevent racing with polled issue that got punted to
			 * a workqueue.
			 */
			mutex_lock(&ctx->uring_lock);
iopoll_locked:
3658 3659 3660 3661 3662
			ret2 = io_validate_ext_arg(flags, argp, argsz);
			if (likely(!ret2)) {
				min_complete = min(min_complete,
						   ctx->cq_entries);
				ret2 = io_iopoll_check(ctx, min_complete);
3663 3664
			}
			mutex_unlock(&ctx->uring_lock);
3665
		} else {
3666 3667 3668
			const sigset_t __user *sig;
			struct __kernel_timespec __user *ts;

3669 3670 3671 3672 3673 3674 3675
			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
			if (likely(!ret2)) {
				min_complete = min(min_complete,
						   ctx->cq_entries);
				ret2 = io_cqring_wait(ctx, min_complete, sig,
						      argsz, ts);
			}
3676
		}
3677

3678
		if (!ret) {
3679
			ret = ret2;
Jens Axboe's avatar
Jens Axboe committed
3680

3681 3682 3683 3684 3685 3686 3687 3688
			/*
			 * EBADR indicates that one or more CQE were dropped.
			 * Once the user has been informed we can clear the bit
			 * as they are obviously ok with those drops.
			 */
			if (unlikely(ret2 == -EBADR))
				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
					  &ctx->check_cq);
3689
		}
Jens Axboe's avatar
Jens Axboe committed
3690
	}
3691
out:
3692
	fdput(f);
3693
	return ret;
Jens Axboe's avatar
Jens Axboe committed
3694 3695 3696 3697 3698
}

static const struct file_operations io_uring_fops = {
	.release	= io_uring_release,
	.mmap		= io_uring_mmap,
3699 3700 3701
#ifndef CONFIG_MMU
	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3702 3703
#else
	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3704
#endif
Jens Axboe's avatar
Jens Axboe committed
3705
	.poll		= io_uring_poll,
3706
#ifdef CONFIG_PROC_FS
3707
	.show_fdinfo	= io_uring_show_fdinfo,
3708
#endif
Jens Axboe's avatar
Jens Axboe committed
3709 3710
};

3711 3712 3713 3714 3715
bool io_is_uring_fops(struct file *file)
{
	return file->f_op == &io_uring_fops;
}

3716 3717
static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
					 struct io_uring_params *p)
Jens Axboe's avatar
Jens Axboe committed
3718
{
3719 3720
	struct io_rings *rings;
	size_t size, sq_array_offset;
3721
	void *ptr;
Jens Axboe's avatar
Jens Axboe committed
3722

3723 3724 3725 3726
	/* make sure these are sane, as we already accounted them */
	ctx->sq_entries = p->sq_entries;
	ctx->cq_entries = p->cq_entries;

3727
	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3728 3729 3730
	if (size == SIZE_MAX)
		return -EOVERFLOW;

3731 3732 3733 3734 3735
	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
		rings = io_mem_alloc(size);
	else
		rings = io_rings_map(ctx, p->cq_off.user_addr, size);

3736 3737
	if (IS_ERR(rings))
		return PTR_ERR(rings);
Jens Axboe's avatar
Jens Axboe committed
3738

3739 3740 3741 3742 3743 3744
	ctx->rings = rings;
	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
	rings->sq_ring_mask = p->sq_entries - 1;
	rings->cq_ring_mask = p->cq_entries - 1;
	rings->sq_ring_entries = p->sq_entries;
	rings->cq_ring_entries = p->cq_entries;
Jens Axboe's avatar
Jens Axboe committed
3745

3746 3747 3748 3749
	if (p->flags & IORING_SETUP_SQE128)
		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
	else
		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3750
	if (size == SIZE_MAX) {
3751
		io_rings_free(ctx);
Jens Axboe's avatar
Jens Axboe committed
3752
		return -EOVERFLOW;
3753
	}
Jens Axboe's avatar
Jens Axboe committed
3754

3755 3756 3757 3758 3759
	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
		ptr = io_mem_alloc(size);
	else
		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);

3760
	if (IS_ERR(ptr)) {
3761
		io_rings_free(ctx);
3762
		return PTR_ERR(ptr);
3763
	}
Jens Axboe's avatar
Jens Axboe committed
3764

3765
	ctx->sq_sqes = ptr;
Jens Axboe's avatar
Jens Axboe committed
3766 3767 3768
	return 0;
}

3769
static int io_uring_install_fd(struct file *file)
3770
{
3771
	int fd;
3772 3773 3774 3775 3776 3777 3778 3779

	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
	if (fd < 0)
		return fd;
	fd_install(fd, file);
	return fd;
}

Jens Axboe's avatar
Jens Axboe committed
3780 3781 3782 3783 3784 3785
/*
 * Allocate an anonymous fd, this is what constitutes the application
 * visible backing of an io_uring instance. The application mmaps this
 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
 * we have to tie this fd to a socket for file garbage collection purposes.
 */
3786
static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
Jens Axboe's avatar
Jens Axboe committed
3787 3788
{
	struct file *file;
3789
#if defined(CONFIG_UNIX)
Jens Axboe's avatar
Jens Axboe committed
3790 3791 3792 3793 3794
	int ret;

	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
				&ctx->ring_sock);
	if (ret)
3795
		return ERR_PTR(ret);
Jens Axboe's avatar
Jens Axboe committed
3796 3797
#endif

3798 3799
	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
					 O_RDWR | O_CLOEXEC, NULL);
Jens Axboe's avatar
Jens Axboe committed
3800
#if defined(CONFIG_UNIX)
3801 3802 3803 3804 3805
	if (IS_ERR(file)) {
		sock_release(ctx->ring_sock);
		ctx->ring_sock = NULL;
	} else {
		ctx->ring_sock->file = file;
3806
	}
Jens Axboe's avatar
Jens Axboe committed
3807
#endif
3808
	return file;
Jens Axboe's avatar
Jens Axboe committed
3809 3810
}

3811 3812
static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
				  struct io_uring_params __user *params)
Jens Axboe's avatar
Jens Axboe committed
3813 3814
{
	struct io_ring_ctx *ctx;
3815
	struct io_uring_task *tctx;
3816
	struct file *file;
Jens Axboe's avatar
Jens Axboe committed
3817 3818
	int ret;

3819
	if (!entries)
Jens Axboe's avatar
Jens Axboe committed
3820
		return -EINVAL;
3821 3822 3823 3824 3825
	if (entries > IORING_MAX_ENTRIES) {
		if (!(p->flags & IORING_SETUP_CLAMP))
			return -EINVAL;
		entries = IORING_MAX_ENTRIES;
	}
Jens Axboe's avatar
Jens Axboe committed
3826

3827 3828 3829 3830
	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
	    && !(p->flags & IORING_SETUP_NO_MMAP))
		return -EINVAL;

Jens Axboe's avatar
Jens Axboe committed
3831 3832 3833 3834
	/*
	 * Use twice as many entries for the CQ ring. It's possible for the
	 * application to drive a higher depth than the size of the SQ ring,
	 * since the sqes are only used at submission time. This allows for
3835 3836 3837
	 * some flexibility in overcommitting a bit. If the application has
	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
	 * of CQ ring entries manually.
Jens Axboe's avatar
Jens Axboe committed
3838 3839
	 */
	p->sq_entries = roundup_pow_of_two(entries);
3840 3841 3842 3843 3844 3845
	if (p->flags & IORING_SETUP_CQSIZE) {
		/*
		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
		 * to a power-of-two, if it isn't already. We do NOT impose
		 * any cq vs sq ring sizing.
		 */
3846
		if (!p->cq_entries)
3847
			return -EINVAL;
3848 3849 3850 3851 3852
		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
			if (!(p->flags & IORING_SETUP_CLAMP))
				return -EINVAL;
			p->cq_entries = IORING_MAX_CQ_ENTRIES;
		}
3853 3854 3855
		p->cq_entries = roundup_pow_of_two(p->cq_entries);
		if (p->cq_entries < p->sq_entries)
			return -EINVAL;
3856 3857 3858
	} else {
		p->cq_entries = 2 * p->sq_entries;
	}
Jens Axboe's avatar
Jens Axboe committed
3859 3860

	ctx = io_ring_ctx_alloc(p);
3861
	if (!ctx)
Jens Axboe's avatar
Jens Axboe committed
3862
		return -ENOMEM;
3863

3864 3865 3866 3867 3868
	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
	    !(ctx->flags & IORING_SETUP_SQPOLL))
		ctx->task_complete = true;

3869 3870 3871 3872 3873 3874 3875
	/*
	 * lazy poll_wq activation relies on ->task_complete for synchronisation
	 * purposes, see io_activate_pollwq()
	 */
	if (!ctx->task_complete)
		ctx->poll_activated = true;

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/*
	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
	 * space applications don't need to do io completion events
	 * polling again, they can rely on io_sq_thread to do polling
	 * work, which can reduce cpu usage and uring_lock contention.
	 */
	if (ctx->flags & IORING_SETUP_IOPOLL &&
	    !(ctx->flags & IORING_SETUP_SQPOLL))
		ctx->syscall_iopoll = 1;

Jens Axboe's avatar
Jens Axboe committed
3886
	ctx->compat = in_compat_syscall();
3887
	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3888
		ctx->user = get_uid(current_user());
3889

3890
	/*
3891 3892
	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3893
	 */
3894 3895 3896
	ret = -EINVAL;
	if (ctx->flags & IORING_SETUP_SQPOLL) {
		/* IPI related flags don't make sense with SQPOLL */
3897
		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3898 3899
				  IORING_SETUP_TASKRUN_FLAG |
				  IORING_SETUP_DEFER_TASKRUN))
3900
			goto err;
3901
		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3902 3903 3904
	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
		ctx->notify_method = TWA_SIGNAL_NO_IPI;
	} else {
3905 3906
		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3907
			goto err;
3908
		ctx->notify_method = TWA_SIGNAL;
3909
	}
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	/*
	 * For DEFER_TASKRUN we require the completion task to be the same as the
	 * submission task. This implies that there is only one submitter, so enforce
	 * that.
	 */
	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
		goto err;
	}

3921 3922 3923 3924 3925 3926
	/*
	 * This is just grabbed for accounting purposes. When a process exits,
	 * the mm is exited and dropped before the files, hence we need to hang
	 * on to this mm purely for the purposes of being able to unaccount
	 * memory (locked/pinned vm). It's not used for anything else.
	 */
3927
	mmgrab(current->mm);
3928
	ctx->mm_account = current->mm;
3929

Jens Axboe's avatar
Jens Axboe committed
3930 3931 3932 3933
	ret = io_allocate_scq_urings(ctx, p);
	if (ret)
		goto err;

3934
	ret = io_sq_offload_create(ctx, p);
Jens Axboe's avatar
Jens Axboe committed
3935 3936
	if (ret)
		goto err;
3937 3938

	ret = io_rsrc_init(ctx);
3939 3940
	if (ret)
		goto err;
Jens Axboe's avatar
Jens Axboe committed
3941

3942 3943 3944 3945 3946 3947 3948
	p->sq_off.head = offsetof(struct io_rings, sq.head);
	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3949
	p->sq_off.resv1 = 0;
3950 3951
	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
		p->sq_off.user_addr = 0;
Jens Axboe's avatar
Jens Axboe committed
3952

3953 3954 3955 3956 3957 3958
	p->cq_off.head = offsetof(struct io_rings, cq.head);
	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3959
	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3960
	p->cq_off.resv1 = 0;
3961 3962
	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
		p->cq_off.user_addr = 0;
3963

3964 3965
	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3966
			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3967
			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3968
			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3969
			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3970
			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3971 3972 3973 3974 3975

	if (copy_to_user(params, p, sizeof(*p))) {
		ret = -EFAULT;
		goto err;
	}
3976

3977 3978
	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3979
		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3980

3981 3982 3983 3984 3985 3986
	file = io_uring_get_file(ctx);
	if (IS_ERR(file)) {
		ret = PTR_ERR(file);
		goto err;
	}

3987 3988 3989 3990 3991
	ret = __io_uring_add_tctx_node(ctx);
	if (ret)
		goto err_fput;
	tctx = current->io_uring;

3992 3993 3994 3995
	/*
	 * Install ring fd as the very last thing, so we don't risk someone
	 * having closed it before we finish setup
	 */
3996 3997 3998 3999 4000 4001
	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
	else
		ret = io_uring_install_fd(file);
	if (ret < 0)
		goto err_fput;
4002

4003
	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
Jens Axboe's avatar
Jens Axboe committed
4004 4005 4006 4007
	return ret;
err:
	io_ring_ctx_wait_and_kill(ctx);
	return ret;
4008 4009 4010
err_fput:
	fput(file);
	return ret;
Jens Axboe's avatar
Jens Axboe committed
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
}

/*
 * Sets up an aio uring context, and returns the fd. Applications asks for a
 * ring size, we return the actual sq/cq ring sizes (among other things) in the
 * params structure passed in.
 */
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
{
	struct io_uring_params p;
	int i;

	if (copy_from_user(&p, params, sizeof(p)))
		return -EFAULT;
	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
		if (p.resv[i])
			return -EINVAL;
	}

4030
	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4031
			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4032
			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4033
			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4034
			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4035
			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4036
			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4037
			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
Jens Axboe's avatar
Jens Axboe committed
4038 4039
		return -EINVAL;

4040
	return io_uring_create(entries, &p, params);
Jens Axboe's avatar
Jens Axboe committed
4041 4042 4043 4044 4045 4046 4047 4048
}

SYSCALL_DEFINE2(io_uring_setup, u32, entries,
		struct io_uring_params __user *, params)
{
	return io_uring_setup(entries, params);
}

4049 4050
static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
			   unsigned nr_args)
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
{
	struct io_uring_probe *p;
	size_t size;
	int i, ret;

	size = struct_size(p, ops, nr_args);
	if (size == SIZE_MAX)
		return -EOVERFLOW;
	p = kzalloc(size, GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	ret = -EFAULT;
	if (copy_from_user(p, arg, size))
		goto out;
	ret = -EINVAL;
	if (memchr_inv(p, 0, size))
		goto out;

	p->last_op = IORING_OP_LAST - 1;
	if (nr_args > IORING_OP_LAST)
		nr_args = IORING_OP_LAST;

	for (i = 0; i < nr_args; i++) {
		p->ops[i].op = i;
4076
		if (!io_issue_defs[i].not_supported)
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
			p->ops[i].flags = IO_URING_OP_SUPPORTED;
	}
	p->ops_len = i;

	ret = 0;
	if (copy_to_user(arg, p, size))
		ret = -EFAULT;
out:
	kfree(p);
	return ret;
}

4089 4090
static int io_register_personality(struct io_ring_ctx *ctx)
{
Jens Axboe's avatar
Jens Axboe committed
4091
	const struct cred *creds;
4092
	u32 id;
4093
	int ret;
4094

Jens Axboe's avatar
Jens Axboe committed
4095
	creds = get_current_cred();
4096

4097 4098
	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4099 4100 4101 4102 4103
	if (ret < 0) {
		put_cred(creds);
		return ret;
	}
	return id;
4104 4105
}

4106 4107
static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
					   void __user *arg, unsigned int nr_args)
4108 4109 4110 4111 4112
{
	struct io_uring_restriction *res;
	size_t size;
	int i, ret;

4113 4114 4115 4116
	/* Restrictions allowed only if rings started disabled */
	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
		return -EBADFD;

4117
	/* We allow only a single restrictions registration */
4118
	if (ctx->restrictions.registered)
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
		return -EBUSY;

	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
		return -EINVAL;

	size = array_size(nr_args, sizeof(*res));
	if (size == SIZE_MAX)
		return -EOVERFLOW;

	res = memdup_user(arg, size);
	if (IS_ERR(res))
		return PTR_ERR(res);

	ret = 0;

	for (i = 0; i < nr_args; i++) {
		switch (res[i].opcode) {
		case IORING_RESTRICTION_REGISTER_OP:
			if (res[i].register_op >= IORING_REGISTER_LAST) {
				ret = -EINVAL;
				goto out;
			}

			__set_bit(res[i].register_op,
				  ctx->restrictions.register_op);
			break;
		case IORING_RESTRICTION_SQE_OP:
			if (res[i].sqe_op >= IORING_OP_LAST) {
				ret = -EINVAL;
				goto out;
			}

			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
			break;
		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
			break;
		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
			break;
		default:
			ret = -EINVAL;
			goto out;
		}
	}

out:
	/* Reset all restrictions if an error happened */
	if (ret != 0)
		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
	else
4170
		ctx->restrictions.registered = true;
4171 4172 4173 4174 4175

	kfree(res);
	return ret;
}

4176 4177 4178 4179 4180
static int io_register_enable_rings(struct io_ring_ctx *ctx)
{
	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
		return -EBADFD;

4181
	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4182
		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4183 4184 4185 4186 4187 4188 4189
		/*
		 * Lazy activation attempts would fail if it was polled before
		 * submitter_task is set.
		 */
		if (wq_has_sleeper(&ctx->poll_wq))
			io_activate_pollwq(ctx);
	}
4190

4191 4192 4193
	if (ctx->restrictions.registered)
		ctx->restricted = 1;

4194 4195 4196
	ctx->flags &= ~IORING_SETUP_R_DISABLED;
	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
		wake_up(&ctx->sq_data->wait);
4197 4198 4199
	return 0;
}

4200 4201
static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
				       void __user *arg, unsigned len)
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
{
	struct io_uring_task *tctx = current->io_uring;
	cpumask_var_t new_mask;
	int ret;

	if (!tctx || !tctx->io_wq)
		return -EINVAL;

	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_clear(new_mask);
	if (len > cpumask_size())
		len = cpumask_size();

4217 4218 4219 4220 4221 4222 4223 4224 4225
	if (in_compat_syscall()) {
		ret = compat_get_bitmap(cpumask_bits(new_mask),
					(const compat_ulong_t __user *)arg,
					len * 8 /* CHAR_BIT */);
	} else {
		ret = copy_from_user(new_mask, arg, len);
	}

	if (ret) {
4226 4227 4228 4229 4230 4231 4232 4233 4234
		free_cpumask_var(new_mask);
		return -EFAULT;
	}

	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
	free_cpumask_var(new_mask);
	return ret;
}

4235
static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4236 4237 4238 4239 4240 4241 4242 4243 4244
{
	struct io_uring_task *tctx = current->io_uring;

	if (!tctx || !tctx->io_wq)
		return -EINVAL;

	return io_wq_cpu_affinity(tctx->io_wq, NULL);
}

4245 4246
static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
					       void __user *arg)
4247
	__must_hold(&ctx->uring_lock)
4248
{
4249
	struct io_tctx_node *node;
4250 4251
	struct io_uring_task *tctx = NULL;
	struct io_sq_data *sqd = NULL;
4252 4253 4254 4255 4256 4257 4258 4259 4260
	__u32 new_count[2];
	int i, ret;

	if (copy_from_user(new_count, arg, sizeof(new_count)))
		return -EFAULT;
	for (i = 0; i < ARRAY_SIZE(new_count); i++)
		if (new_count[i] > INT_MAX)
			return -EINVAL;

4261 4262 4263
	if (ctx->flags & IORING_SETUP_SQPOLL) {
		sqd = ctx->sq_data;
		if (sqd) {
4264 4265 4266 4267 4268
			/*
			 * Observe the correct sqd->lock -> ctx->uring_lock
			 * ordering. Fine to drop uring_lock here, we hold
			 * a ref to the ctx.
			 */
4269
			refcount_inc(&sqd->refs);
4270
			mutex_unlock(&ctx->uring_lock);
4271
			mutex_lock(&sqd->lock);
4272
			mutex_lock(&ctx->uring_lock);
4273 4274
			if (sqd->thread)
				tctx = sqd->thread->io_uring;
4275 4276 4277 4278 4279
		}
	} else {
		tctx = current->io_uring;
	}

4280
	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4281

4282 4283 4284
	for (i = 0; i < ARRAY_SIZE(new_count); i++)
		if (new_count[i])
			ctx->iowq_limits[i] = new_count[i];
4285 4286 4287 4288 4289 4290 4291 4292 4293
	ctx->iowq_limits_set = true;

	if (tctx && tctx->io_wq) {
		ret = io_wq_max_workers(tctx->io_wq, new_count);
		if (ret)
			goto err;
	} else {
		memset(new_count, 0, sizeof(new_count));
	}
4294

4295
	if (sqd) {
4296
		mutex_unlock(&sqd->lock);
4297 4298
		io_put_sq_data(sqd);
	}
4299 4300 4301 4302

	if (copy_to_user(arg, new_count, sizeof(new_count)))
		return -EFAULT;

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	/* that's it for SQPOLL, only the SQPOLL task creates requests */
	if (sqd)
		return 0;

	/* now propagate the restriction to all registered users */
	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
		struct io_uring_task *tctx = node->task->io_uring;

		if (WARN_ON_ONCE(!tctx->io_wq))
			continue;

		for (i = 0; i < ARRAY_SIZE(new_count); i++)
			new_count[i] = ctx->iowq_limits[i];
		/* ignore errors, it always returns zero anyway */
		(void)io_wq_max_workers(tctx->io_wq, new_count);
	}
4319
	return 0;
4320
err:
4321
	if (sqd) {
4322
		mutex_unlock(&sqd->lock);
4323 4324
		io_put_sq_data(sqd);
	}
4325
	return ret;
4326 4327
}

4328 4329
static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
			       void __user *arg, unsigned nr_args)
4330 4331
	__releases(ctx->uring_lock)
	__acquires(ctx->uring_lock)
4332 4333 4334
{
	int ret;

4335
	/*
4336 4337
	 * We don't quiesce the refs for register anymore and so it can't be
	 * dying as we're holding a file ref here.
4338
	 */
4339
	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4340 4341
		return -ENXIO;

4342 4343 4344
	if (ctx->submitter_task && ctx->submitter_task != current)
		return -EEXIST;

4345 4346 4347 4348 4349 4350
	if (ctx->restricted) {
		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
		if (!test_bit(opcode, ctx->restrictions.register_op))
			return -EACCES;
	}

4351 4352
	switch (opcode) {
	case IORING_REGISTER_BUFFERS:
4353 4354 4355
		ret = -EFAULT;
		if (!arg)
			break;
4356
		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4357 4358 4359 4360 4361
		break;
	case IORING_UNREGISTER_BUFFERS:
		ret = -EINVAL;
		if (arg || nr_args)
			break;
4362
		ret = io_sqe_buffers_unregister(ctx);
4363
		break;
4364
	case IORING_REGISTER_FILES:
4365 4366 4367
		ret = -EFAULT;
		if (!arg)
			break;
4368
		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4369 4370 4371 4372 4373 4374 4375
		break;
	case IORING_UNREGISTER_FILES:
		ret = -EINVAL;
		if (arg || nr_args)
			break;
		ret = io_sqe_files_unregister(ctx);
		break;
4376
	case IORING_REGISTER_FILES_UPDATE:
4377
		ret = io_register_files_update(ctx, arg, nr_args);
4378
		break;
4379 4380 4381 4382
	case IORING_REGISTER_EVENTFD:
		ret = -EINVAL;
		if (nr_args != 1)
			break;
4383 4384 4385 4386 4387
		ret = io_eventfd_register(ctx, arg, 0);
		break;
	case IORING_REGISTER_EVENTFD_ASYNC:
		ret = -EINVAL;
		if (nr_args != 1)
4388
			break;
4389
		ret = io_eventfd_register(ctx, arg, 1);
4390 4391 4392 4393 4394 4395 4396
		break;
	case IORING_UNREGISTER_EVENTFD:
		ret = -EINVAL;
		if (arg || nr_args)
			break;
		ret = io_eventfd_unregister(ctx);
		break;
4397 4398 4399 4400 4401 4402
	case IORING_REGISTER_PROBE:
		ret = -EINVAL;
		if (!arg || nr_args > 256)
			break;
		ret = io_probe(ctx, arg, nr_args);
		break;
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	case IORING_REGISTER_PERSONALITY:
		ret = -EINVAL;
		if (arg || nr_args)
			break;
		ret = io_register_personality(ctx);
		break;
	case IORING_UNREGISTER_PERSONALITY:
		ret = -EINVAL;
		if (arg)
			break;
		ret = io_unregister_personality(ctx, nr_args);
		break;
4415 4416 4417 4418 4419 4420
	case IORING_REGISTER_ENABLE_RINGS:
		ret = -EINVAL;
		if (arg || nr_args)
			break;
		ret = io_register_enable_rings(ctx);
		break;
4421 4422 4423
	case IORING_REGISTER_RESTRICTIONS:
		ret = io_register_restrictions(ctx, arg, nr_args);
		break;
4424 4425 4426 4427 4428 4429 4430 4431 4432
	case IORING_REGISTER_FILES2:
		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
		break;
	case IORING_REGISTER_FILES_UPDATE2:
		ret = io_register_rsrc_update(ctx, arg, nr_args,
					      IORING_RSRC_FILE);
		break;
	case IORING_REGISTER_BUFFERS2:
		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4433
		break;
4434 4435 4436
	case IORING_REGISTER_BUFFERS_UPDATE:
		ret = io_register_rsrc_update(ctx, arg, nr_args,
					      IORING_RSRC_BUFFER);
4437
		break;
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	case IORING_REGISTER_IOWQ_AFF:
		ret = -EINVAL;
		if (!arg || !nr_args)
			break;
		ret = io_register_iowq_aff(ctx, arg, nr_args);
		break;
	case IORING_UNREGISTER_IOWQ_AFF:
		ret = -EINVAL;
		if (arg || nr_args)
			break;
		ret = io_unregister_iowq_aff(ctx);
		break;
4450 4451 4452 4453 4454 4455
	case IORING_REGISTER_IOWQ_MAX_WORKERS:
		ret = -EINVAL;
		if (!arg || nr_args != 2)
			break;
		ret = io_register_iowq_max_workers(ctx, arg);
		break;
4456 4457 4458 4459 4460 4461
	case IORING_REGISTER_RING_FDS:
		ret = io_ringfd_register(ctx, arg, nr_args);
		break;
	case IORING_UNREGISTER_RING_FDS:
		ret = io_ringfd_unregister(ctx, arg, nr_args);
		break;
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
	case IORING_REGISTER_PBUF_RING:
		ret = -EINVAL;
		if (!arg || nr_args != 1)
			break;
		ret = io_register_pbuf_ring(ctx, arg);
		break;
	case IORING_UNREGISTER_PBUF_RING:
		ret = -EINVAL;
		if (!arg || nr_args != 1)
			break;
		ret = io_unregister_pbuf_ring(ctx, arg);
		break;
4474 4475 4476 4477 4478 4479
	case IORING_REGISTER_SYNC_CANCEL:
		ret = -EINVAL;
		if (!arg || nr_args != 1)
			break;
		ret = io_sync_cancel(ctx, arg);
		break;
4480 4481 4482 4483 4484 4485
	case IORING_REGISTER_FILE_ALLOC_RANGE:
		ret = -EINVAL;
		if (!arg || nr_args)
			break;
		ret = io_register_file_alloc_range(ctx, arg);
		break;
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
		void __user *, arg, unsigned int, nr_args)
{
	struct io_ring_ctx *ctx;
	long ret = -EBADF;
	struct fd f;
4500 4501 4502 4503
	bool use_registered_ring;

	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4504

4505 4506 4507
	if (opcode >= IORING_REGISTER_LAST)
		return -EINVAL;

4508 4509 4510 4511 4512 4513
	if (use_registered_ring) {
		/*
		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
		 * need only dereference our task private array to find it.
		 */
		struct io_uring_task *tctx = current->io_uring;
4514

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
			return -EINVAL;
		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
		f.file = tctx->registered_rings[fd];
		f.flags = 0;
		if (unlikely(!f.file))
			return -EBADF;
	} else {
		f = fdget(fd);
		if (unlikely(!f.file))
			return -EBADF;
		ret = -EOPNOTSUPP;
		if (!io_is_uring_fops(f.file))
			goto out_fput;
	}
4530 4531 4532 4533 4534 4535

	ctx = f.file->private_data;

	mutex_lock(&ctx->uring_lock);
	ret = __io_uring_register(ctx, opcode, arg, nr_args);
	mutex_unlock(&ctx->uring_lock);
4536
	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4537 4538 4539 4540 4541
out_fput:
	fdput(f);
	return ret;
}

Jens Axboe's avatar
Jens Axboe committed
4542 4543
static int __init io_uring_init(void)
{
4544
#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4545
	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4546
	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4547 4548 4549
} while (0)

#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4550 4551 4552
	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4553 4554 4555 4556 4557 4558 4559
	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4560 4561
	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4562
	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4563
	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4564 4565 4566 4567 4568
	BUILD_BUG_SQE_ELEM(24, __u32,  len);
	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4569 4570
	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4571 4572 4573 4574 4575 4576 4577 4578
	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4579
	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4580 4581 4582 4583 4584
	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4585 4586
	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4587
	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4588
	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4589
	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4590
	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4591 4592
	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4593
	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4594 4595
	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4596

4597 4598 4599 4600
	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
		     sizeof(struct io_uring_rsrc_update));
	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
		     sizeof(struct io_uring_rsrc_update2));
4601 4602

	/* ->buf_index is u16 */
4603 4604 4605
	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
		     offsetof(struct io_uring_buf_ring, tail));
4606

4607 4608
	/* should fit into one byte */
	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4609 4610
	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4611

4612
	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4613

4614 4615
	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));

4616
	io_uring_optable_init();
4617

4618
	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4619
				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
Jens Axboe's avatar
Jens Axboe committed
4620 4621 4622
	return 0;
};
__initcall(io_uring_init);