spi-rspi.c 33.4 KB
Newer Older
1 2 3
/*
 * SH RSPI driver
 *
4
 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5
 * Copyright (C) 2014 Glider bvba
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
33 34
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
35
#include <linux/of_device.h>
36
#include <linux/pm_runtime.h>
37
#include <linux/sh_dma.h>
38
#include <linux/spi/spi.h>
39
#include <linux/spi/rspi.h>
40

41 42 43 44 45 46 47 48 49 50 51 52
#define RSPI_SPCR		0x00	/* Control Register */
#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
#define RSPI_SPPCR		0x02	/* Pin Control Register */
#define RSPI_SPSR		0x03	/* Status Register */
#define RSPI_SPDR		0x04	/* Data Register */
#define RSPI_SPSCR		0x08	/* Sequence Control Register */
#define RSPI_SPSSR		0x09	/* Sequence Status Register */
#define RSPI_SPBR		0x0a	/* Bit Rate Register */
#define RSPI_SPDCR		0x0b	/* Data Control Register */
#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
53
#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
54 55 56 57 58 59 60 61
#define RSPI_SPCMD0		0x10	/* Command Register 0 */
#define RSPI_SPCMD1		0x12	/* Command Register 1 */
#define RSPI_SPCMD2		0x14	/* Command Register 2 */
#define RSPI_SPCMD3		0x16	/* Command Register 3 */
#define RSPI_SPCMD4		0x18	/* Command Register 4 */
#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
62 63 64 65
#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
#define RSPI_NUM_SPCMD		8
#define RSPI_RZ_NUM_SPCMD	4
#define QSPI_NUM_SPCMD		4
66 67

/* RSPI on RZ only */
68 69
#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
70

71
/* QSPI only */
72 73 74 75 76 77
#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
78
#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
79

80 81 82 83 84 85 86 87 88 89
/* SPCR - Control Register */
#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
#define SPCR_SPE		0x40	/* Function Enable */
#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
90 91 92
/* QSPI on R-Car M2 only */
#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
93 94 95 96 97 98 99 100

/* SSLP - Slave Select Polarity Register */
#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */

/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
101
#define SPPCR_SPOM		0x04
102 103 104
#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */

105 106 107
#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */

108 109 110 111 112 113 114
/* SPSR - Status Register */
#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
#define SPSR_TEND		0x40	/* Transmit End */
#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
#define SPSR_PERF		0x08	/* Parity Error Flag */
#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
115
#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */

/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */

/* SPDCR - Data Control Register */
#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD		SPDCR_SPLW1
#define SPDCR_SPLBYTE		SPDCR_SPLW0
#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
132
#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
133 134
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
135
#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
136 137
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01
138
#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
139

140 141
/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
142

143 144
/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
145

146 147
/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
148

149 150 151 152 153
/* SPCR2 - Control Register 2 */
#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE		0x01	/* Parity Enable */
154

155 156 157 158 159 160
/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
#define SPCMD_LSBF		0x1000	/* LSB First */
#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
161
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
162
#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
163
#define SPCMD_SPB_16BIT		0x0100
164 165 166
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
167
#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
168 169 170 171 172 173 174
#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1		0x0040
#define SPCMD_SPIMOD0		0x0020
#define SPCMD_SPIMOD_SINGLE	0
#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
175 176 177 178 179 180
#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */

/* SPBFCR - Buffer Control Register */
181 182
#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
183 184
#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
185

186 187
#define DUMMY_DATA		0x00

188 189 190 191 192 193
struct rspi_data {
	void __iomem *addr;
	u32 max_speed_hz;
	struct spi_master *master;
	wait_queue_head_t wait;
	struct clk *clk;
194
	u16 spcmd;
195 196
	u8 spsr;
	u8 sppcr;
197
	int rx_irq, tx_irq;
198
	const struct spi_ops *ops;
199 200 201 202 203 204

	/* for dmaengine */
	struct dma_chan *chan_tx;
	struct dma_chan *chan_rx;

	unsigned dma_callbacked:1;
205
	unsigned byte_access:1;
206 207
};

208
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
209 210 211 212
{
	iowrite8(data, rspi->addr + offset);
}

213
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
214 215 216 217
{
	iowrite16(data, rspi->addr + offset);
}

218
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
219 220 221 222
{
	iowrite32(data, rspi->addr + offset);
}

223
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
224 225 226 227
{
	return ioread8(rspi->addr + offset);
}

228
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
229 230 231 232
{
	return ioread16(rspi->addr + offset);
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static void rspi_write_data(const struct rspi_data *rspi, u16 data)
{
	if (rspi->byte_access)
		rspi_write8(rspi, data, RSPI_SPDR);
	else /* 16 bit */
		rspi_write16(rspi, data, RSPI_SPDR);
}

static u16 rspi_read_data(const struct rspi_data *rspi)
{
	if (rspi->byte_access)
		return rspi_read8(rspi, RSPI_SPDR);
	else /* 16 bit */
		return rspi_read16(rspi, RSPI_SPDR);
}

249 250
/* optional functions */
struct spi_ops {
251
	int (*set_config_register)(struct rspi_data *rspi, int access_size);
252 253
	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
			    struct spi_transfer *xfer);
254
	u16 mode_bits;
255 256 257
};

/*
258
 * functions for RSPI on legacy SH
259
 */
260
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
261
{
262 263
	int spbr;

264 265
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
266

267
	/* Sets transfer bit rate */
268 269
	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
			    2 * rspi->max_speed_hz) - 1;
270 271
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

272 273 274
	/* Disable dummy transmission, set 16-bit word access, 1 frame */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 0;
275

276 277 278 279 280 281 282 283 284
	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Sets SPCMD */
285 286
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
287 288 289 290 291

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
292 293
}

294 295 296 297 298 299 300
/*
 * functions for RSPI on RZ
 */
static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
{
	int spbr;

301 302
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303 304

	/* Sets transfer bit rate */
305 306
	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
			    2 * rspi->max_speed_hz) - 1;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
	rspi->byte_access = 1;

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets SPCMD */
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

328 329 330
/*
 * functions for QSPI
 */
331
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
332 333 334
{
	int spbr;

335 336
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
337 338

	/* Sets transfer bit rate */
339
	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
340 341
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

342 343 344
	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 1;
345 346 347 348 349 350 351 352

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Data Length Setting */
	if (access_size == 8)
353
		rspi->spcmd |= SPCMD_SPB_8BIT;
354
	else if (access_size == 16)
355
		rspi->spcmd |= SPCMD_SPB_16BIT;
356
	else
357
		rspi->spcmd |= SPCMD_SPB_32BIT;
358

359
	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
360 361 362 363 364 365 366 367 368 369

	/* Resets transfer data length */
	rspi_write32(rspi, 0, QSPI_SPBMUL0);

	/* Resets transmit and receive buffer */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	/* Sets buffer to allow normal operation */
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	/* Sets SPCMD */
370
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
371

372
	/* Enables SPI function in master mode */
373 374 375 376 377 378 379
	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);

	return 0;
}

#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)

380
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
381 382 383 384
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

385
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
386 387 388 389 390 391 392 393 394 395
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
396 397 398
	if (rspi->spsr & wait_mask)
		return 0;

399 400 401 402 403 404 405 406
	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

407 408 409 410 411 412 413 414 415 416
static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
{
	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
}

static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
{
	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
}

417 418
static int rspi_data_out(struct rspi_data *rspi, u8 data)
{
419 420
	int error = rspi_wait_for_tx_empty(rspi);
	if (error < 0) {
421
		dev_err(&rspi->master->dev, "transmit timeout\n");
422
		return error;
423 424 425 426 427 428 429
	}
	rspi_write_data(rspi, data);
	return 0;
}

static int rspi_data_in(struct rspi_data *rspi)
{
430
	int error;
431 432
	u8 data;

433 434
	error = rspi_wait_for_rx_full(rspi);
	if (error < 0) {
435
		dev_err(&rspi->master->dev, "receive timeout\n");
436
		return error;
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	}
	data = rspi_read_data(rspi);
	return data;
}

static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
{
	int ret;

	ret = rspi_data_out(rspi, data);
	if (ret < 0)
		return ret;

	return rspi_data_in(rspi);
}

453 454 455 456 457 458 459 460
static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

Geert Uytterhoeven's avatar
Geert Uytterhoeven committed
461 462
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
			   unsigned len, struct dma_chan *chan,
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			   enum dma_transfer_direction dir)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, len);
	sg_dma_len(sg) = len;
	return dma_map_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
			      enum dma_transfer_direction dir)
{
	dma_unmap_sg(chan->device->dev, sg, 1, dir);
}

static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg;
480
	const void *buf = t->tx_buf;
481
	struct dma_async_tx_descriptor *desc;
482
	unsigned int len = t->len;
483 484
	int ret = 0;

485 486
	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE))
		return -EFAULT;
487 488 489 490 491 492 493 494 495 496 497 498

	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
499
	disable_irq(rspi->tx_irq);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE);

518
	enable_irq(rspi->tx_irq);
519 520 521 522 523 524

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
	return ret;
}

525
static void rspi_receive_init(const struct rspi_data *rspi)
526
{
527
	u8 spsr;
528 529 530

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
531
		rspi_read_data(rspi);	/* dummy read */
532 533
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
534
			    RSPI_SPSR);
535 536
}

537 538 539 540 541 542 543
static void rspi_rz_receive_init(const struct rspi_data *rspi)
{
	rspi_receive_init(rspi);
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
	rspi_write8(rspi, 0, RSPI_SPBFCR);
}

544
static void qspi_receive_init(const struct rspi_data *rspi)
545
{
546
	u8 spsr;
547 548 549

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
550
		rspi_read_data(rspi);   /* dummy read */
551
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
552
	rspi_write8(rspi, 0, QSPI_SPBFCR);
553 554
}

555 556 557
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg, sg_dummy;
558
	void *dummy = NULL, *rx_buf = t->rx_buf;
559
	struct dma_async_tx_descriptor *desc, *desc_dummy;
560
	unsigned int len = t->len;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	int ret = 0;

	/* prepare dummy transfer to generate SPI clocks */
	dummy = kzalloc(len, GFP_KERNEL);
	if (!dummy) {
		ret = -ENOMEM;
		goto end_nomap;
	}
	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
			     DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc_dummy) {
		ret = -EIO;
		goto end_dummy_mapped;
	}

	/* prepare receive transfer */
	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
			     DMA_FROM_DEVICE)) {
		ret = -EFAULT;
		goto end_dummy_mapped;

	}
	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	rspi_receive_init(rspi);

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
601 602 603
	disable_irq(rspi->tx_irq);
	if (rspi->rx_irq != rspi->tx_irq)
		disable_irq(rspi->rx_irq);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_rx);

	desc_dummy->callback = NULL;	/* No callback */
	dmaengine_submit(desc_dummy);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);

626 627 628
	enable_irq(rspi->tx_irq);
	if (rspi->rx_irq != rspi->tx_irq)
		enable_irq(rspi->rx_irq);
629 630 631 632 633 634 635 636 637 638 639

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	kfree(dummy);

	return ret;
}

640
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
641 642 643 644 645 646 647 648 649 650
{
	if (t->tx_buf && rspi->chan_tx)
		return 1;
	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
		return 1;

	return 0;
}

651 652 653 654 655 656 657 658 659
static int rspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
{
	int remain = xfer->len, ret;
	const u8 *tx_buf = xfer->tx_buf;
	u8 *rx_buf = xfer->rx_buf;
	u8 spcr, data;

	spcr = rspi_read8(rspi, RSPI_SPCR);
660 661
	if (rx_buf) {
		rspi_receive_init(rspi);
662
		spcr &= ~SPCR_TXMD;
663
	} else {
664
		spcr |= SPCR_TXMD;
665
	}
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	rspi_write8(rspi, spcr, RSPI_SPCR);

	while (remain > 0) {
		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
		ret = rspi_data_out(rspi, data);
		if (ret < 0)
			return ret;
		if (rx_buf) {
			ret = rspi_data_in(rspi);
			if (ret < 0)
				return ret;
			*rx_buf++ = ret;
		}
		remain--;
	}

	/* Wait for the last transmission */
683
	rspi_wait_for_tx_empty(rspi);
684 685 686 687

	return 0;
}

688 689
static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
690
{
691
	struct rspi_data *rspi = spi_master_get_devdata(master);
692 693 694 695
	int ret;

	if (!rspi_is_dma(rspi, xfer))
		return rspi_transfer_out_in(rspi, xfer);
696

697
	if (xfer->tx_buf) {
698
		ret = rspi_send_dma(rspi, xfer);
699 700
		if (ret < 0)
			return ret;
701
	}
702 703 704 705
	if (xfer->rx_buf)
		return rspi_receive_dma(rspi, xfer);

	return 0;
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
				   struct spi_transfer *xfer)
{
	int remain = xfer->len, ret;
	const u8 *tx_buf = xfer->tx_buf;
	u8 *rx_buf = xfer->rx_buf;
	u8 data;

	rspi_rz_receive_init(rspi);

	while (remain > 0) {
		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
		ret = rspi_data_out_in(rspi, data);
		if (ret < 0)
			return ret;
		if (rx_buf)
			*rx_buf++ = ret;
		remain--;
	}

	/* Wait for the last transmission */
729
	rspi_wait_for_tx_empty(rspi);
730 731 732 733 734 735 736 737 738 739 740 741 742

	return 0;
}

static int rspi_rz_transfer_one(struct spi_master *master,
				struct spi_device *spi,
				struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);

	return rspi_rz_transfer_out_in(rspi, xfer);
}

743 744
static int qspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
745
{
746 747 748 749
	int remain = xfer->len, ret;
	const u8 *tx_buf = xfer->tx_buf;
	u8 *rx_buf = xfer->rx_buf;
	u8 data;
750

751 752 753 754 755
	qspi_receive_init(rspi);

	while (remain > 0) {
		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
		ret = rspi_data_out_in(rspi, data);
756 757
		if (ret < 0)
			return ret;
758 759 760
		if (rx_buf)
			*rx_buf++ = ret;
		remain--;
761
	}
762 763

	/* Wait for the last transmission */
764
	rspi_wait_for_tx_empty(rspi);
765 766 767 768

	return 0;
}

769 770 771 772 773 774 775 776 777 778 779 780 781
static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
{
	const u8 *buf = xfer->tx_buf;
	unsigned int i;
	int ret;

	for (i = 0; i < xfer->len; i++) {
		ret = rspi_data_out(rspi, *buf++);
		if (ret < 0)
			return ret;
	}

	/* Wait for the last transmission */
782
	rspi_wait_for_tx_empty(rspi);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	return 0;
}

static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
{
	u8 *buf = xfer->rx_buf;
	unsigned int i;
	int ret;

	for (i = 0; i < xfer->len; i++) {
		ret = rspi_data_in(rspi);
		if (ret < 0)
			return ret;
		*buf++ = ret;
	}

	return 0;
}

803 804 805 806 807
static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);

808 809 810
	if (spi->mode & SPI_LOOP) {
		return qspi_transfer_out_in(rspi, xfer);
	} else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
811 812 813 814 815 816 817 818 819
		/* Quad or Dual SPI Write */
		return qspi_transfer_out(rspi, xfer);
	} else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
		/* Quad or Dual SPI Read */
		return qspi_transfer_in(rspi, xfer);
	} else {
		/* Single SPI Transfer */
		return qspi_transfer_out_in(rspi, xfer);
	}
820 821 822 823 824 825 826 827
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);

	rspi->max_speed_hz = spi->max_speed_hz;

828 829 830 831 832 833
	rspi->spcmd = SPCMD_SSLKP;
	if (spi->mode & SPI_CPOL)
		rspi->spcmd |= SPCMD_CPOL;
	if (spi->mode & SPI_CPHA)
		rspi->spcmd |= SPCMD_CPHA;

834 835 836 837 838
	/* CMOS output mode and MOSI signal from previous transfer */
	rspi->sppcr = 0;
	if (spi->mode & SPI_LOOP)
		rspi->sppcr |= SPPCR_SPLP;

839
	set_config_register(rspi, 8);
840 841 842 843

	return 0;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
{
	if (xfer->tx_buf)
		switch (xfer->tx_nbits) {
		case SPI_NBITS_QUAD:
			return SPCMD_SPIMOD_QUAD;
		case SPI_NBITS_DUAL:
			return SPCMD_SPIMOD_DUAL;
		default:
			return 0;
		}
	if (xfer->rx_buf)
		switch (xfer->rx_nbits) {
		case SPI_NBITS_QUAD:
			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
		case SPI_NBITS_DUAL:
			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
		default:
			return 0;
		}

	return 0;
}

static int qspi_setup_sequencer(struct rspi_data *rspi,
				const struct spi_message *msg)
{
	const struct spi_transfer *xfer;
	unsigned int i = 0, len = 0;
	u16 current_mode = 0xffff, mode;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		mode = qspi_transfer_mode(xfer);
		if (mode == current_mode) {
			len += xfer->len;
			continue;
		}

		/* Transfer mode change */
		if (i) {
			/* Set transfer data length of previous transfer */
			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
		}

		if (i >= QSPI_NUM_SPCMD) {
			dev_err(&msg->spi->dev,
				"Too many different transfer modes");
			return -EINVAL;
		}

		/* Program transfer mode for this transfer */
		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
		current_mode = mode;
		len = xfer->len;
		i++;
	}
	if (i) {
		/* Set final transfer data length and sequence length */
		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
		rspi_write8(rspi, i - 1, RSPI_SPSCR);
	}

	return 0;
}

909
static int rspi_prepare_message(struct spi_master *master,
910
				struct spi_message *msg)
911 912
{
	struct rspi_data *rspi = spi_master_get_devdata(master);
913
	int ret;
914

915 916 917 918 919 920 921 922 923
	if (msg->spi->mode &
	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
		/* Setup sequencer for messages with multiple transfer modes */
		ret = qspi_setup_sequencer(rspi, msg);
		if (ret < 0)
			return ret;
	}

	/* Enable SPI function in master mode */
924
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
925 926 927
	return 0;
}

928
static int rspi_unprepare_message(struct spi_master *master,
929
				  struct spi_message *msg)
930
{
931 932
	struct rspi_data *rspi = spi_master_get_devdata(master);

933
	/* Disable SPI function */
934
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
935 936 937 938

	/* Reset sequencer for Single SPI Transfers */
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
	rspi_write8(rspi, 0, RSPI_SPSCR);
939
	return 0;
940 941
}

942
static irqreturn_t rspi_irq_mux(int irq, void *_sr)
943
{
Geert Uytterhoeven's avatar
Geert Uytterhoeven committed
944
	struct rspi_data *rspi = _sr;
945
	u8 spsr;
946
	irqreturn_t ret = IRQ_NONE;
947
	u8 disable_irq = 0;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
static irqreturn_t rspi_irq_rx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF) {
		rspi_disable_irq(rspi, SPCR_SPRIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

static irqreturn_t rspi_irq_tx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPTEF) {
		rspi_disable_irq(rspi, SPCR_SPTIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

994
static int rspi_request_dma(struct rspi_data *rspi,
995
				      struct platform_device *pdev)
996
{
997
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
998
	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
999
	dma_cap_mask_t mask;
1000 1001
	struct dma_slave_config cfg;
	int ret;
1002

1003
	if (!res || !rspi_pd)
1004
		return 0;	/* The driver assumes no error. */
1005 1006 1007 1008 1009

	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
1010 1011 1012 1013 1014
		rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_rx_id);
		if (rspi->chan_rx) {
			cfg.slave_id = rspi_pd->dma_rx_id;
			cfg.direction = DMA_DEV_TO_MEM;
1015 1016
			cfg.dst_addr = 0;
			cfg.src_addr = res->start + RSPI_SPDR;
1017 1018 1019 1020 1021 1022
			ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when rx.\n");
			else
				return ret;
		}
1023 1024 1025 1026
	}
	if (rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
1027 1028 1029 1030 1031
		rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_tx_id);
		if (rspi->chan_tx) {
			cfg.slave_id = rspi_pd->dma_tx_id;
			cfg.direction = DMA_MEM_TO_DEV;
1032 1033
			cfg.dst_addr = res->start + RSPI_SPDR;
			cfg.src_addr = 0;
1034 1035 1036 1037 1038 1039
			ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when tx\n");
			else
				return ret;
		}
1040
	}
1041 1042

	return 0;
1043 1044
}

1045
static void rspi_release_dma(struct rspi_data *rspi)
1046 1047 1048 1049 1050 1051 1052
{
	if (rspi->chan_tx)
		dma_release_channel(rspi->chan_tx);
	if (rspi->chan_rx)
		dma_release_channel(rspi->chan_rx);
}

1053
static int rspi_remove(struct platform_device *pdev)
1054
{
1055
	struct rspi_data *rspi = platform_get_drvdata(pdev);
1056

1057
	rspi_release_dma(rspi);
1058
	pm_runtime_disable(&pdev->dev);
1059 1060 1061 1062

	return 0;
}

1063 1064 1065
static const struct spi_ops rspi_ops = {
	.set_config_register =		rspi_set_config_register,
	.transfer_one =			rspi_transfer_one,
1066
	.mode_bits =			SPI_CPHA | SPI_CPOL | SPI_LOOP,
1067 1068 1069 1070 1071
};

static const struct spi_ops rspi_rz_ops = {
	.set_config_register =		rspi_rz_set_config_register,
	.transfer_one =			rspi_rz_transfer_one,
1072
	.mode_bits =			SPI_CPHA | SPI_CPOL | SPI_LOOP,
1073 1074 1075 1076 1077
};

static const struct spi_ops qspi_ops = {
	.set_config_register =		qspi_set_config_register,
	.transfer_one =			qspi_transfer_one,
1078 1079 1080
	.mode_bits =			SPI_CPHA | SPI_CPOL | SPI_LOOP |
					SPI_TX_DUAL | SPI_TX_QUAD |
					SPI_RX_DUAL | SPI_RX_QUAD,
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
};

#ifdef CONFIG_OF
static const struct of_device_id rspi_of_match[] = {
	/* RSPI on legacy SH */
	{ .compatible = "renesas,rspi", .data = &rspi_ops },
	/* RSPI on RZ/A1H */
	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
	/* QSPI on R-Car Gen2 */
	{ .compatible = "renesas,qspi", .data = &qspi_ops },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, rspi_of_match);

static int rspi_parse_dt(struct device *dev, struct spi_master *master)
{
	u32 num_cs;
	int error;

	/* Parse DT properties */
	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
	if (error) {
		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
		return error;
	}

	master->num_chipselect = num_cs;
	return 0;
}
#else
1112
#define rspi_of_match	NULL
1113 1114 1115 1116 1117 1118
static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
{
	return -EINVAL;
}
#endif /* CONFIG_OF */

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static int rspi_request_irq(struct device *dev, unsigned int irq,
			    irq_handler_t handler, const char *suffix,
			    void *dev_id)
{
	const char *base = dev_name(dev);
	size_t len = strlen(base) + strlen(suffix) + 2;
	char *name = devm_kzalloc(dev, len, GFP_KERNEL);
	if (!name)
		return -ENOMEM;
	snprintf(name, len, "%s:%s", base, suffix);
	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
}

1132
static int rspi_probe(struct platform_device *pdev)
1133 1134 1135 1136
{
	struct resource *res;
	struct spi_master *master;
	struct rspi_data *rspi;
1137
	int ret;
1138 1139
	const struct of_device_id *of_id;
	const struct rspi_plat_data *rspi_pd;
1140
	const struct spi_ops *ops;
1141 1142 1143 1144 1145 1146 1147

	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "spi_alloc_master error.\n");
		return -ENOMEM;
	}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	of_id = of_match_device(rspi_of_match, &pdev->dev);
	if (of_id) {
		ops = of_id->data;
		ret = rspi_parse_dt(&pdev->dev, master);
		if (ret)
			goto error1;
	} else {
		ops = (struct spi_ops *)pdev->id_entry->driver_data;
		rspi_pd = dev_get_platdata(&pdev->dev);
		if (rspi_pd && rspi_pd->num_chipselect)
			master->num_chipselect = rspi_pd->num_chipselect;
		else
			master->num_chipselect = 2; /* default */
	};

	/* ops parameter check */
	if (!ops->set_config_register) {
		dev_err(&pdev->dev, "there is no set_config_register\n");
		ret = -ENODEV;
		goto error1;
	}

1170
	rspi = spi_master_get_devdata(master);
1171
	platform_set_drvdata(pdev, rspi);
1172
	rspi->ops = ops;
1173
	rspi->master = master;
1174 1175 1176 1177 1178

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rspi->addr)) {
		ret = PTR_ERR(rspi->addr);
1179 1180 1181
		goto error1;
	}

1182
	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1183 1184 1185
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
1186
		goto error1;
1187
	}
1188

1189
	pm_runtime_enable(&pdev->dev);
1190 1191 1192 1193 1194

	init_waitqueue_head(&rspi->wait);

	master->bus_num = pdev->id;
	master->setup = rspi_setup;
1195
	master->auto_runtime_pm = true;
1196
	master->transfer_one = ops->transfer_one;
1197 1198
	master->prepare_message = rspi_prepare_message;
	master->unprepare_message = rspi_unprepare_message;
1199
	master->mode_bits = ops->mode_bits;
1200
	master->dev.of_node = pdev->dev.of_node;
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	ret = platform_get_irq_byname(pdev, "rx");
	if (ret < 0) {
		ret = platform_get_irq_byname(pdev, "mux");
		if (ret < 0)
			ret = platform_get_irq(pdev, 0);
		if (ret >= 0)
			rspi->rx_irq = rspi->tx_irq = ret;
	} else {
		rspi->rx_irq = ret;
		ret = platform_get_irq_byname(pdev, "tx");
		if (ret >= 0)
			rspi->tx_irq = ret;
	}
	if (ret < 0) {
		dev_err(&pdev->dev, "platform_get_irq error\n");
		goto error2;
	}

	if (rspi->rx_irq == rspi->tx_irq) {
		/* Single multiplexed interrupt */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
				       "mux", rspi);
	} else {
		/* Multi-interrupt mode, only SPRI and SPTI are used */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
				       "rx", rspi);
		if (!ret)
			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
					       rspi_irq_tx, "tx", rspi);
	}
1232 1233
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
1234
		goto error2;
1235 1236
	}

1237 1238 1239
	ret = rspi_request_dma(rspi, pdev);
	if (ret < 0) {
		dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1240
		goto error3;
1241
	}
1242

1243
	ret = devm_spi_register_master(&pdev->dev, master);
1244 1245
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
1246
		goto error3;
1247 1248 1249 1250 1251 1252
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

1253
error3:
1254
	rspi_release_dma(rspi);
1255
error2:
1256
	pm_runtime_disable(&pdev->dev);
1257 1258 1259 1260 1261 1262
error1:
	spi_master_put(master);

	return ret;
}

1263 1264
static struct platform_device_id spi_driver_ids[] = {
	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1265
	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1266 1267 1268 1269 1270 1271
	{ "qspi",	(kernel_ulong_t)&qspi_ops },
	{},
};

MODULE_DEVICE_TABLE(platform, spi_driver_ids);

1272 1273
static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
1274
	.remove =	rspi_remove,
1275
	.id_table =	spi_driver_ids,
1276
	.driver		= {
1277
		.name = "renesas_spi",
1278
		.owner	= THIS_MODULE,
1279
		.of_match_table = of_match_ptr(rspi_of_match),
1280 1281 1282 1283 1284 1285 1286 1287
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");