i915_gem.c 100 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
Chris Wilson's avatar
Chris Wilson committed
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 44 45
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
69
	obj->fence_dirty = false;
70 71 72
	obj->fence_reg = I915_FENCE_REG_NONE;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

88 89
static int
i915_gem_wait_for_error(struct drm_device *dev)
90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

103 104 105 106 107 108 109 110 111 112 113
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
114 115
}

116
int i915_mutex_lock_interruptible(struct drm_device *dev)
117 118 119
{
	int ret;

120
	ret = i915_gem_wait_for_error(dev);
121 122 123 124 125 126 127
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

128
	WARN_ON(i915_verify_lists(dev));
129 130
	return 0;
}
131

132
static inline bool
133
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134
{
135
	return !obj->active;
136 137
}

138 139
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
140
		    struct drm_file *file)
141 142
{
	struct drm_i915_gem_init *args = data;
143

144 145 146
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

147 148 149
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
150

151 152 153 154
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

155
	mutex_lock(&dev->struct_mutex);
156 157
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171

172
	pinned = 0;
173
	mutex_lock(&dev->struct_mutex);
174 175 176
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
177
	mutex_unlock(&dev->struct_mutex);
178

179
	args->aper_size = dev_priv->mm.gtt_total;
180
	args->aper_available_size = args->aper_size - pinned;
181

182 183 184
	return 0;
}

185 186 187 188 189
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
190
{
191
	struct drm_i915_gem_object *obj;
192 193
	int ret;
	u32 handle;
194

195
	size = roundup(size, PAGE_SIZE);
196 197
	if (size == 0)
		return -EINVAL;
198 199

	/* Allocate the new object */
200
	obj = i915_gem_alloc_object(dev, size);
201 202 203
	if (obj == NULL)
		return -ENOMEM;

204
	ret = drm_gem_handle_create(file, &obj->base, &handle);
205
	if (ret) {
206 207
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208
		kfree(obj);
209
		return ret;
210
	}
211

212
	/* drop reference from allocate - handle holds it now */
213
	drm_gem_object_unreference(&obj->base);
214 215
	trace_i915_gem_object_create(obj);

216
	*handle_p = handle;
217 218 219
	return 0;
}

220 221 222 223 224 225
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
226
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
247

248 249 250 251
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

252
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253
{
254
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 256

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257
		obj->tiling_mode != I915_TILING_NONE;
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

286
static inline int
287 288
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

312 313 314
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
315
static int
316 317 318 319 320 321 322
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

323
	if (unlikely(page_do_bit17_swizzling))
324 325 326 327 328 329 330 331 332 333 334 335 336 337
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

338 339 340 341
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
342
	if (unlikely(swizzled)) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

360 361 362 363 364 365 366 367 368 369 370 371
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
372 373 374
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
375 376 377 378 379 380 381 382 383 384 385 386 387 388

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

389
static int
390 391 392 393
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
394
{
395
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396
	char __user *user_data;
397
	ssize_t remain;
398
	loff_t offset;
399
	int shmem_page_offset, page_length, ret = 0;
400
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401
	int hit_slowpath = 0;
402
	int prefaulted = 0;
403
	int needs_clflush = 0;
404
	int release_page;
405

406
	user_data = (char __user *) (uintptr_t) args->data_ptr;
407 408
	remain = args->size;

409
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410

411 412 413 414 415 416 417 418 419 420 421
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
422

423
	offset = args->offset;
424 425

	while (remain > 0) {
426 427
		struct page *page;

428 429 430 431 432
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
433
		shmem_page_offset = offset_in_page(offset);
434 435 436 437
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

438 439 440 441 442 443 444 445 446 447
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
448
		}
449

450 451 452
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

453 454 455 456 457
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
458 459

		hit_slowpath = 1;
460
		page_cache_get(page);
461 462
		mutex_unlock(&dev->struct_mutex);

463
		if (!prefaulted) {
464
			ret = fault_in_multipages_writeable(user_data, remain);
465 466 467 468 469 470 471
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
472

473 474 475
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
476

477
		mutex_lock(&dev->struct_mutex);
478
		page_cache_release(page);
479
next_page:
480
		mark_page_accessed(page);
481 482
		if (release_page)
			page_cache_release(page);
483

484 485 486 487 488
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

489
		remain -= page_length;
490
		user_data += page_length;
491 492 493
		offset += page_length;
	}

494
out:
495 496 497 498 499
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
500 501 502 503

	return ret;
}

504 505 506 507 508 509 510
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511
		     struct drm_file *file)
512 513
{
	struct drm_i915_gem_pread *args = data;
514
	struct drm_i915_gem_object *obj;
515
	int ret = 0;
516

517 518 519 520 521 522 523 524
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

525
	ret = i915_mutex_lock_interruptible(dev);
526
	if (ret)
527
		return ret;
528

529
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530
	if (&obj->base == NULL) {
531 532
		ret = -ENOENT;
		goto unlock;
533
	}
534

535
	/* Bounds check source.  */
536 537
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
538
		ret = -EINVAL;
539
		goto out;
540 541
	}

542 543 544 545 546 547 548 549
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

Chris Wilson's avatar
Chris Wilson committed
550 551
	trace_i915_gem_object_pread(obj, args->offset, args->size);

552
	ret = i915_gem_shmem_pread(dev, obj, args, file);
553

554
out:
555
	drm_gem_object_unreference(&obj->base);
556
unlock:
557
	mutex_unlock(&dev->struct_mutex);
558
	return ret;
559 560
}

561 562
/* This is the fast write path which cannot handle
 * page faults in the source data
563
 */
564 565 566 567 568 569

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
570
{
571 572
	void __iomem *vaddr_atomic;
	void *vaddr;
573
	unsigned long unwritten;
574

575
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 577 578
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
579
						      user_data, length);
580
	io_mapping_unmap_atomic(vaddr_atomic);
581
	return unwritten;
582 583
}

584 585 586 587
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
588
static int
589 590
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
591
			 struct drm_i915_gem_pwrite *args,
592
			 struct drm_file *file)
593
{
594
	drm_i915_private_t *dev_priv = dev->dev_private;
595
	ssize_t remain;
596
	loff_t offset, page_base;
597
	char __user *user_data;
Daniel Vetter's avatar
Daniel Vetter committed
598 599 600 601 602 603 604 605 606 607 608 609 610
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
611 612 613 614

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

615
	offset = obj->gtt_offset + args->offset;
616 617 618 619

	while (remain > 0) {
		/* Operation in this page
		 *
620 621 622
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
623
		 */
624 625
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
626 627 628 629 630
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
631 632
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
633
		 */
634
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
Daniel Vetter's avatar
Daniel Vetter committed
635 636 637 638
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
639

640 641 642
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
643 644
	}

Daniel Vetter's avatar
Daniel Vetter committed
645 646 647
out_unpin:
	i915_gem_object_unpin(obj);
out:
648
	return ret;
649 650
}

651 652 653 654
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
655
static int
656 657 658 659 660
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
661
{
662
	char *vaddr;
663
	int ret;
664

665
	if (unlikely(page_do_bit17_swizzling))
666
		return -EINVAL;
667

668 669 670 671 672 673 674 675 676 677 678
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
679 680 681 682

	return ret;
}

683 684
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
685
static int
686 687 688 689 690
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
691
{
692 693
	char *vaddr;
	int ret;
694

695
	vaddr = kmap(page);
696
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 698 699
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
700 701
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 703
						user_data,
						page_length);
704 705 706 707 708
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
709 710 711
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
712
	kunmap(page);
713

714
	return ret;
715 716 717
}

static int
718 719 720 721
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
722
{
723
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724
	ssize_t remain;
725 726
	loff_t offset;
	char __user *user_data;
727
	int shmem_page_offset, page_length, ret = 0;
728
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729
	int hit_slowpath = 0;
730 731
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
732
	int release_page;
733

734
	user_data = (char __user *) (uintptr_t) args->data_ptr;
735 736
	remain = args->size;

737
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

756
	offset = args->offset;
757
	obj->dirty = 1;
758

759
	while (remain > 0) {
760
		struct page *page;
761
		int partial_cacheline_write;
762

763 764 765 766 767
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
768
		shmem_page_offset = offset_in_page(offset);
769 770 771 772 773

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

774 775 776 777 778 779 780
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

781 782 783 784 785 786 787 788 789 790
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
791 792
		}

793 794 795
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

796 797 798 799 800 801
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
802 803

		hit_slowpath = 1;
804
		page_cache_get(page);
805 806
		mutex_unlock(&dev->struct_mutex);

807 808 809 810
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
811

812
		mutex_lock(&dev->struct_mutex);
813
		page_cache_release(page);
814
next_page:
815 816
		set_page_dirty(page);
		mark_page_accessed(page);
817 818
		if (release_page)
			page_cache_release(page);
819

820 821 822 823 824
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

825
		remain -= page_length;
826
		user_data += page_length;
827
		offset += page_length;
828 829
	}

830
out:
831 832 833 834 835 836 837 838 839 840
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
841
	}
842

843 844 845
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

846
	return ret;
847 848 849 850 851 852 853 854 855
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856
		      struct drm_file *file)
857 858
{
	struct drm_i915_gem_pwrite *args = data;
859
	struct drm_i915_gem_object *obj;
860 861 862 863 864 865 866 867 868 869
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

870 871
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
872 873
	if (ret)
		return -EFAULT;
874

875
	ret = i915_mutex_lock_interruptible(dev);
876
	if (ret)
877
		return ret;
878

879
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880
	if (&obj->base == NULL) {
881 882
		ret = -ENOENT;
		goto unlock;
883
	}
884

885
	/* Bounds check destination. */
886 887
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
888
		ret = -EINVAL;
889
		goto out;
890 891
	}

892 893 894 895 896 897 898 899
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

Chris Wilson's avatar
Chris Wilson committed
900 901
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

Daniel Vetter's avatar
Daniel Vetter committed
902
	ret = -EFAULT;
903 904 905 906 907 908
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
909
	if (obj->phys_obj) {
910
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 912 913 914
		goto out;
	}

	if (obj->gtt_space &&
915
	    obj->cache_level == I915_CACHE_NONE &&
916
	    obj->tiling_mode == I915_TILING_NONE &&
917
	    obj->map_and_fenceable &&
918
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
Daniel Vetter's avatar
Daniel Vetter committed
920 921 922
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
923
	}
924

925
	if (ret == -EFAULT)
Daniel Vetter's avatar
Daniel Vetter committed
926
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927

928
out:
929
	drm_gem_object_unreference(&obj->base);
930
unlock:
931
	mutex_unlock(&dev->struct_mutex);
932 933 934 935
	return ret;
}

/**
936 937
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
938 939 940
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941
			  struct drm_file *file)
942 943
{
	struct drm_i915_gem_set_domain *args = data;
944
	struct drm_i915_gem_object *obj;
945 946
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
947 948
	int ret;

949
	/* Only handle setting domains to types used by the CPU. */
950
	if (write_domain & I915_GEM_GPU_DOMAINS)
951 952
		return -EINVAL;

953
	if (read_domains & I915_GEM_GPU_DOMAINS)
954 955 956 957 958 959 960 961
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

962
	ret = i915_mutex_lock_interruptible(dev);
963
	if (ret)
964
		return ret;
965

966
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967
	if (&obj->base == NULL) {
968 969
		ret = -ENOENT;
		goto unlock;
970
	}
971

972 973
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974 975 976 977 978 979 980

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
981
	} else {
982
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 984
	}

985
	drm_gem_object_unreference(&obj->base);
986
unlock:
987 988 989 990 991 992 993 994 995
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996
			 struct drm_file *file)
997 998
{
	struct drm_i915_gem_sw_finish *args = data;
999
	struct drm_i915_gem_object *obj;
1000 1001
	int ret = 0;

1002
	ret = i915_mutex_lock_interruptible(dev);
1003
	if (ret)
1004
		return ret;
1005

1006
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007
	if (&obj->base == NULL) {
1008 1009
		ret = -ENOENT;
		goto unlock;
1010 1011 1012
	}

	/* Pinned buffers may be scanout, so flush the cache */
1013
	if (obj->pin_count)
1014 1015
		i915_gem_object_flush_cpu_write_domain(obj);

1016
	drm_gem_object_unreference(&obj->base);
1017
unlock:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031
		    struct drm_file *file)
1032 1033 1034 1035 1036
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1037
	obj = drm_gem_object_lookup(dev, file, args->handle);
1038
	if (obj == NULL)
1039
		return -ENOENT;
1040

1041 1042 1043 1044 1045 1046 1047 1048
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1049
	addr = vm_mmap(obj->filp, 0, args->size,
1050 1051
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1052
	drm_gem_object_unreference_unlocked(obj);
1053 1054 1055 1056 1057 1058 1059 1060
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1079 1080
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1081
	drm_i915_private_t *dev_priv = dev->dev_private;
1082 1083 1084
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1085
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086 1087 1088 1089 1090

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1091 1092 1093
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1094

Chris Wilson's avatar
Chris Wilson committed
1095 1096
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1097
	/* Now bind it into the GTT if needed */
1098 1099 1100 1101
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1102
	}
1103
	if (!obj->gtt_space) {
1104
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 1106
		if (ret)
			goto unlock;
1107

1108 1109 1110 1111
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1112

1113 1114 1115
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1116
	ret = i915_gem_object_get_fence(obj);
1117 1118
	if (ret)
		goto unlock;
1119

1120 1121
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122

1123 1124
	obj->fault_mappable = true;

1125
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1126 1127 1128 1129
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130
unlock:
1131
	mutex_unlock(&dev->struct_mutex);
1132
out:
1133
	switch (ret) {
1134
	case -EIO:
1135
	case -EAGAIN:
1136 1137 1138 1139 1140 1141 1142
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1143
		set_need_resched();
1144 1145
	case 0:
	case -ERESTARTSYS:
1146
	case -EINTR:
1147
		return VM_FAULT_NOPAGE;
1148 1149 1150
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1151
		return VM_FAULT_SIGBUS;
1152 1153 1154
	}
}

1155 1156 1157 1158
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1159
 * Preserve the reservation of the mmapping with the DRM core code, but
1160 1161 1162 1163 1164 1165 1166 1167 1168
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1169
void
1170
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171
{
1172 1173
	if (!obj->fault_mappable)
		return;
1174

1175 1176 1177 1178
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1179

1180
	obj->fault_mappable = false;
1181 1182
}

1183
static uint32_t
1184
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185
{
1186
	uint32_t gtt_size;
1187 1188

	if (INTEL_INFO(dev)->gen >= 4 ||
1189 1190
	    tiling_mode == I915_TILING_NONE)
		return size;
1191 1192 1193

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1194
		gtt_size = 1024*1024;
1195
	else
1196
		gtt_size = 512*1024;
1197

1198 1199
	while (gtt_size < size)
		gtt_size <<= 1;
1200

1201
	return gtt_size;
1202 1203
}

1204 1205 1206 1207 1208
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1209
 * potential fence register mapping.
1210 1211
 */
static uint32_t
1212 1213 1214
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1215 1216 1217 1218 1219
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1220
	if (INTEL_INFO(dev)->gen >= 4 ||
1221
	    tiling_mode == I915_TILING_NONE)
1222 1223
		return 4096;

1224 1225 1226 1227
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1228
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229 1230
}

1231 1232 1233
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1234 1235 1236
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1237 1238 1239 1240
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1241
uint32_t
1242 1243 1244
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1245 1246 1247 1248 1249
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250
	    tiling_mode == I915_TILING_NONE)
1251 1252
		return 4096;

1253 1254 1255
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1256
	 */
1257
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258 1259
}

1260
int
1261 1262 1263 1264
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1265
{
1266
	struct drm_i915_private *dev_priv = dev->dev_private;
1267
	struct drm_i915_gem_object *obj;
1268 1269
	int ret;

1270
	ret = i915_mutex_lock_interruptible(dev);
1271
	if (ret)
1272
		return ret;
1273

1274
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275
	if (&obj->base == NULL) {
1276 1277 1278
		ret = -ENOENT;
		goto unlock;
	}
1279

1280
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281
		ret = -E2BIG;
1282
		goto out;
1283 1284
	}

1285
	if (obj->madv != I915_MADV_WILLNEED) {
1286
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 1288
		ret = -EINVAL;
		goto out;
1289 1290
	}

1291
	if (!obj->base.map_list.map) {
1292
		ret = drm_gem_create_mmap_offset(&obj->base);
1293 1294
		if (ret)
			goto out;
1295 1296
	}

1297
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298

1299
out:
1300
	drm_gem_object_unreference(&obj->base);
1301
unlock:
1302
	mutex_unlock(&dev->struct_mutex);
1303
	return ret;
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1330
int
1331
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 1333 1334 1335 1336 1337 1338
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

1339 1340 1341
	if (obj->pages || obj->sg_table)
		return 0;

1342 1343 1344
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1345 1346 1347 1348
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1349 1350
		return -ENOMEM;

1351
	inode = obj->base.filp->f_path.dentry->d_inode;
1352
	mapping = inode->i_mapping;
1353 1354
	gfpmask |= mapping_gfp_mask(mapping);

1355
	for (i = 0; i < page_count; i++) {
1356
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 1358 1359
		if (IS_ERR(page))
			goto err_pages;

1360
		obj->pages[i] = page;
1361 1362
	}

1363
	if (i915_gem_object_needs_bit17_swizzle(obj))
1364 1365 1366 1367 1368 1369
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1370
		page_cache_release(obj->pages[i]);
1371

1372 1373
	drm_free_large(obj->pages);
	obj->pages = NULL;
1374 1375 1376
	return PTR_ERR(page);
}

1377
static void
1378
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379
{
1380
	int page_count = obj->base.size / PAGE_SIZE;
1381 1382
	int i;

1383 1384 1385
	if (!obj->pages)
		return;

1386
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1387

1388
	if (i915_gem_object_needs_bit17_swizzle(obj))
1389 1390
		i915_gem_object_save_bit_17_swizzle(obj);

1391 1392
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1393 1394

	for (i = 0; i < page_count; i++) {
1395 1396
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1397

1398 1399
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1400

1401
		page_cache_release(obj->pages[i]);
1402
	}
1403
	obj->dirty = 0;
1404

1405 1406
	drm_free_large(obj->pages);
	obj->pages = NULL;
1407 1408
}

1409
void
1410
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 1412
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1413
{
1414
	struct drm_device *dev = obj->base.dev;
1415
	struct drm_i915_private *dev_priv = dev->dev_private;
1416

1417
	BUG_ON(ring == NULL);
1418
	obj->ring = ring;
1419 1420

	/* Add a reference if we're newly entering the active list. */
1421 1422 1423
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1424
	}
1425

1426
	/* Move from whatever list we were on to the tail of execution. */
1427 1428
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1429

1430
	obj->last_rendering_seqno = seqno;
1431

1432
	if (obj->fenced_gpu_access) {
1433 1434
		obj->last_fenced_seqno = seqno;

1435 1436 1437 1438 1439 1440 1441 1442
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1443 1444 1445 1446 1447 1448 1449 1450
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1451
	obj->last_fenced_seqno = 0;
1452 1453
}

1454
static void
1455
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456
{
1457
	struct drm_device *dev = obj->base.dev;
1458 1459
	drm_i915_private_t *dev_priv = dev->dev_private;

1460 1461
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1472
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473 1474 1475 1476 1477 1478 1479 1480 1481

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1482
	obj->pending_gpu_write = false;
1483 1484 1485
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1486
}
1487

1488 1489
/* Immediately discard the backing storage */
static void
1490
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491
{
Chris Wilson's avatar
Chris Wilson committed
1492
	struct inode *inode;
1493

1494 1495 1496
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1497
	 * backing pages, *now*.
1498
	 */
1499
	inode = obj->base.filp->f_path.dentry->d_inode;
1500
	shmem_truncate_range(inode, 0, (loff_t)-1);
Chris Wilson's avatar
Chris Wilson committed
1501

1502 1503 1504
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1505
	obj->madv = __I915_MADV_PURGED;
1506 1507 1508
}

static inline int
1509
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510
{
1511
	return obj->madv == I915_MADV_DONTNEED;
1512 1513
}

1514
static void
Chris Wilson's avatar
Chris Wilson committed
1515 1516
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1517
{
1518
	struct drm_i915_gem_object *obj, *next;
1519

1520
	list_for_each_entry_safe(obj, next,
1521
				 &ring->gpu_write_list,
1522
				 gpu_write_list) {
1523 1524
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1525

1526 1527
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1528
			i915_gem_object_move_to_active(obj, ring,
Chris Wilson's avatar
Chris Wilson committed
1529
						       i915_gem_next_request_seqno(ring));
1530 1531

			trace_i915_gem_object_change_domain(obj,
1532
							    obj->base.read_domains,
1533 1534 1535 1536
							    old_write_domain);
		}
	}
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1560
int
Chris Wilson's avatar
Chris Wilson committed
1561
i915_add_request(struct intel_ring_buffer *ring,
1562
		 struct drm_file *file,
Chris Wilson's avatar
Chris Wilson committed
1563
		 struct drm_i915_gem_request *request)
1564
{
Chris Wilson's avatar
Chris Wilson committed
1565
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566
	uint32_t seqno;
1567
	u32 request_ring_position;
1568
	int was_empty;
1569 1570 1571
	int ret;

	BUG_ON(request == NULL);
1572
	seqno = i915_gem_next_request_seqno(ring);
1573

1574 1575 1576 1577 1578 1579 1580
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1581 1582 1583
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1584

Chris Wilson's avatar
Chris Wilson committed
1585
	trace_i915_gem_request_add(ring, seqno);
1586 1587

	request->seqno = seqno;
1588
	request->ring = ring;
1589
	request->tail = request_ring_position;
1590
	request->emitted_jiffies = jiffies;
1591 1592 1593
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

Chris Wilson's avatar
Chris Wilson committed
1594 1595 1596
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1597
		spin_lock(&file_priv->mm.lock);
1598
		request->file_priv = file_priv;
1599
		list_add_tail(&request->client_list,
1600
			      &file_priv->mm.request_list);
1601
		spin_unlock(&file_priv->mm.lock);
1602
	}
1603

1604
	ring->outstanding_lazy_request = 0;
Chris Wilson's avatar
Chris Wilson committed
1605

Ben Gamari's avatar
Ben Gamari committed
1606
	if (!dev_priv->mm.suspended) {
1607 1608 1609 1610 1611
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
Ben Gamari's avatar
Ben Gamari committed
1612
		if (was_empty)
1613 1614
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
Ben Gamari's avatar
Ben Gamari committed
1615
	}
1616
	return 0;
1617 1618
}

1619 1620
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621
{
1622
	struct drm_i915_file_private *file_priv = request->file_priv;
1623

1624 1625
	if (!file_priv)
		return;
Chris Wilson's avatar
Chris Wilson committed
1626

1627
	spin_lock(&file_priv->mm.lock);
1628 1629 1630 1631
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1632
	spin_unlock(&file_priv->mm.lock);
1633 1634
}

1635 1636
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1637
{
1638 1639
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1640

1641 1642 1643
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1644

1645
		list_del(&request->list);
1646
		i915_gem_request_remove_from_client(request);
1647 1648
		kfree(request);
	}
1649

1650
	while (!list_empty(&ring->active_list)) {
1651
		struct drm_i915_gem_object *obj;
1652

1653 1654 1655
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1656

1657 1658 1659
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1660 1661 1662
	}
}

1663 1664 1665 1666 1667
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1668
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1670

1671
		i915_gem_write_fence(dev, i, NULL);
1672

1673 1674
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1675

1676 1677 1678
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1679
	}
1680 1681

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682 1683
}

1684
void i915_gem_reset(struct drm_device *dev)
1685
{
1686
	struct drm_i915_private *dev_priv = dev->dev_private;
1687
	struct drm_i915_gem_object *obj;
1688
	struct intel_ring_buffer *ring;
1689
	int i;
1690

1691 1692
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1693 1694 1695 1696 1697 1698

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1699
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1700 1701
				      struct drm_i915_gem_object,
				      mm_list);
1702

1703 1704 1705
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1706 1707 1708 1709 1710
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1711
	list_for_each_entry(obj,
1712
			    &dev_priv->mm.inactive_list,
1713
			    mm_list)
1714
	{
1715
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716
	}
1717 1718

	/* The fence registers are invalidated so clear them out */
1719
	i915_gem_reset_fences(dev);
1720 1721 1722 1723 1724
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1725
void
Chris Wilson's avatar
Chris Wilson committed
1726
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727 1728
{
	uint32_t seqno;
1729
	int i;
1730

Chris Wilson's avatar
Chris Wilson committed
1731
	if (list_empty(&ring->request_list))
1732 1733
		return;

Chris Wilson's avatar
Chris Wilson committed
1734
	WARN_ON(i915_verify_lists(ring->dev));
1735

1736
	seqno = ring->get_seqno(ring);
1737

1738
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739 1740 1741
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1742
	while (!list_empty(&ring->request_list)) {
1743 1744
		struct drm_i915_gem_request *request;

1745
		request = list_first_entry(&ring->request_list,
1746 1747 1748
					   struct drm_i915_gem_request,
					   list);

1749
		if (!i915_seqno_passed(seqno, request->seqno))
1750 1751
			break;

Chris Wilson's avatar
Chris Wilson committed
1752
		trace_i915_gem_request_retire(ring, request->seqno);
1753 1754 1755 1756 1757 1758
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1759 1760

		list_del(&request->list);
1761
		i915_gem_request_remove_from_client(request);
1762 1763
		kfree(request);
	}
1764

1765 1766 1767 1768
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1769
		struct drm_i915_gem_object *obj;
1770

1771
		obj = list_first_entry(&ring->active_list,
1772 1773
				      struct drm_i915_gem_object,
				      ring_list);
1774

1775
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776
			break;
1777

1778
		if (obj->base.write_domain != 0)
1779 1780 1781
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1782
	}
1783

Chris Wilson's avatar
Chris Wilson committed
1784 1785
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786
		ring->irq_put(ring);
Chris Wilson's avatar
Chris Wilson committed
1787
		ring->trace_irq_seqno = 0;
1788
	}
1789

Chris Wilson's avatar
Chris Wilson committed
1790
	WARN_ON(i915_verify_lists(ring->dev));
1791 1792
}

1793 1794 1795 1796
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1797
	struct intel_ring_buffer *ring;
1798
	int i;
1799

1800 1801
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1802 1803
}

1804
static void
1805 1806 1807 1808
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1809
	struct intel_ring_buffer *ring;
1810 1811
	bool idle;
	int i;
1812 1813 1814 1815 1816

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1817 1818 1819 1820 1821 1822
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1823
	i915_gem_retire_requests(dev);
1824

1825 1826 1827 1828
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1829
	for_each_ring(ring, dev_priv, i) {
1830 1831 1832 1833
		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

Chris Wilson's avatar
Chris Wilson committed
1834 1835
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1836 1837
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
Chris Wilson's avatar
Chris Wilson committed
1838
			    i915_add_request(ring, NULL, request))
1839 1840 1841 1842 1843 1844 1845
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1846
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847

1848 1849 1850
	mutex_unlock(&dev->struct_mutex);
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static int
i915_gem_check_wedge(struct drm_i915_private *dev_priv)
{
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));

	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret = 0;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (seqno == ring->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(ring, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		BUG_ON(seqno != request->seqno);
	}

	return ret;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
			bool interruptible)
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	int ret = 0;

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))

	if (interruptible)
		ret = wait_event_interruptible(ring->irq_queue,
					       EXIT_COND);
	else
		wait_event(ring->irq_queue, EXIT_COND);

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

	return ret;
}

Chris Wilson's avatar
Chris Wilson committed
1932 1933 1934 1935
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1936
int
Chris Wilson's avatar
Chris Wilson committed
1937
i915_wait_request(struct intel_ring_buffer *ring,
1938
		  uint32_t seqno)
1939
{
Chris Wilson's avatar
Chris Wilson committed
1940
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1941 1942 1943 1944
	int ret = 0;

	BUG_ON(seqno == 0);

1945 1946 1947
	ret = i915_gem_check_wedge(dev_priv);
	if (ret)
		return ret;
1948

1949 1950 1951
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
1952

1953
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
1954
	if (atomic_read(&dev_priv->mm.wedged))
1955
		ret = -EAGAIN;
1956 1957 1958 1959 1960 1961 1962 1963

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1964
int
1965
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1966 1967 1968
{
	int ret;

1969 1970
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1971
	 */
1972
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1973 1974 1975 1976

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1977
	if (obj->active) {
1978
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1979
		if (ret)
1980
			return ret;
1981
		i915_gem_retire_requests_ring(obj->ring);
1982 1983 1984 1985 1986
	}

	return 0;
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2010
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2011 2012 2013 2014 2015 2016 2017 2018
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

2019 2020 2021
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2022

2023
	ret = to->sync_to(to, from, seqno);
2024 2025
	if (!ret)
		from->sync_seqno[idx] = seqno;
2026

2027
	return ret;
2028 2029
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2040 2041 2042
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2054 2055 2056
/**
 * Unbinds an object from the GTT aperture.
 */
2057
int
2058
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059
{
2060
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061 2062
	int ret = 0;

2063
	if (obj->gtt_space == NULL)
2064 2065
		return 0;

2066 2067
	if (obj->pin_count)
		return -EBUSY;
2068

2069
	ret = i915_gem_object_finish_gpu(obj);
2070
	if (ret)
2071 2072 2073 2074 2075 2076
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2077
	i915_gem_object_finish_gtt(obj);
2078

2079 2080
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2081
	 * are flushed when we go to remap it.
2082
	 */
2083 2084
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2085
	if (ret == -ERESTARTSYS)
2086
		return ret;
2087
	if (ret) {
2088 2089 2090
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2091
		i915_gem_clflush_object(obj);
2092
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2093
	}
2094

2095
	/* release the fence reg _after_ flushing */
2096
	ret = i915_gem_object_put_fence(obj);
2097
	if (ret)
2098
		return ret;
2099

Chris Wilson's avatar
Chris Wilson committed
2100 2101
	trace_i915_gem_object_unbind(obj);

2102 2103
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2104 2105 2106 2107
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2108
	i915_gem_gtt_finish_object(obj);
2109

2110
	i915_gem_object_put_pages_gtt(obj);
2111

2112
	list_del_init(&obj->gtt_list);
2113
	list_del_init(&obj->mm_list);
2114
	/* Avoid an unnecessary call to unbind on rebind. */
2115
	obj->map_and_fenceable = true;
2116

2117 2118 2119
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2120

2121
	if (i915_gem_object_is_purgeable(obj))
2122 2123
		i915_gem_object_truncate(obj);

2124
	return ret;
2125 2126
}

2127
int
Chris Wilson's avatar
Chris Wilson committed
2128
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2129 2130 2131
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2132 2133
	int ret;

2134 2135 2136
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

Chris Wilson's avatar
Chris Wilson committed
2137 2138
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2139 2140 2141 2142
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2143 2144 2145
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2146
	return 0;
2147 2148
}

2149
static int i915_ring_idle(struct intel_ring_buffer *ring)
2150
{
2151 2152
	int ret;

2153
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2154 2155
		return 0;

2156
	if (!list_empty(&ring->gpu_write_list)) {
Chris Wilson's avatar
Chris Wilson committed
2157
		ret = i915_gem_flush_ring(ring,
2158
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2159 2160 2161 2162
		if (ret)
			return ret;
	}

2163
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2164 2165
}

2166
int i915_gpu_idle(struct drm_device *dev)
2167 2168
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2169
	struct intel_ring_buffer *ring;
2170
	int ret, i;
2171 2172

	/* Flush everything onto the inactive list. */
2173 2174
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2175 2176
		if (ret)
			return ret;
2177 2178 2179 2180

		/* Is the device fubar? */
		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
			return -EBUSY;
2181
	}
2182

2183
	return 0;
2184 2185
}

2186 2187
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2188 2189 2190 2191
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2192 2193
	if (obj) {
		u32 size = obj->gtt_space->size;
2194

2195 2196 2197 2198 2199
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2200

2201 2202 2203 2204 2205
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2206

2207 2208
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2209 2210
}

2211 2212
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2213 2214 2215 2216
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2217 2218
	if (obj) {
		u32 size = obj->gtt_space->size;
2219

2220 2221 2222 2223 2224 2225 2226 2227 2228
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2229

2230 2231
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2232 2233
}

2234 2235
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2236 2237
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2238
	u32 val;
2239

2240 2241 2242 2243
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2244

2245 2246 2247 2248 2249
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2250

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2276 2277
}

2278 2279
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2280 2281 2282 2283
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2284 2285 2286
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2287

2288 2289 2290 2291 2292
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2293

2294 2295
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2296

2297 2298 2299 2300 2301 2302 2303 2304
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2322 2323
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2350
static int
2351
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2352 2353 2354 2355
{
	int ret;

	if (obj->fenced_gpu_access) {
2356
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2357
			ret = i915_gem_flush_ring(obj->ring,
2358 2359 2360 2361
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2362 2363 2364 2365

		obj->fenced_gpu_access = false;
	}

2366
	if (obj->last_fenced_seqno) {
2367
		ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2368 2369
		if (ret)
			return ret;
2370 2371 2372 2373

		obj->last_fenced_seqno = 0;
	}

2374 2375 2376 2377 2378 2379
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2380 2381 2382 2383 2384 2385
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2386
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387 2388
	int ret;

2389
	ret = i915_gem_object_flush_fence(obj);
2390 2391 2392
	if (ret)
		return ret;

2393 2394
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2395

2396 2397 2398 2399
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2400 2401 2402 2403 2404

	return 0;
}

static struct drm_i915_fence_reg *
2405
i915_find_fence_reg(struct drm_device *dev)
2406 2407
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2408
	struct drm_i915_fence_reg *reg, *avail;
2409
	int i;
2410 2411

	/* First try to find a free reg */
2412
	avail = NULL;
2413 2414 2415
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2416
			return reg;
2417

2418
		if (!reg->pin_count)
2419
			avail = reg;
2420 2421
	}

2422 2423
	if (avail == NULL)
		return NULL;
2424 2425

	/* None available, try to steal one or wait for a user to finish */
2426
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427
		if (reg->pin_count)
2428 2429
			continue;

2430
		return reg;
2431 2432
	}

2433
	return NULL;
2434 2435
}

2436
/**
2437
 * i915_gem_object_get_fence - set up fencing for an object
2438 2439 2440 2441 2442 2443 2444 2445 2446
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2447 2448
 *
 * For an untiled surface, this removes any existing fence.
2449
 */
2450
int
2451
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452
{
2453
	struct drm_device *dev = obj->base.dev;
2454
	struct drm_i915_private *dev_priv = dev->dev_private;
2455
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2456
	struct drm_i915_fence_reg *reg;
2457
	int ret;
2458

2459 2460 2461
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2462
	if (obj->fence_dirty) {
2463 2464 2465 2466
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2467

2468
	/* Just update our place in the LRU if our fence is getting reused. */
2469 2470
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2471
		if (!obj->fence_dirty) {
2472 2473 2474 2475 2476 2477 2478 2479
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2480

2481 2482 2483 2484
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2485 2486 2487
			if (ret)
				return ret;

2488
			i915_gem_object_fence_lost(old);
2489
		}
2490
	} else
2491 2492
		return 0;

2493
	i915_gem_object_update_fence(obj, reg, enable);
2494
	obj->fence_dirty = false;
2495

2496
	return 0;
2497 2498
}

2499 2500 2501 2502
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2503
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2504
			    unsigned alignment,
2505
			    bool map_and_fenceable)
2506
{
2507
	struct drm_device *dev = obj->base.dev;
2508 2509
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2510
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2511
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2512
	bool mappable, fenceable;
2513
	int ret;
2514

2515
	if (obj->madv != I915_MADV_WILLNEED) {
2516 2517 2518 2519
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2530

2531
	if (alignment == 0)
2532 2533
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2534
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2535 2536 2537 2538
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2539
	size = map_and_fenceable ? fence_size : obj->base.size;
2540

2541 2542 2543
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2544
	if (obj->base.size >
2545
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2546 2547 2548 2549
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2550
 search_free:
2551
	if (map_and_fenceable)
2552 2553
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2554
						    size, alignment, 0,
2555 2556 2557 2558
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2559
						size, alignment, 0);
2560 2561

	if (free_space != NULL) {
2562
		if (map_and_fenceable)
2563
			obj->gtt_space =
2564
				drm_mm_get_block_range_generic(free_space,
2565
							       size, alignment, 0,
2566 2567 2568
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2569
			obj->gtt_space =
2570
				drm_mm_get_block(free_space, size, alignment);
2571
	}
2572
	if (obj->gtt_space == NULL) {
2573 2574 2575
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2576 2577
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2578
		if (ret)
2579
			return ret;
2580

2581 2582 2583
		goto search_free;
	}

2584
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2585
	if (ret) {
2586 2587
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2588 2589

		if (ret == -ENOMEM) {
2590 2591
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2592 2593
			if (ret) {
				/* now try to shrink everyone else */
2594 2595 2596
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2597 2598
				}

2599
				return -ENOMEM;
2600 2601 2602 2603 2604
			}

			goto search_free;
		}

2605 2606 2607
		return ret;
	}

2608
	ret = i915_gem_gtt_prepare_object(obj);
2609
	if (ret) {
2610
		i915_gem_object_put_pages_gtt(obj);
2611 2612
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2613

2614
		if (i915_gem_evict_everything(dev, false))
2615 2616 2617
			return ret;

		goto search_free;
2618 2619
	}

2620 2621
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2622

2623
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2624
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2625

2626 2627 2628 2629
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2630 2631
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2632

2633
	obj->gtt_offset = obj->gtt_space->start;
Chris Wilson's avatar
Chris Wilson committed
2634

2635
	fenceable =
2636
		obj->gtt_space->size == fence_size &&
2637
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2638

2639
	mappable =
2640
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2641

2642
	obj->map_and_fenceable = mappable && fenceable;
2643

Chris Wilson's avatar
Chris Wilson committed
2644
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2645 2646 2647 2648
	return 0;
}

void
2649
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2650 2651 2652 2653 2654
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2655
	if (obj->pages == NULL)
2656 2657
		return;

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

Chris Wilson's avatar
Chris Wilson committed
2669
	trace_i915_gem_object_clflush(obj);
2670

2671
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2672 2673
}

2674
/** Flushes any GPU write domain for the object if it's dirty. */
2675
static int
2676
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2677
{
2678
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679
		return 0;
2680 2681

	/* Queue the GPU write cache flushing we need. */
Chris Wilson's avatar
Chris Wilson committed
2682
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2683 2684 2685 2686
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2687
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2688
{
Chris Wilson's avatar
Chris Wilson committed
2689 2690
	uint32_t old_write_domain;

2691
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2692 2693
		return;

2694
	/* No actual flushing is required for the GTT write domain.  Writes
2695 2696
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2697 2698 2699 2700
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2701
	 */
2702 2703
	wmb();

2704 2705
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
Chris Wilson's avatar
Chris Wilson committed
2706 2707

	trace_i915_gem_object_change_domain(obj,
2708
					    obj->base.read_domains,
Chris Wilson's avatar
Chris Wilson committed
2709
					    old_write_domain);
2710 2711 2712 2713
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2714
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2715
{
Chris Wilson's avatar
Chris Wilson committed
2716
	uint32_t old_write_domain;
2717

2718
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2719 2720 2721
		return;

	i915_gem_clflush_object(obj);
2722
	intel_gtt_chipset_flush();
2723 2724
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
Chris Wilson's avatar
Chris Wilson committed
2725 2726

	trace_i915_gem_object_change_domain(obj,
2727
					    obj->base.read_domains,
Chris Wilson's avatar
Chris Wilson committed
2728
					    old_write_domain);
2729 2730
}

2731 2732 2733 2734 2735 2736
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2737
int
2738
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2739
{
2740
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
Chris Wilson's avatar
Chris Wilson committed
2741
	uint32_t old_write_domain, old_read_domains;
2742
	int ret;
2743

2744
	/* Not valid to be called on unbound objects. */
2745
	if (obj->gtt_space == NULL)
2746 2747
		return -EINVAL;

2748 2749 2750
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2751 2752 2753 2754
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2755
	if (obj->pending_gpu_write || write) {
2756
		ret = i915_gem_object_wait_rendering(obj);
2757 2758 2759
		if (ret)
			return ret;
	}
2760

2761
	i915_gem_object_flush_cpu_write_domain(obj);
Chris Wilson's avatar
Chris Wilson committed
2762

2763 2764
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
Chris Wilson's avatar
Chris Wilson committed
2765

2766 2767 2768
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2769 2770
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2771
	if (write) {
2772 2773 2774
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2775 2776
	}

Chris Wilson's avatar
Chris Wilson committed
2777 2778 2779 2780
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2781 2782 2783 2784
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2785 2786 2787
	return 0;
}

2788 2789 2790
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2791 2792
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2820 2821
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2822 2823 2824
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2854
/*
2855 2856 2857
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2858 2859
 */
int
2860 2861
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2862
				     struct intel_ring_buffer *pipelined)
2863
{
2864
	u32 old_read_domains, old_write_domain;
2865 2866
	int ret;

2867 2868 2869 2870
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2871
	if (pipelined != obj->ring) {
2872 2873
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2874 2875 2876
			return ret;
	}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2890 2891 2892 2893 2894 2895 2896 2897
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2898 2899
	i915_gem_object_flush_cpu_write_domain(obj);

2900
	old_write_domain = obj->base.write_domain;
2901
	old_read_domains = obj->base.read_domains;
2902 2903 2904 2905 2906

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2907
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2908 2909 2910

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2911
					    old_write_domain);
2912 2913 2914 2915

	return 0;
}

2916
int
2917
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2918
{
2919 2920
	int ret;

2921
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2922 2923
		return 0;

2924
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
Chris Wilson's avatar
Chris Wilson committed
2925
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2926 2927 2928
		if (ret)
			return ret;
	}
2929

2930 2931 2932 2933
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2934 2935
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2936
	return 0;
2937 2938
}

2939 2940 2941 2942 2943 2944
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2945
int
2946
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2947
{
Chris Wilson's avatar
Chris Wilson committed
2948
	uint32_t old_write_domain, old_read_domains;
2949 2950
	int ret;

2951 2952 2953
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2954 2955 2956 2957
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2958 2959 2960 2961 2962
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
2963

2964
	i915_gem_object_flush_gtt_write_domain(obj);
2965

2966 2967
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
Chris Wilson's avatar
Chris Wilson committed
2968

2969
	/* Flush the CPU cache if it's still invalid. */
2970
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2971 2972
		i915_gem_clflush_object(obj);

2973
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2974 2975 2976 2977 2978
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2979
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2980 2981 2982 2983 2984

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2985 2986
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2987
	}
2988

Chris Wilson's avatar
Chris Wilson committed
2989 2990 2991 2992
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2993 2994 2995
	return 0;
}

2996 2997 2998
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
2999 3000 3001 3002
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3003 3004 3005
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3006
static int
3007
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3008
{
3009 3010
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3011
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3012 3013 3014 3015
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3016

3017 3018 3019
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3020
	spin_lock(&file_priv->mm.lock);
3021
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3022 3023
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3024

3025 3026
		ring = request->ring;
		seqno = request->seqno;
3027
	}
3028
	spin_unlock(&file_priv->mm.lock);
3029

3030 3031
	if (seqno == 0)
		return 0;
3032

3033
	ret = __wait_seqno(ring, seqno, true);
3034 3035
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3036 3037 3038 3039

	return ret;
}

3040
int
3041 3042
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3043
		    bool map_and_fenceable)
3044 3045 3046
{
	int ret;

3047
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3048

3049 3050 3051 3052
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3053
			     "bo is already pinned with incorrect alignment:"
3054 3055
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3056
			     obj->gtt_offset, alignment,
3057
			     map_and_fenceable,
3058
			     obj->map_and_fenceable);
3059 3060 3061 3062 3063 3064
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3065
	if (obj->gtt_space == NULL) {
3066
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3067
						  map_and_fenceable);
3068
		if (ret)
3069
			return ret;
3070
	}
Jesse Barnes's avatar
Jesse Barnes committed
3071

3072 3073 3074
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3075
	obj->pin_count++;
3076
	obj->pin_mappable |= map_and_fenceable;
3077 3078 3079 3080 3081

	return 0;
}

void
3082
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3083
{
3084 3085
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3086

3087
	if (--obj->pin_count == 0)
3088
		obj->pin_mappable = false;
3089 3090 3091 3092
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3093
		   struct drm_file *file)
3094 3095
{
	struct drm_i915_gem_pin *args = data;
3096
	struct drm_i915_gem_object *obj;
3097 3098
	int ret;

3099 3100 3101
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3102

3103
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3104
	if (&obj->base == NULL) {
3105 3106
		ret = -ENOENT;
		goto unlock;
3107 3108
	}

3109
	if (obj->madv != I915_MADV_WILLNEED) {
Chris Wilson's avatar
Chris Wilson committed
3110
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3111 3112
		ret = -EINVAL;
		goto out;
3113 3114
	}

3115
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3116 3117
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3118 3119
		ret = -EINVAL;
		goto out;
3120 3121
	}

3122 3123 3124
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3125
		ret = i915_gem_object_pin(obj, args->alignment, true);
3126 3127
		if (ret)
			goto out;
3128 3129 3130 3131 3132
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3133
	i915_gem_object_flush_cpu_write_domain(obj);
3134
	args->offset = obj->gtt_offset;
3135
out:
3136
	drm_gem_object_unreference(&obj->base);
3137
unlock:
3138
	mutex_unlock(&dev->struct_mutex);
3139
	return ret;
3140 3141 3142 3143
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3144
		     struct drm_file *file)
3145 3146
{
	struct drm_i915_gem_pin *args = data;
3147
	struct drm_i915_gem_object *obj;
3148
	int ret;
3149

3150 3151 3152
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3153

3154
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3155
	if (&obj->base == NULL) {
3156 3157
		ret = -ENOENT;
		goto unlock;
3158
	}
3159

3160
	if (obj->pin_filp != file) {
3161 3162
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3163 3164
		ret = -EINVAL;
		goto out;
3165
	}
3166 3167 3168
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
3169 3170
		i915_gem_object_unpin(obj);
	}
3171

3172
out:
3173
	drm_gem_object_unreference(&obj->base);
3174
unlock:
3175
	mutex_unlock(&dev->struct_mutex);
3176
	return ret;
3177 3178 3179 3180
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3181
		    struct drm_file *file)
3182 3183
{
	struct drm_i915_gem_busy *args = data;
3184
	struct drm_i915_gem_object *obj;
3185 3186
	int ret;

3187
	ret = i915_mutex_lock_interruptible(dev);
3188
	if (ret)
3189
		return ret;
3190

3191
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3192
	if (&obj->base == NULL) {
3193 3194
		ret = -ENOENT;
		goto unlock;
3195
	}
3196

3197 3198 3199 3200
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3201
	 */
3202
	args->busy = obj->active;
3203 3204 3205 3206 3207 3208
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3209
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
Chris Wilson's avatar
Chris Wilson committed
3210
			ret = i915_gem_flush_ring(obj->ring,
3211
						  0, obj->base.write_domain);
3212 3213 3214
		} else {
			ret = i915_gem_check_olr(obj->ring,
						 obj->last_rendering_seqno);
3215
		}
3216 3217 3218 3219 3220 3221

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
Chris Wilson's avatar
Chris Wilson committed
3222
		i915_gem_retire_requests_ring(obj->ring);
3223

3224
		args->busy = obj->active;
3225
	}
3226

3227
	drm_gem_object_unreference(&obj->base);
3228
unlock:
3229
	mutex_unlock(&dev->struct_mutex);
3230
	return ret;
3231 3232 3233 3234 3235 3236
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3237
	return i915_gem_ring_throttle(dev, file_priv);
3238 3239
}

3240 3241 3242 3243 3244
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3245
	struct drm_i915_gem_object *obj;
3246
	int ret;
3247 3248 3249 3250 3251 3252 3253 3254 3255

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3256 3257 3258 3259
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3260
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3261
	if (&obj->base == NULL) {
3262 3263
		ret = -ENOENT;
		goto unlock;
3264 3265
	}

3266
	if (obj->pin_count) {
3267 3268
		ret = -EINVAL;
		goto out;
3269 3270
	}

3271 3272
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3273

3274
	/* if the object is no longer bound, discard its backing storage */
3275 3276
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3277 3278
		i915_gem_object_truncate(obj);

3279
	args->retained = obj->madv != __I915_MADV_PURGED;
Chris Wilson's avatar
Chris Wilson committed
3280

3281
out:
3282
	drm_gem_object_unreference(&obj->base);
3283
unlock:
3284
	mutex_unlock(&dev->struct_mutex);
3285
	return ret;
3286 3287
}

3288 3289
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3290
{
3291
	struct drm_i915_private *dev_priv = dev->dev_private;
3292
	struct drm_i915_gem_object *obj;
3293
	struct address_space *mapping;
3294
	u32 mask;
3295

3296 3297 3298
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3299

3300 3301 3302 3303
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3304

3305 3306 3307 3308 3309 3310 3311
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3312
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3313
	mapping_set_gfp_mask(mapping, mask);
3314

3315 3316
	i915_gem_info_add_obj(dev_priv, size);

3317 3318
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3319

3320 3321
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3337
	obj->base.driver_private = NULL;
3338
	obj->fence_reg = I915_FENCE_REG_NONE;
3339
	INIT_LIST_HEAD(&obj->mm_list);
3340
	INIT_LIST_HEAD(&obj->gtt_list);
3341
	INIT_LIST_HEAD(&obj->ring_list);
3342
	INIT_LIST_HEAD(&obj->exec_list);
3343 3344
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3345 3346
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3347

3348
	return obj;
3349 3350 3351 3352 3353
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3354

3355 3356 3357
	return 0;
}

3358
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3359
{
3360
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3361
	struct drm_device *dev = obj->base.dev;
3362
	drm_i915_private_t *dev_priv = dev->dev_private;
3363

3364 3365
	trace_i915_gem_object_destroy(obj);

3366 3367 3368
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3384
	if (obj->base.map_list.map)
3385
		drm_gem_free_mmap_offset(&obj->base);
3386

3387 3388
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3389

3390 3391
	kfree(obj->bit_17);
	kfree(obj);
3392 3393
}

3394 3395 3396 3397 3398
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3399

3400
	mutex_lock(&dev->struct_mutex);
Chris Wilson's avatar
Chris Wilson committed
3401

3402
	if (dev_priv->mm.suspended) {
3403 3404
		mutex_unlock(&dev->struct_mutex);
		return 0;
3405 3406
	}

3407
	ret = i915_gpu_idle(dev);
3408 3409
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3410
		return ret;
3411
	}
3412
	i915_gem_retire_requests(dev);
3413

3414
	/* Under UMS, be paranoid and evict. */
3415 3416
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3417

3418 3419
	i915_gem_reset_fences(dev);

3420 3421 3422 3423 3424
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3425
	del_timer_sync(&dev_priv->hangcheck_timer);
3426 3427

	i915_kernel_lost_context(dev);
3428
	i915_gem_cleanup_ringbuffer(dev);
3429

3430 3431
	mutex_unlock(&dev->struct_mutex);

3432 3433 3434
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3435 3436 3437
	return 0;
}

3438 3439 3440 3441
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3442
	if (INTEL_INFO(dev)->gen < 5 ||
3443 3444 3445 3446 3447 3448
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3449 3450 3451
	if (IS_GEN5(dev))
		return;

3452 3453
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3454
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3455
	else
3456
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3457
}
Daniel Vetter's avatar
Daniel Vetter committed
3458 3459 3460 3461 3462 3463

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3464 3465 3466
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
Daniel Vetter's avatar
Daniel Vetter committed
3467 3468 3469 3470 3471
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
Daniel Vetter's avatar
Daniel Vetter committed
3490 3491 3492 3493
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3494 3495 3496 3497
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3498 3499 3500 3501 3502

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
Daniel Vetter's avatar
Daniel Vetter committed
3503 3504
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3505
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
Daniel Vetter's avatar
Daniel Vetter committed
3506 3507 3508 3509 3510
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3511
	for_each_ring(ring, dev_priv, i) {
Daniel Vetter's avatar
Daniel Vetter committed
3512 3513
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3514
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
Daniel Vetter's avatar
Daniel Vetter committed
3515 3516 3517 3518 3519 3520

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3521
int
3522
i915_gem_init_hw(struct drm_device *dev)
3523 3524 3525
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3526

3527 3528
	i915_gem_init_swizzling(dev);

3529
	ret = intel_init_render_ring_buffer(dev);
3530
	if (ret)
3531
		return ret;
3532 3533

	if (HAS_BSD(dev)) {
3534
		ret = intel_init_bsd_ring_buffer(dev);
3535 3536
		if (ret)
			goto cleanup_render_ring;
3537
	}
3538

3539 3540 3541 3542 3543 3544
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3545 3546
	dev_priv->next_seqno = 1;

Daniel Vetter's avatar
Daniel Vetter committed
3547 3548
	i915_gem_init_ppgtt(dev);

3549 3550
	return 0;

3551
cleanup_bsd_ring:
3552
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3553
cleanup_render_ring:
3554
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3555 3556 3557
	return ret;
}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3617 3618 3619
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3620 3621 3622
	return 0;
}

3623 3624 3625 3626
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3627
	struct intel_ring_buffer *ring;
3628
	int i;
3629

3630 3631
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3632 3633
}

3634 3635 3636 3637 3638
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3639
	int ret;
3640

3641 3642 3643
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3644
	if (atomic_read(&dev_priv->mm.wedged)) {
3645
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3646
		atomic_set(&dev_priv->mm.wedged, 0);
3647 3648 3649
	}

	mutex_lock(&dev->struct_mutex);
3650 3651
	dev_priv->mm.suspended = 0;

3652
	ret = i915_gem_init_hw(dev);
3653 3654
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3655
		return ret;
3656
	}
3657

3658
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3659 3660 3661
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3662

3663 3664 3665
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3666

3667
	return 0;
3668 3669 3670 3671 3672 3673 3674 3675

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3676 3677 3678 3679 3680 3681
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3682 3683 3684
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3685
	drm_irq_uninstall(dev);
3686
	return i915_gem_idle(dev);
3687 3688 3689 3690 3691 3692 3693
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3694 3695 3696
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3697 3698 3699
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3700 3701
}

3702 3703 3704 3705 3706 3707 3708 3709
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3710 3711 3712
void
i915_gem_load(struct drm_device *dev)
{
3713
	int i;
3714 3715
	drm_i915_private_t *dev_priv = dev->dev_private;

3716
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3717 3718
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3719
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3720
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3721 3722
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3723
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3724
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3725 3726
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3727
	init_completion(&dev_priv->error_completion);
3728

3729 3730
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3731 3732
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3733 3734
	}

3735 3736
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3737
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3738 3739
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3740

3741
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3742 3743 3744 3745
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3746
	/* Initialize fence registers to zero */
3747
	i915_gem_reset_fences(dev);
3748

3749
	i915_gem_detect_bit_6_swizzle(dev);
3750
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3751

3752 3753
	dev_priv->mm.interruptible = true;

3754 3755 3756
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3757
}
3758 3759 3760 3761 3762

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3763 3764
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3765 3766 3767 3768 3769 3770 3771 3772
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3773
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3774 3775 3776 3777 3778
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3779
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3792
	kfree(phys_obj);
3793 3794 3795
	return ret;
}

3796
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3821
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3822 3823 3824 3825
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3826
				 struct drm_i915_gem_object *obj)
3827
{
3828
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3829
	char *vaddr;
3830 3831 3832
	int i;
	int page_count;

3833
	if (!obj->phys_obj)
3834
		return;
3835
	vaddr = obj->phys_obj->handle->vaddr;
3836

3837
	page_count = obj->base.size / PAGE_SIZE;
3838
	for (i = 0; i < page_count; i++) {
3839
		struct page *page = shmem_read_mapping_page(mapping, i);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3851
	}
3852
	intel_gtt_chipset_flush();
3853

3854 3855
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3856 3857 3858 3859
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3860
			    struct drm_i915_gem_object *obj,
3861 3862
			    int id,
			    int align)
3863
{
3864
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3865 3866 3867 3868 3869 3870 3871 3872
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3873 3874
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3875 3876 3877 3878 3879 3880 3881
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3882
						obj->base.size, align);
3883
		if (ret) {
3884 3885
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3886
			return ret;
3887 3888 3889 3890
		}
	}

	/* bind to the object */
3891 3892
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3893

3894
	page_count = obj->base.size / PAGE_SIZE;
3895 3896

	for (i = 0; i < page_count; i++) {
3897 3898 3899
		struct page *page;
		char *dst, *src;

3900
		page = shmem_read_mapping_page(mapping, i);
3901 3902
		if (IS_ERR(page))
			return PTR_ERR(page);
3903

3904
		src = kmap_atomic(page);
3905
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3906
		memcpy(dst, src, PAGE_SIZE);
3907
		kunmap_atomic(src);
3908

3909 3910 3911
		mark_page_accessed(page);
		page_cache_release(page);
	}
3912

3913 3914 3915 3916
	return 0;
}

static int
3917 3918
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3919 3920 3921
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3922
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3923
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3924

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3938

3939
	intel_gtt_chipset_flush();
3940 3941
	return 0;
}
3942

3943
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3944
{
3945
	struct drm_i915_file_private *file_priv = file->driver_priv;
3946 3947 3948 3949 3950

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3951
	spin_lock(&file_priv->mm.lock);
3952 3953 3954 3955 3956 3957 3958 3959 3960
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3961
	spin_unlock(&file_priv->mm.lock);
3962
}
3963

3964 3965 3966 3967 3968 3969 3970
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3971
		      list_empty(&dev_priv->mm.active_list);
3972 3973 3974 3975

	return !lists_empty;
}

3976
static int
3977
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3978
{
3979 3980 3981 3982 3983 3984
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
3985
	int nr_to_scan = sc->nr_to_scan;
3986 3987 3988
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
3989
		return 0;
3990 3991 3992

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
3993 3994 3995 3996 3997 3998 3999
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4000 4001
	}

4002
rescan:
4003
	/* first scan for clean buffers */
4004
	i915_gem_retire_requests(dev);
4005

4006 4007 4008 4009
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4010 4011
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4012
				break;
4013 4014 4015 4016
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4017 4018 4019 4020
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4021 4022
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4023
			nr_to_scan--;
4024
		else
4025 4026 4027 4028
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4029 4030 4031 4032 4033 4034
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4035
		if (i915_gpu_idle(dev) == 0)
4036 4037
			goto rescan;
	}
4038 4039
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4040
}