blk-throttle.c 67.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15
#include "blk-cgroup-rwstat.h"
16 17

/* Max dispatch from a group in 1 round */
18
#define THROTL_GRP_QUANTUM 8
19 20

/* Total max dispatch from all groups in one round */
21
#define THROTL_QUANTUM 32
22

23 24 25
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
26
#define MAX_THROTL_SLICE (HZ)
27
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 29
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
30 31
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
32 33 34 35 36 37 38
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
39

Tejun Heo's avatar
Tejun Heo committed
40
static struct blkcg_policy blkcg_policy_throtl;
41

42 43 44
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

74
struct throtl_service_queue {
75 76
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

77 78 79 80
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
81
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
82 83 84 85 86 87
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
88
	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
89 90
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153
	/* Number of bytes dispatched in current slice */
154
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181 182

	struct blkg_rwstat stat_bytes;
	struct blkg_rwstat stat_ios;
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196 197
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

198 199 200
struct throtl_data
{
	/* service tree for active throtl groups */
201
	struct throtl_service_queue service_queue;
202 203 204 205 206 207

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

208 209
	unsigned int throtl_slice;

210
	/* Work for dispatching throttled bios */
211
	struct work_struct dispatch_work;
212 213
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
214 215 216

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
217 218

	unsigned int scale;
219

220 221 222
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
223
	unsigned long last_calculate_time;
224
	unsigned long filtered_latency;
225 226

	bool track_bio_latency;
227 228
};

229
static void throtl_pending_timer_fn(struct timer_list *t);
230

231 232 233 234 235
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

Tejun Heo's avatar
Tejun Heo committed
236
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237
{
238
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 240
}

Tejun Heo's avatar
Tejun Heo committed
241
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242
{
243
	return pd_to_blkg(&tg->pd);
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
265
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
266 267 268 269 270 271 272 273 274 275 276 277
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

296 297
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
298
	struct blkcg_gq *blkg = tg_to_blkg(tg);
299
	struct throtl_data *td;
300 301 302 303
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
304 305 306

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
307 308 309 310 311 312 313 314
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
315 316 317 318 319 320 321 322

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
323
	return ret;
324 325 326 327
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
328
	struct blkcg_gq *blkg = tg_to_blkg(tg);
329
	struct throtl_data *td;
330 331 332 333
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
334

335 336
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
337 338 339 340 341 342 343 344
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
345 346 347 348 349 350 351 352 353 354

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
355
	return ret;
356 357
}

358 359 360
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
375 376
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
377
	if ((__tg)) {							\
378 379
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380 381 382
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
383
} while (0)
384

385 386 387 388 389 390 391 392
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
426
	struct throtl_qnode *qn;
427 428 429 430 431
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

432
	qn = list_first_entry(queued, struct throtl_qnode, node);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
455
	struct throtl_qnode *qn;
456 457 458 459 460
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

461
	qn = list_first_entry(queued, struct throtl_qnode, node);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

478
/* init a service_queue, assumes the caller zeroed it */
479
static void throtl_service_queue_init(struct throtl_service_queue *sq)
480
{
481 482
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
483
	sq->pending_tree = RB_ROOT_CACHED;
484
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 486
}

487 488 489
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
						struct request_queue *q,
						struct blkcg *blkcg)
490
{
491
	struct throtl_grp *tg;
492
	int rw;
493

494
	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495
	if (!tg)
496
		return NULL;
497

498 499 500 501 502 503
	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
		goto err_free_tg;

	if (blkg_rwstat_init(&tg->stat_ios, gfp))
		goto err_exit_stat_bytes;

504 505 506 507 508 509 510 511
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
512 513 514 515
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516 517 518 519 520
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
521

522
	tg->latency_target = DFL_LATENCY_TARGET;
523
	tg->latency_target_conf = DFL_LATENCY_TARGET;
524 525
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
526

527
	return &tg->pd;
528 529 530 531 532 533

err_exit_stat_bytes:
	blkg_rwstat_exit(&tg->stat_bytes);
err_free_tg:
	kfree(tg);
	return NULL;
534 535
}

536
static void throtl_pd_init(struct blkg_policy_data *pd)
537
{
538 539
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
540
	struct throtl_data *td = blkg->q->td;
541
	struct throtl_service_queue *sq = &tg->service_queue;
542

543
	/*
544
	 * If on the default hierarchy, we switch to properly hierarchical
545 546 547 548 549
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
550
	 * If not on the default hierarchy, the broken flat hierarchy
551 552 553 554 555
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
556
	sq->parent_sq = &td->service_queue;
557
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559
	tg->td = td;
560 561
}

562 563 564 565 566 567 568 569
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570
	struct throtl_data *td = tg->td;
571 572 573 574
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 576 577
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
578 579
}

580
static void throtl_pd_online(struct blkg_policy_data *pd)
581
{
582
	struct throtl_grp *tg = pd_to_tg(pd);
583 584 585 586
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
587
	tg_update_has_rules(tg);
588 589
}

590 591 592 593 594 595 596 597 598 599 600
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
602
			low_valid = true;
603 604
			break;
		}
605 606 607 608 609 610
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

611
static void throtl_upgrade_state(struct throtl_data *td);
612 613 614 615 616 617 618 619 620 621 622
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

623 624
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
625 626
}

627 628
static void throtl_pd_free(struct blkg_policy_data *pd)
{
629 630
	struct throtl_grp *tg = pd_to_tg(pd);

631
	del_timer_sync(&tg->service_queue.pending_timer);
632 633
	blkg_rwstat_exit(&tg->stat_bytes);
	blkg_rwstat_exit(&tg->stat_ios);
634
	kfree(tg);
635 636
}

637 638
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
639
{
640
	struct rb_node *n;
641
	/* Service tree is empty */
642
	if (!parent_sq->nr_pending)
643 644
		return NULL;

645 646 647 648 649
	n = rb_first_cached(&parent_sq->pending_tree);
	WARN_ON_ONCE(!n);
	if (!n)
		return NULL;
	return rb_entry_tg(n);
650 651
}

652 653
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
654
{
655 656
	rb_erase_cached(n, &parent_sq->pending_tree);
	RB_CLEAR_NODE(n);
657
	--parent_sq->nr_pending;
658 659
}

660
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
661 662 663
{
	struct throtl_grp *tg;

664
	tg = throtl_rb_first(parent_sq);
665 666 667
	if (!tg)
		return;

668
	parent_sq->first_pending_disptime = tg->disptime;
669 670
}

671
static void tg_service_queue_add(struct throtl_grp *tg)
672
{
673
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
674
	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
675 676 677
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
678
	bool leftmost = true;
679 680 681 682 683 684 685 686 687

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
688
			leftmost = false;
689 690 691 692
		}
	}

	rb_link_node(&tg->rb_node, parent, node);
693 694
	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
			       leftmost);
695 696
}

697
static void __throtl_enqueue_tg(struct throtl_grp *tg)
698
{
699
	tg_service_queue_add(tg);
700
	tg->flags |= THROTL_TG_PENDING;
701
	tg->service_queue.parent_sq->nr_pending++;
702 703
}

704
static void throtl_enqueue_tg(struct throtl_grp *tg)
705
{
706
	if (!(tg->flags & THROTL_TG_PENDING))
707
		__throtl_enqueue_tg(tg);
708 709
}

710
static void __throtl_dequeue_tg(struct throtl_grp *tg)
711
{
712
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
713
	tg->flags &= ~THROTL_TG_PENDING;
714 715
}

716
static void throtl_dequeue_tg(struct throtl_grp *tg)
717
{
718
	if (tg->flags & THROTL_TG_PENDING)
719
		__throtl_dequeue_tg(tg);
720 721
}

722
/* Call with queue lock held */
723 724
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
725
{
726
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
727 728 729 730 731 732 733 734 735 736

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
737 738 739
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
762
{
763
	/* any pending children left? */
764
	if (!sq->nr_pending)
765
		return true;
766

767
	update_min_dispatch_time(sq);
768

769
	/* is the next dispatch time in the future? */
770
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
771
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
772
		return true;
773 774
	}

775 776
	/* tell the caller to continue dispatching */
	return false;
777 778
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

794
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
795 796 797 798 799 800
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

801
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
802 803
{
	tg->bytes_disp[rw] = 0;
804
	tg->io_disp[rw] = 0;
805
	tg->slice_start[rw] = jiffies;
806
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
807 808 809 810
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
811 812
}

813 814
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
815
{
816
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
817 818
}

819 820
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
821
{
822
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
823 824 825 826
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
827 828 829
}

/* Determine if previously allocated or extended slice is complete or not */
830
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
831 832
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
833
		return false;
834

835
	return true;
836 837 838
}

/* Trim the used slices and adjust slice start accordingly */
839
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
840
{
841 842
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
843 844 845 846 847 848 849 850

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
851
	if (throtl_slice_used(tg, rw))
852 853
		return;

854 855 856
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
857
	 * slice_end, but later limit was bumped up and bio was dispatched
858 859 860 861
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

862
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
863

864 865
	time_elapsed = jiffies - tg->slice_start[rw];

866
	nr_slices = time_elapsed / tg->td->throtl_slice;
867 868 869

	if (!nr_slices)
		return;
870
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
871 872
	do_div(tmp, HZ);
	bytes_trim = tmp;
873

874 875
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
876

877
	if (!bytes_trim && !io_trim)
878 879 880 881 882 883 884
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

885 886 887 888 889
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

890
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
891

892 893 894 895
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
896 897
}

898
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
899
				  u32 iops_limit, unsigned long *wait)
900 901
{
	bool rw = bio_data_dir(bio);
902
	unsigned int io_allowed;
903
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
904
	u64 tmp;
905

906 907 908 909 910 911
	if (iops_limit == UINT_MAX) {
		if (wait)
			*wait = 0;
		return true;
	}

912
	jiffy_elapsed = jiffies - tg->slice_start[rw];
913

914 915
	/* Round up to the next throttle slice, wait time must be nonzero */
	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
916

917 918 919 920 921 922 923
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

924
	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
925 926 927 928 929 930
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
931 932

	if (tg->io_disp[rw] + 1 <= io_allowed) {
933 934
		if (wait)
			*wait = 0;
935
		return true;
936 937
	}

938
	/* Calc approx time to dispatch */
939
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
940 941 942

	if (wait)
		*wait = jiffy_wait;
943
	return false;
944 945
}

946
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
947
				 u64 bps_limit, unsigned long *wait)
948 949
{
	bool rw = bio_data_dir(bio);
950
	u64 bytes_allowed, extra_bytes, tmp;
951
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
952
	unsigned int bio_size = throtl_bio_data_size(bio);
953

954 955 956 957 958 959
	if (bps_limit == U64_MAX) {
		if (wait)
			*wait = 0;
		return true;
	}

960 961 962 963
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
964
		jiffy_elapsed_rnd = tg->td->throtl_slice;
965

966
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
967

968
	tmp = bps_limit * jiffy_elapsed_rnd;
969
	do_div(tmp, HZ);
970
	bytes_allowed = tmp;
971

972
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
973 974
		if (wait)
			*wait = 0;
975
		return true;
976 977 978
	}

	/* Calc approx time to dispatch */
979
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
980
	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
981 982 983 984 985 986 987 988 989 990 991

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
992
	return false;
993 994 995 996 997 998
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
999 1000
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
1001 1002 1003
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1004 1005
	u64 bps_limit = tg_bps_limit(tg, rw);
	u32 iops_limit = tg_iops_limit(tg, rw);
1006 1007 1008 1009 1010 1011 1012

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
1013
	BUG_ON(tg->service_queue.nr_queued[rw] &&
1014
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1015

1016
	/* If tg->bps = -1, then BW is unlimited */
1017
	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1018 1019
		if (wait)
			*wait = 0;
1020
		return true;
1021 1022 1023 1024 1025
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1026 1027 1028
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1029
	 */
1030
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1031
		throtl_start_new_slice(tg, rw);
1032
	else {
1033 1034 1035 1036
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1037 1038
	}

1039 1040
	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1041 1042
		if (wait)
			*wait = 0;
1043
		return true;
1044 1045 1046 1047 1048 1049 1050 1051
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1052
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1053

1054
	return false;
1055 1056 1057 1058 1059
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1060
	unsigned int bio_size = throtl_bio_data_size(bio);
1061 1062

	/* Charge the bio to the group */
1063
	tg->bytes_disp[rw] += bio_size;
1064
	tg->io_disp[rw]++;
1065
	tg->last_bytes_disp[rw] += bio_size;
1066
	tg->last_io_disp[rw]++;
1067

1068
	/*
1069
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1070 1071 1072 1073
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1074 1075
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1089
{
1090
	struct throtl_service_queue *sq = &tg->service_queue;
1091 1092
	bool rw = bio_data_dir(bio);

1093 1094 1095
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1096 1097 1098 1099
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
1100
	 * cleared on the next tg_update_disptime().
1101 1102 1103 1104
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1105 1106
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1107
	sq->nr_queued[rw]++;
1108
	throtl_enqueue_tg(tg);
1109 1110
}

1111
static void tg_update_disptime(struct throtl_grp *tg)
1112
{
1113
	struct throtl_service_queue *sq = &tg->service_queue;
1114 1115 1116
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1117 1118
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1119
		tg_may_dispatch(tg, bio, &read_wait);
1120

1121 1122
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1123
		tg_may_dispatch(tg, bio, &write_wait);
1124 1125 1126 1127 1128

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1129
	throtl_dequeue_tg(tg);
1130
	tg->disptime = disptime;
1131
	throtl_enqueue_tg(tg);
1132 1133 1134

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1147
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1148
{
1149
	struct throtl_service_queue *sq = &tg->service_queue;
1150 1151
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1152
	struct throtl_grp *tg_to_put = NULL;
1153 1154
	struct bio *bio;

1155 1156 1157 1158 1159 1160 1161
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1162
	sq->nr_queued[rw]--;
1163 1164

	throtl_charge_bio(tg, bio);
1165 1166 1167 1168 1169 1170 1171 1172 1173

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1174
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1175
		start_parent_slice_with_credit(tg, parent_tg, rw);
1176
	} else {
1177 1178
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1179 1180 1181
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1182

1183
	throtl_trim_slice(tg, rw);
1184

1185 1186
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1187 1188
}

1189
static int throtl_dispatch_tg(struct throtl_grp *tg)
1190
{
1191
	struct throtl_service_queue *sq = &tg->service_queue;
1192
	unsigned int nr_reads = 0, nr_writes = 0;
1193 1194
	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1195 1196 1197 1198
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1199
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1200
	       tg_may_dispatch(tg, bio, NULL)) {
1201

1202
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1203 1204 1205 1206 1207 1208
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1209
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1210
	       tg_may_dispatch(tg, bio, NULL)) {
1211

1212
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1213 1214 1215 1216 1217 1218 1219 1220 1221
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1222
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1223 1224 1225 1226
{
	unsigned int nr_disp = 0;

	while (1) {
1227
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1228
		struct throtl_service_queue *sq;
1229 1230 1231 1232 1233 1234 1235

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1236
		throtl_dequeue_tg(tg);
1237

1238
		nr_disp += throtl_dispatch_tg(tg);
1239

1240
		sq = &tg->service_queue;
1241
		if (sq->nr_queued[0] || sq->nr_queued[1])
1242
			tg_update_disptime(tg);
1243

1244
		if (nr_disp >= THROTL_QUANTUM)
1245 1246 1247 1248 1249 1250
			break;
	}

	return nr_disp;
}

1251 1252
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1253 1254
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1255
 * @t: the pending_timer member of the throtl_service_queue being serviced
1256 1257 1258 1259
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1260 1261 1262 1263 1264 1265 1266
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1267
 */
1268
static void throtl_pending_timer_fn(struct timer_list *t)
1269
{
1270
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1271
	struct throtl_grp *tg = sq_to_tg(sq);
1272
	struct throtl_data *td = sq_to_td(sq);
1273
	struct request_queue *q = td->queue;
1274 1275
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1276
	int ret;
1277

1278
	spin_lock_irq(&q->queue_lock);
1279 1280 1281
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1282 1283 1284
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1285

1286 1287
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1288 1289
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1290 1291 1292 1293 1294 1295

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1296

1297 1298
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1299

1300
		/* this dispatch windows is still open, relax and repeat */
1301
		spin_unlock_irq(&q->queue_lock);
1302
		cpu_relax();
1303
		spin_lock_irq(&q->queue_lock);
1304
	}
1305

1306 1307
	if (!dispatched)
		goto out_unlock;
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
1321
		/* reached the top-level, queue issuing */
1322 1323 1324
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1325
	spin_unlock_irq(&q->queue_lock);
1326
}
1327

1328 1329 1330 1331
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
1332 1333
 * This function is queued for execution when bios reach the bio_lists[]
 * of throtl_data->service_queue.  Those bios are ready and issued by this
1334 1335
 * function.
 */
1336
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

1349
	spin_lock_irq(&q->queue_lock);
1350 1351 1352
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1353
	spin_unlock_irq(&q->queue_lock);
1354 1355

	if (!bio_list_empty(&bio_list_on_stack)) {
1356
		blk_start_plug(&plug);
1357 1358
		while ((bio = bio_list_pop(&bio_list_on_stack)))
			submit_bio_noacct(bio);
1359
		blk_finish_plug(&plug);
1360 1361 1362
	}
}

1363 1364
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1365
{
1366 1367
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1368

1369
	if (v == U64_MAX)
1370
		return 0;
1371
	return __blkg_prfill_u64(sf, pd, v);
1372 1373
}

1374 1375
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1376
{
1377 1378
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1379

1380
	if (v == UINT_MAX)
1381
		return 0;
1382
	return __blkg_prfill_u64(sf, pd, v);
1383 1384
}

1385
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1386
{
1387 1388
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1389
	return 0;
1390 1391
}

1392
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1393
{
1394 1395
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1396
	return 0;
1397 1398
}

1399
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1400
{
1401
	struct throtl_service_queue *sq = &tg->service_queue;
1402
	struct cgroup_subsys_state *pos_css;
1403
	struct blkcg_gq *blkg;
1404

1405 1406
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1407 1408
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1409

1410 1411 1412 1413 1414 1415 1416
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1417 1418
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1437

1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1446 1447
	throtl_start_new_slice(tg, READ);
	throtl_start_new_slice(tg, WRITE);
1448

1449
	if (tg->flags & THROTL_TG_PENDING) {
1450
		tg_update_disptime(tg);
1451
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1452
	}
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1472
		v = U64_MAX;
1473 1474 1475 1476 1477 1478 1479

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1480

1481
	tg_conf_updated(tg, false);
1482 1483
	ret = 0;
out_finish:
1484
	blkg_conf_finish(&ctx);
1485
	return ret ?: nbytes;
1486 1487
}

1488 1489
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1490
{
1491
	return tg_set_conf(of, buf, nbytes, off, true);
1492 1493
}

1494 1495
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1496
{
1497
	return tg_set_conf(of, buf, nbytes, off, false);
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static int tg_print_rwstat(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  blkg_prfill_rwstat, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
				      struct blkg_policy_data *pd, int off)
{
	struct blkg_rwstat_sample sum;

	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
				  &sum);
	return __blkg_prfill_rwstat(sf, pd, &sum);
}

static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

1526
static struct cftype throtl_legacy_files[] = {
1527 1528
	{
		.name = "throttle.read_bps_device",
1529
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1530
		.seq_show = tg_print_conf_u64,
1531
		.write = tg_set_conf_u64,
1532 1533 1534
	},
	{
		.name = "throttle.write_bps_device",
1535
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1536
		.seq_show = tg_print_conf_u64,
1537
		.write = tg_set_conf_u64,
1538 1539 1540
	},
	{
		.name = "throttle.read_iops_device",
1541
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1542
		.seq_show = tg_print_conf_uint,
1543
		.write = tg_set_conf_uint,
1544 1545 1546
	},
	{
		.name = "throttle.write_iops_device",
1547
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1548
		.seq_show = tg_print_conf_uint,
1549
		.write = tg_set_conf_uint,
1550 1551 1552
	},
	{
		.name = "throttle.io_service_bytes",
1553 1554
		.private = offsetof(struct throtl_grp, stat_bytes),
		.seq_show = tg_print_rwstat,
1555
	},
1556 1557
	{
		.name = "throttle.io_service_bytes_recursive",
1558 1559
		.private = offsetof(struct throtl_grp, stat_bytes),
		.seq_show = tg_print_rwstat_recursive,
1560
	},
1561 1562
	{
		.name = "throttle.io_serviced",
1563 1564
		.private = offsetof(struct throtl_grp, stat_ios),
		.seq_show = tg_print_rwstat,
1565
	},
1566 1567
	{
		.name = "throttle.io_serviced_recursive",
1568 1569
		.private = offsetof(struct throtl_grp, stat_ios),
		.seq_show = tg_print_rwstat_recursive,
1570
	},
1571 1572 1573
	{ }	/* terminate */
};

1574
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1575 1576 1577 1578 1579
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
1580 1581
	u64 bps_dft;
	unsigned int iops_dft;
1582
	char idle_time[26] = "";
1583
	char latency_time[26] = "";
1584 1585 1586

	if (!dname)
		return 0;
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1599
	    tg->iops_conf[WRITE][off] == iops_dft &&
1600
	    (off != LIMIT_LOW ||
1601
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1602
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1603 1604
		return 0;

1605
	if (tg->bps_conf[READ][off] != U64_MAX)
1606
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1607
			tg->bps_conf[READ][off]);
1608
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1609
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1610
			tg->bps_conf[WRITE][off]);
1611
	if (tg->iops_conf[READ][off] != UINT_MAX)
1612
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1613
			tg->iops_conf[READ][off]);
1614
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1615
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1616
			tg->iops_conf[WRITE][off]);
1617
	if (off == LIMIT_LOW) {
1618
		if (tg->idletime_threshold_conf == ULONG_MAX)
1619 1620 1621
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1622
				tg->idletime_threshold_conf);
1623

1624
		if (tg->latency_target_conf == ULONG_MAX)
1625 1626 1627
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1628
				" latency=%lu", tg->latency_target_conf);
1629
	}
1630

1631 1632 1633
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1634 1635 1636
	return 0;
}

1637
static int tg_print_limit(struct seq_file *sf, void *v)
1638
{
1639
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1640 1641 1642 1643
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

1644
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1645 1646 1647 1648 1649 1650
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1651
	unsigned long idle_time;
1652
	unsigned long latency_time;
1653
	int ret;
1654
	int index = of_cft(of)->private;
1655 1656 1657 1658 1659 1660 1661

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

1662 1663 1664 1665
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1666

1667 1668
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1669 1670 1671
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1672
		u64 val = U64_MAX;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
1692
		if (!strcmp(tok, "rbps") && val > 1)
1693
			v[0] = val;
1694
		else if (!strcmp(tok, "wbps") && val > 1)
1695
			v[1] = val;
1696
		else if (!strcmp(tok, "riops") && val > 1)
1697
			v[2] = min_t(u64, val, UINT_MAX);
1698
		else if (!strcmp(tok, "wiops") && val > 1)
1699
			v[3] = min_t(u64, val, UINT_MAX);
1700 1701
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1702 1703
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1704 1705 1706 1707
		else
			goto out_finish;
	}

1708 1709 1710 1711
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1742 1743
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
1744
	}
1745 1746 1747 1748 1749 1750 1751

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1752 1753
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1754 1755 1756 1757 1758 1759 1760
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
1761 1762 1763 1764 1765 1766 1767 1768 1769
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1770 1771 1772
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
1773 1774 1775
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1776 1777 1778 1779
	},
	{ }	/* terminate */
};

1780
static void throtl_shutdown_wq(struct request_queue *q)
1781 1782 1783
{
	struct throtl_data *td = q->td;

1784
	cancel_work_sync(&td->dispatch_work);
1785 1786
}

Tejun Heo's avatar
Tejun Heo committed
1787
static struct blkcg_policy blkcg_policy_throtl = {
1788
	.dfl_cftypes		= throtl_files,
1789
	.legacy_cftypes		= throtl_legacy_files,
1790

1791
	.pd_alloc_fn		= throtl_pd_alloc,
1792
	.pd_init_fn		= throtl_pd_init,
1793
	.pd_online_fn		= throtl_pd_online,
1794
	.pd_offline_fn		= throtl_pd_offline,
1795
	.pd_free_fn		= throtl_pd_free,
1796 1797
};

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1837 1838 1839 1840 1841
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1842
	 *   configure a too big threshold) or 4 times of idletime threshold
1843
	 * - average think time is more than threshold
1844
	 * - IO latency is largely below threshold
1845
	 */
1846
	unsigned long time;
1847
	bool ret;
1848

1849 1850 1851 1852 1853 1854
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1855
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1856 1857 1858 1859 1860
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1882 1883

	if (time_after_eq(jiffies,
1884 1885
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1886
		return true;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1911
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1912 1913
		return false;

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1951 1952 1953 1954 1955
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1956
	throtl_log(&td->service_queue, "upgrade to max");
1957
	td->limit_index = LIMIT_MAX;
1958
	td->low_upgrade_time = jiffies;
1959
	td->scale = 0;
1960 1961 1962 1963 1964 1965 1966
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
1967
		throtl_schedule_next_dispatch(sq, true);
1968 1969 1970
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
1971
	throtl_schedule_next_dispatch(&td->service_queue, true);
1972 1973 1974
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

1975
static void throtl_downgrade_state(struct throtl_data *td)
1976
{
1977 1978
	td->scale /= 2;

1979
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1980 1981 1982 1983 1984
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

1985
	td->limit_index = LIMIT_LOW;
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1998 1999
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2000 2001 2002
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
2031
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2032 2033 2034 2035 2036
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

2037 2038
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
2072
		throtl_downgrade_state(tg->td);
2073 2074 2075 2076 2077 2078 2079

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2080 2081
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
2082
	unsigned long now;
2083 2084
	unsigned long last_finish_time = tg->last_finish_time;

2085 2086 2087 2088 2089
	if (last_finish_time == 0)
		return;

	now = ktime_get_ns() >> 10;
	if (now <= last_finish_time ||
2090 2091 2092 2093 2094 2095 2096
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2097 2098 2099
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2100 2101 2102 2103
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2104

2105
	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2106 2107 2108 2109 2110 2111
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2127

2128 2129
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2130

2131
				latency[rw] = tmp->total_latency;
2132

2133 2134 2135 2136 2137 2138 2139
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2140 2141 2142
		}
	}

2143 2144 2145 2146 2147 2148 2149 2150
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2151

2152 2153 2154 2155 2156
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2157

2158 2159 2160 2161 2162
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2163
	}
2164 2165 2166

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2167 2168 2169 2170 2171 2172
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2173 2174 2175 2176 2177 2178 2179
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2180
bool blk_throtl_bio(struct bio *bio)
2181
{
2182 2183
	struct request_queue *q = bio->bi_disk->queue;
	struct blkcg_gq *blkg = bio->bi_blkg;
2184
	struct throtl_qnode *qn = NULL;
2185
	struct throtl_grp *tg = blkg_to_tg(blkg);
2186
	struct throtl_service_queue *sq;
2187
	bool rw = bio_data_dir(bio);
2188
	bool throttled = false;
2189
	struct throtl_data *td = tg->td;
2190

2191
	rcu_read_lock();
2192

2193
	/* see throtl_charge_bio() */
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	if (bio_flagged(bio, BIO_THROTTLED))
		goto out;

	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
				bio->bi_iter.bi_size);
		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
	}

	if (!tg->has_rules[rw])
2204
		goto out;
2205

2206
	spin_lock_irq(&q->queue_lock);
2207

2208 2209
	throtl_update_latency_buckets(td);

2210 2211
	blk_throtl_update_idletime(tg);

2212 2213
	sq = &tg->service_queue;

2214
again:
2215
	while (true) {
2216 2217 2218
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2219
		throtl_upgrade_check(tg);
2220 2221 2222
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2223

2224
		/* if above limits, break to queue */
2225
		if (!tg_may_dispatch(tg, bio, NULL)) {
2226
			tg->last_low_overflow_time[rw] = jiffies;
2227 2228
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2229 2230
				goto again;
			}
2231
			break;
2232
		}
2233 2234

		/* within limits, let's charge and dispatch directly */
2235
		throtl_charge_bio(tg, bio);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2248
		throtl_trim_slice(tg, rw);
2249 2250 2251

		/*
		 * @bio passed through this layer without being throttled.
2252
		 * Climb up the ladder.  If we're already at the top, it
2253 2254
		 * can be executed directly.
		 */
2255
		qn = &tg->qnode_on_parent[rw];
2256 2257 2258 2259
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2260 2261
	}

2262
	/* out-of-limit, queue to @tg */
2263 2264
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2265 2266 2267
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2268
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2269

2270 2271
	tg->last_low_overflow_time[rw] = jiffies;

2272
	td->nr_queued[rw]++;
2273
	throtl_add_bio_tg(bio, qn, tg);
2274
	throttled = true;
2275

2276 2277 2278 2279 2280 2281
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2282
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2283
		tg_update_disptime(tg);
2284
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2285 2286
	}

2287
out_unlock:
2288
	spin_unlock_irq(&q->queue_lock);
2289
out:
2290
	bio_set_flag(bio, BIO_THROTTLED);
2291 2292 2293

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2294
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2295
#endif
2296
	rcu_read_unlock();
2297
	return throttled;
2298 2299
}

2300
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2301 2302 2303 2304 2305 2306
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2307 2308
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2309 2310 2311 2312 2313
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2314
	latency = get_cpu_ptr(td->latency_buckets[op]);
2315 2316
	latency[index].total_latency += time;
	latency[index].samples++;
2317
	put_cpu_ptr(td->latency_buckets[op]);
2318 2319 2320 2321 2322 2323 2324
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2325 2326
	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
			     time_ns >> 10);
2327 2328
}

2329 2330
void blk_throtl_bio_endio(struct bio *bio)
{
2331
	struct blkcg_gq *blkg;
2332
	struct throtl_grp *tg;
2333 2334 2335 2336
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2337
	int rw = bio_data_dir(bio);
2338

2339 2340
	blkg = bio->bi_blkg;
	if (!blkg)
2341
		return;
2342
	tg = blkg_to_tg(blkg);
2343 2344
	if (!tg->td->limit_valid[LIMIT_LOW])
		return;
2345

2346 2347 2348
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2349 2350
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2351
	if (!start_time || finish_time <= start_time)
2352 2353 2354
		return;

	lat = finish_time - start_time;
2355
	/* this is only for bio based driver */
2356 2357 2358
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2359

2360
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2361 2362 2363
		int bucket;
		unsigned int threshold;

2364
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2365
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2380
	}
2381 2382 2383
}
#endif

2384 2385 2386
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2387
	int ret;
2388 2389 2390 2391

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2392
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2393
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2394 2395 2396 2397 2398
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2399
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2400 2401
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2402 2403 2404
		kfree(td);
		return -ENOMEM;
	}
2405

2406
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2407
	throtl_service_queue_init(&td->service_queue);
2408

2409
	q->td = td;
2410
	td->queue = q;
2411

2412
	td->limit_valid[LIMIT_MAX] = true;
2413
	td->limit_index = LIMIT_MAX;
2414 2415
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2416

2417
	/* activate policy */
Tejun Heo's avatar
Tejun Heo committed
2418
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2419
	if (ret) {
2420 2421
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2422
		kfree(td);
2423
	}
2424
	return ret;
2425 2426 2427 2428
}

void blk_throtl_exit(struct request_queue *q)
{
2429
	BUG_ON(!q->td);
2430
	throtl_shutdown_wq(q);
Tejun Heo's avatar
Tejun Heo committed
2431
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2432 2433
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2434
	kfree(q->td);
2435 2436
}

2437 2438 2439
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2440
	int i;
2441 2442 2443 2444

	td = q->td;
	BUG_ON(!td);

2445
	if (blk_queue_nonrot(q)) {
2446
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2447 2448
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2449
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2450
		td->filtered_latency = LATENCY_FILTERED_HD;
2451 2452 2453 2454
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2455
	}
2456 2457 2458 2459
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2460

2461
	td->track_bio_latency = !queue_is_mq(q);
2462 2463
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2464 2465
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2492 2493
static int __init throtl_init(void)
{
2494 2495 2496 2497
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

Tejun Heo's avatar
Tejun Heo committed
2498
	return blkcg_policy_register(&blkcg_policy_throtl);
2499 2500 2501
}

module_init(throtl_init);