mmu.c 45.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 */
7
#include <linux/module.h>
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
Russell King's avatar
Russell King committed
13
#include <linux/memblock.h>
14
#include <linux/fs.h>
15
#include <linux/vmalloc.h>
16
#include <linux/sizes.h>
17

18
#include <asm/cp15.h>
19
#include <asm/cputype.h>
20
#include <asm/cachetype.h>
21
#include <asm/sections.h>
22
#include <asm/setup.h>
23
#include <asm/smp_plat.h>
24
#include <asm/tlb.h>
Nicolas Pitre's avatar
Nicolas Pitre committed
25
#include <asm/highmem.h>
26
#include <asm/system_info.h>
27
#include <asm/traps.h>
28 29
#include <asm/procinfo.h>
#include <asm/memory.h>
30
#include <asm/pgalloc.h>
31
#include <asm/kasan_def.h>
32 33 34

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
Rob Herring's avatar
Rob Herring committed
35
#include <asm/mach/pci.h>
36
#include <asm/fixmap.h>
37

38
#include "fault.h"
39
#include "mm.h"
40
#include "tcm.h"
41

42 43
extern unsigned long __atags_pointer;

44 45 46 47 48
/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
49
EXPORT_SYMBOL(empty_zero_page);
50 51 52 53 54 55

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

56 57
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

58 59 60 61 62 63 64 65
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
66
pgprot_t pgprot_user;
67 68
pgprot_t pgprot_kernel;

69
EXPORT_SYMBOL(pgprot_user);
70 71 72 73 74
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
75
	pmdval_t	pmd;
76
	pteval_t	pte;
77 78 79 80 81 82 83
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
84
		.pte		= L_PTE_MT_UNCACHED,
85 86 87 88
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
89
		.pte		= L_PTE_MT_BUFFERABLE,
90 91 92 93
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
94
		.pte		= L_PTE_MT_WRITETHROUGH,
95 96 97 98
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
99
		.pte		= L_PTE_MT_WRITEBACK,
100 101 102 103
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
104
		.pte		= L_PTE_MT_WRITEALLOC,
105 106 107
	}
};

108
#ifdef CONFIG_CPU_CP15
109 110
static unsigned long initial_pmd_value __initdata = 0;

111
/*
112 113 114 115 116
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
117
 */
118
void __init init_default_cache_policy(unsigned long pmd)
119 120 121
{
	int i;

122 123
	initial_pmd_value = pmd;

124
	pmd &= PMD_SECT_CACHE_MASK;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

145 146 147
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

148
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149
			selected = i;
150 151 152
			break;
		}
	}
153 154 155 156

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

157 158 159 160 161 162 163
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
164 165 166 167 168 169 170 171 172 173 174
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
175
	}
176
	return 0;
177
}
178
early_param("cachepolicy", early_cachepolicy);
179

180
static int __init early_nocache(char *__unused)
181 182
{
	char *p = "buffered";
183
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 185
	early_cachepolicy(p);
	return 0;
186
}
187
early_param("nocache", early_nocache);
188

189
static int __init early_nowrite(char *__unused)
190 191
{
	char *p = "uncached";
192
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 194
	early_cachepolicy(p);
	return 0;
195
}
196
early_param("nowb", early_nowrite);
197

198
#ifndef CONFIG_ARM_LPAE
199
static int __init early_ecc(char *p)
200
{
201
	if (memcmp(p, "on", 2) == 0)
202
		ecc_mask = PMD_PROTECTION;
203
	else if (memcmp(p, "off", 3) == 0)
204
		ecc_mask = 0;
205
	return 0;
206
}
207
early_param("ecc", early_ecc);
208
#endif
209

210 211 212 213
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
214
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 216 217 218 219
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
220
	pr_warn("noalign kernel parameter not supported without cp15\n");
221 222 223 224 225
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

226
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
228
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
229

230
static struct mem_type mem_types[] __ro_after_init = {
231
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
232 233
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
234
		.prot_l1	= PMD_TYPE_TABLE,
235
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
236 237 238
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
239
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
240
		.prot_l1	= PMD_TYPE_TABLE,
241
		.prot_sect	= PROT_SECT_DEVICE,
242 243
		.domain		= DOMAIN_IO,
	},
244
	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
245
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
246 247 248
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
Rob Herring's avatar
Rob Herring committed
249
	},
250
	[MT_DEVICE_WC] = {	/* ioremap_wc */
251
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
252
		.prot_l1	= PMD_TYPE_TABLE,
253
		.prot_sect	= PROT_SECT_DEVICE,
254
		.domain		= DOMAIN_IO,
255
	},
256 257 258 259 260 261
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
262
	[MT_CACHECLEAN] = {
263
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264 265
		.domain    = DOMAIN_KERNEL,
	},
266
#ifndef CONFIG_ARM_LPAE
267
	[MT_MINICLEAN] = {
268
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
269 270
		.domain    = DOMAIN_KERNEL,
	},
271
#endif
272 273
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274
				L_PTE_RDONLY,
275
		.prot_l1   = PMD_TYPE_TABLE,
276
		.domain    = DOMAIN_VECTORS,
277 278 279
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280
				L_PTE_USER | L_PTE_RDONLY,
281
		.prot_l1   = PMD_TYPE_TABLE,
282
		.domain    = DOMAIN_VECTORS,
283
	},
284
	[MT_MEMORY_RWX] = {
285
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
286
		.prot_l1   = PMD_TYPE_TABLE,
287
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
288 289
		.domain    = DOMAIN_KERNEL,
	},
290 291 292 293 294 295 296
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
297
	[MT_ROM] = {
298
		.prot_sect = PMD_TYPE_SECT,
299 300
		.domain    = DOMAIN_KERNEL,
	},
301
	[MT_MEMORY_RWX_NONCACHED] = {
302
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303
				L_PTE_MT_BUFFERABLE,
304
		.prot_l1   = PMD_TYPE_TABLE,
305 306 307
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
308
	[MT_MEMORY_RW_DTCM] = {
309
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310
				L_PTE_XN,
311 312 313
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
314
	},
315
	[MT_MEMORY_RWX_ITCM] = {
316
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
317
		.prot_l1   = PMD_TYPE_TABLE,
318
		.domain    = DOMAIN_KERNEL,
319
	},
320
	[MT_MEMORY_RW_SO] = {
321
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322
				L_PTE_MT_UNCACHED | L_PTE_XN,
323 324 325 326 327
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
328
	[MT_MEMORY_DMA_READY] = {
329 330
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
331 332 333
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
334 335
};

336 337 338 339
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
340
EXPORT_SYMBOL(get_mem_type);
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
359
	return pmd_off_k(addr);
360 361 362 363 364 365 366 367 368 369
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
370
	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
371 372 373 374 375 376 377 378
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

379 380 381 382 383 384 385 386
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
387
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
388 389

	/* Make sure fixmap region does not exceed available allocation. */
390
	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
391 392
	BUG_ON(idx >= __end_of_fixed_addresses);

393 394 395 396 397
	/* we only support device mappings until pgprot_kernel has been set */
	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
		    pgprot_val(pgprot_kernel) == 0))
		return;

398 399 400 401 402 403 404 405
	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

406 407 408 409 410 411 412
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
413
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
414 415 416
	int cpu_arch = cpu_architecture();
	int i;

417
	if (cpu_arch < CPU_ARCH_ARMv6) {
418
#if defined(CONFIG_CPU_DCACHE_DISABLE)
419 420
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
421
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
422 423
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
424
#endif
425
	}
426 427 428 429 430
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
431

432 433 434 435 436 437 438 439 440
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
441
	}
442

443
	/*
444 445 446
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
447
	 */
448 449 450 451 452 453
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
454 455

	/*
456 457 458
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
459
	 */
460
	if (cpu_is_xscale_family()) {
461
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
462
			mem_types[i].prot_sect &= ~PMD_BIT4;
463 464 465 466
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
467 468
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
469 470 471 472
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
473

474 475 476 477 478 479 480 481 482 483 484 485 486
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
487 488 489

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
535
	cp = &cache_policies[cachepolicy];
536 537
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

538
#ifndef CONFIG_ARM_LPAE
539 540 541 542 543 544 545
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
546 547 548 549 550 551

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
552
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
553 554
		user_pmd_table |= PMD_PXNTABLE;
	}
555
#endif
556

557 558 559 560
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
561
#ifndef CONFIG_ARM_LPAE
562 563 564 565 566 567 568
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
569
#endif
570

571 572 573 574 575 576
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
577 578 579 580 581 582 583
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
584 585
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
586 587
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
588
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
589 590
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
591
		}
592 593
	}

594 595 596 597 598 599 600
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
601
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
602 603 604
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
605
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
606 607 608
				PMD_SECT_TEX(1);
		}
	} else {
609
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
610 611
	}

612 613 614 615 616 617
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
618 619
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
620 621 622
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
623 624 625 626 627

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
628 629
#endif

630
	for (i = 0; i < 16; i++) {
631
		pteval_t v = pgprot_val(protection_map[i]);
632
		protection_map[i] = __pgprot(v | user_pgprot);
633 634
	}

635 636
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
637

638
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
639
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
640
				 L_PTE_DIRTY | kern_pgprot);
641 642 643

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
644 645
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
646 647
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
648
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
649
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
650 651 652 653 654 655 656 657 658 659 660
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
661 662
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
663 664 665 666 667 668 669 670

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
671 672
}

673 674 675 676 677 678 679 680 681 682 683 684 685
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

686 687
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

688 689
static void __init *early_alloc(unsigned long sz)
{
690 691 692 693 694 695 696
	void *ptr = memblock_alloc(sz, sz);

	if (!ptr)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, sz, sz);

	return ptr;
697 698
}

699 700
static void *__init late_alloc(unsigned long sz)
{
701
	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
702

703
	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
704
		BUG();
705 706 707
	return ptr;
}

708
static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
709 710
				unsigned long prot,
				void *(*alloc)(unsigned long sz))
711
{
712
	if (pmd_none(*pmd)) {
713
		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
714
		__pmd_populate(pmd, __pa(pte), prot);
715
	}
Russell King's avatar
Russell King committed
716 717 718
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
719

720 721 722
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
				      unsigned long prot)
{
723
	return arm_pte_alloc(pmd, addr, prot, early_alloc);
724 725
}

Russell King's avatar
Russell King committed
726 727
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
728
				  const struct mem_type *type,
729 730
				  void *(*alloc)(unsigned long sz),
				  bool ng)
Russell King's avatar
Russell King committed
731
{
732
	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
733
	do {
734 735
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
			    ng ? PTE_EXT_NG : 0);
736 737
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
738 739
}

740
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
741
			unsigned long end, phys_addr_t phys,
742
			const struct mem_type *type, bool ng)
743
{
744 745
	pmd_t *p = pmd;

746
#ifndef CONFIG_ARM_LPAE
747
	/*
748 749 750 751 752 753 754
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
755
	 */
756 757
	if (addr & SECTION_SIZE)
		pmd++;
758
#endif
759
	do {
760
		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
761 762
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
763

764
	flush_pmd_entry(p);
765
}
766

767 768
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
769
				      const struct mem_type *type,
770
				      void *(*alloc)(unsigned long sz), bool ng)
771 772 773 774 775
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
776
		/*
777 778
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
779
		 */
780 781 782 783 784 785 786 787
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
788
			__map_init_section(pmd, addr, next, phys, type, ng);
789 790
		} else {
			alloc_init_pte(pmd, addr, next,
791
				       __phys_to_pfn(phys), type, alloc, ng);
792 793 794 795 796
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
797 798
}

799
static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
800
				  unsigned long end, phys_addr_t phys,
801
				  const struct mem_type *type,
802
				  void *(*alloc)(unsigned long sz), bool ng)
803
{
804
	pud_t *pud = pud_offset(p4d, addr);
805 806 807 808
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
809
		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
810 811 812 813
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type,
				  void *(*alloc)(unsigned long sz), bool ng)
{
	p4d_t *p4d = p4d_offset(pgd, addr);
	unsigned long next;

	do {
		next = p4d_addr_end(addr, end);
		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
		phys += next - addr;
	} while (p4d++, addr = next, addr != end);
}

829
#ifndef CONFIG_ARM_LPAE
830 831
static void __init create_36bit_mapping(struct mm_struct *mm,
					struct map_desc *md,
832 833
					const struct mem_type *type,
					bool ng)
834
{
835 836
	unsigned long addr, length, end;
	phys_addr_t phys;
837 838 839
	pgd_t *pgd;

	addr = md->virtual;
840
	phys = __pfn_to_phys(md->pfn);
841 842 843
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
844
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
845
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
846 847 848 849 850 851 852 853 854 855
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
856
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
857
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
858 859 860 861
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
862
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
863
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
864 865 866 867 868 869 870 871 872
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

873
	pgd = pgd_offset(mm, addr);
874 875
	end = addr + length;
	do {
876 877
		p4d_t *p4d = p4d_offset(pgd, addr);
		pud_t *pud = pud_offset(p4d, addr);
878
		pmd_t *pmd = pmd_offset(pud, addr);
879 880 881
		int i;

		for (i = 0; i < 16; i++)
882 883
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
				       (ng ? PMD_SECT_nG : 0));
884 885 886 887 888 889

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
890
#endif	/* !CONFIG_ARM_LPAE */
891

892
static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
893 894
				    void *(*alloc)(unsigned long sz),
				    bool ng)
895
{
896 897
	unsigned long addr, length, end;
	phys_addr_t phys;
898
	const struct mem_type *type;
899
	pgd_t *pgd;
900

901
	type = &mem_types[md->type];
902

903
#ifndef CONFIG_ARM_LPAE
904 905 906
	/*
	 * Catch 36-bit addresses
	 */
907
	if (md->pfn >= 0x100000) {
908
		create_36bit_mapping(mm, md, type, ng);
909
		return;
910
	}
911
#endif
912

913
	addr = md->virtual & PAGE_MASK;
914
	phys = __pfn_to_phys(md->pfn);
915
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
916

917
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
918 919
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
920 921 922
		return;
	}

923
	pgd = pgd_offset(mm, addr);
924 925 926
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
927

928
		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
929

930 931 932
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

950
	if (md->type == MT_DEVICE &&
951 952 953 954 955 956
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
	}

957
	__create_mapping(&init_mm, md, early_alloc, false);
958 959
}

960 961 962 963
void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
				bool ng)
{
#ifdef CONFIG_ARM_LPAE
964 965 966 967
	p4d_t *p4d;
	pud_t *pud;

	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
968
	if (WARN_ON(!p4d))
969 970
		return;
	pud = pud_alloc(mm, p4d, md->virtual);
971 972 973 974 975 976 977
	if (WARN_ON(!pud))
		return;
	pmd_alloc(mm, pud, 0);
#endif
	__create_mapping(mm, md, late_alloc, ng);
}

978 979 980 981 982
/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
983 984
	struct map_desc *md;
	struct vm_struct *vm;
985
	struct static_vm *svm;
986 987 988

	if (!nr)
		return;
989

990
	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
991 992 993
	if (!svm)
		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
994 995 996

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
997 998

		vm = &svm->vm;
999 1000
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
Rob Herring's avatar
Rob Herring committed
1001 1002
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1003
		vm->flags |= VM_ARM_MTYPE(md->type);
1004
		vm->caller = iotable_init;
1005
		add_static_vm_early(svm++);
1006
	}
1007 1008
}

Rob Herring's avatar
Rob Herring committed
1009 1010 1011 1012
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
1013 1014
	struct static_vm *svm;

1015
	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1016 1017 1018
	if (!svm)
		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
		      __func__, sizeof(*svm), __alignof__(*svm));
Rob Herring's avatar
Rob Herring committed
1019

1020
	vm = &svm->vm;
Rob Herring's avatar
Rob Herring committed
1021 1022
	vm->addr = (void *)addr;
	vm->size = size;
1023
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
Rob Herring's avatar
Rob Herring committed
1024
	vm->caller = caller;
1025
	add_static_vm_early(svm);
Rob Herring's avatar
Rob Herring committed
1026 1027
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
Rob Herring's avatar
Rob Herring committed
1045
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046 1047 1048 1049
}

static void __init fill_pmd_gaps(void)
{
1050
	struct static_vm *svm;
1051 1052 1053 1054
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1055 1056
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

Rob Herring's avatar
Rob Herring committed
1093 1094 1095
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1096
	struct static_vm *svm;
Rob Herring's avatar
Rob Herring committed
1097

1098 1099 1100
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
Rob Herring's avatar
Rob Herring committed
1101 1102 1103 1104 1105 1106 1107

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1120
	iotable_init(&map, 1);
1121 1122 1123
}
#endif

1124
static unsigned long __initdata vmalloc_start = VMALLOC_END - (240 << 20);
1125 1126 1127 1128

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1129
 * area - the default is 240m.
1130
 */
1131
static int __init early_vmalloc(char *arg)
1132
{
Russell King's avatar
Russell King committed
1133
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1134
	unsigned long vmalloc_max;
1135 1136 1137

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
1138
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1139 1140
			vmalloc_reserve >> 20);
	}
1141

1142
	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1143 1144
	if (vmalloc_reserve > vmalloc_max) {
		vmalloc_reserve = vmalloc_max;
1145
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1146 1147
			vmalloc_reserve >> 20);
	}
Russell King's avatar
Russell King committed
1148

1149
	vmalloc_start = VMALLOC_END - vmalloc_reserve;
1150
	return 0;
1151
}
1152
early_param("vmalloc", early_vmalloc);
1153

1154
phys_addr_t arm_lowmem_limit __initdata = 0;
1155

1156
void __init adjust_lowmem_bounds(void)
1157
{
1158 1159
	phys_addr_t block_start, block_end, memblock_limit = 0;
	u64 vmalloc_limit, i;
1160
	phys_addr_t lowmem_limit = 0;
1161

1162 1163 1164 1165 1166 1167 1168
	/*
	 * Let's use our own (unoptimized) equivalent of __pa() that is
	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
	 * The result is used as the upper bound on physical memory address
	 * and may itself be outside the valid range for which phys_addr_t
	 * and therefore __pa() is defined.
	 */
1169 1170
	vmalloc_limit = (u64)vmalloc_start - VMALLOC_OFFSET -
			PAGE_OFFSET + PHYS_OFFSET;
1171

1172 1173 1174 1175
	/*
	 * The first usable region must be PMD aligned. Mark its start
	 * as MEMBLOCK_NOMAP if it isn't
	 */
1176 1177 1178
	for_each_mem_range(i, &block_start, &block_end) {
		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
			phys_addr_t len;
1179

1180 1181
			len = round_up(block_start, PMD_SIZE) - block_start;
			memblock_mark_nomap(block_start, len);
1182
		}
1183
		break;
1184 1185
	}

1186 1187
	for_each_mem_range(i, &block_start, &block_end) {
		if (block_start < vmalloc_limit) {
1188
			if (block_end > lowmem_limit)
1189 1190 1191 1192 1193 1194
				/*
				 * Compare as u64 to ensure vmalloc_limit does
				 * not get truncated. block_end should always
				 * fit in phys_addr_t so there should be no
				 * issue with assignment.
				 */
1195
				lowmem_limit = min_t(u64,
1196 1197
							 vmalloc_limit,
							 block_end);
1198 1199

			/*
1200
			 * Find the first non-pmd-aligned page, and point
1201
			 * memblock_limit at it. This relies on rounding the
1202 1203
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1204 1205
			 *
			 * With this algorithm, the start or end of almost any
1206 1207
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1208 1209 1210 1211 1212
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1213
				if (!IS_ALIGNED(block_start, PMD_SIZE))
1214
					memblock_limit = block_start;
1215
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1216
					memblock_limit = lowmem_limit;
1217
			}
1218 1219 1220

		}
	}
1221

1222 1223
	arm_lowmem_limit = lowmem_limit;

1224
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1225

1226 1227 1228
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

1229
	/*
1230
	 * Round the memblock limit down to a pmd size.  This
1231
	 * helps to ensure that we will allocate memory from the
1232
	 * last full pmd, which should be mapped.
1233
	 */
1234
	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
			phys_addr_t end = memblock_end_of_DRAM();

			pr_notice("Ignoring RAM at %pa-%pa\n",
				  &memblock_limit, &end);
			pr_notice("Consider using a HIGHMEM enabled kernel.\n");

			memblock_remove(memblock_limit, end - memblock_limit);
		}
	}

1248
	memblock_set_current_limit(memblock_limit);
1249 1250
}

1251
static inline void prepare_page_table(void)
1252 1253
{
	unsigned long addr;
1254
	phys_addr_t end;
1255 1256 1257 1258

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
#ifdef CONFIG_KASAN
	/*
	 * KASan's shadow memory inserts itself between the TASK_SIZE
	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
	 */
	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
		pmd_clear(pmd_off_k(addr));
	/*
	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
	 * are using a thumb-compiled kernel, there there will be 8MB more
	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
	 */
	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
		pmd_clear(pmd_off_k(addr));
#else
1275
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1276
		pmd_clear(pmd_off_k(addr));
1277
#endif
1278 1279 1280

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1281
	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1282
#endif
1283
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1284 1285
		pmd_clear(pmd_off_k(addr));

1286 1287 1288 1289
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1290 1291
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1292

1293 1294
	/*
	 * Clear out all the kernel space mappings, except for the first
1295
	 * memory bank, up to the vmalloc region.
1296
	 */
1297
	for (addr = __phys_to_virt(end);
1298
	     addr < VMALLOC_START; addr += PMD_SIZE)
1299 1300 1301
		pmd_clear(pmd_off_k(addr));
}

1302 1303 1304 1305 1306
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1307
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1308
#endif
1309

1310
/*
Russell King's avatar
Russell King committed
1311
 * Reserve the special regions of memory
1312
 */
Russell King's avatar
Russell King committed
1313
void __init arm_mm_memblock_reserve(void)
1314 1315 1316 1317 1318
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1319
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1320 1321 1322 1323 1324 1325

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
Russell King's avatar
Russell King committed
1326
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1327 1328 1329 1330
#endif
}

/*
1331
 * Set up the device mappings.  Since we clear out the page tables for all
1332 1333 1334 1335
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1336
 */
1337
static void __init devicemaps_init(const struct machine_desc *mdesc)
1338 1339 1340
{
	struct map_desc map;
	unsigned long addr;
1341
	void *vectors;
1342 1343 1344 1345

	/*
	 * Allocate the vector page early.
	 */
Russell King's avatar
Russell King committed
1346
	vectors = early_alloc(PAGE_SIZE * 2);
1347 1348

	early_trap_init(vectors);
1349

1350 1351 1352 1353
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1354 1355
		pmd_clear(pmd_off_k(addr));

1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (__atags_pointer) {
		/* create a read-only mapping of the device tree */
		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
		map.virtual = FDT_FIXED_BASE;
		map.length = FDT_FIXED_SIZE;
		map.type = MT_ROM;
		create_mapping(&map);
	}

1365 1366 1367 1368 1369 1370
	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1371
	map.virtual = MODULES_VADDR;
1372
	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1400
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1401 1402
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1403
#ifdef CONFIG_KUSER_HELPERS
1404
	map.type = MT_HIGH_VECTORS;
1405 1406 1407
#else
	map.type = MT_LOW_VECTORS;
#endif
1408 1409 1410 1411
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
Russell King's avatar
Russell King committed
1412
		map.length = PAGE_SIZE * 2;
1413 1414 1415 1416
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

Russell King's avatar
Russell King committed
1417 1418 1419 1420 1421 1422 1423
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1424 1425 1426 1427 1428
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1429 1430
	else
		debug_ll_io_init();
1431
	fill_pmd_gaps();
1432

Rob Herring's avatar
Rob Herring committed
1433 1434 1435
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1444 1445

	/* Enable asynchronous aborts */
1446
	early_abt_enable();
1447 1448
}

Nicolas Pitre's avatar
Nicolas Pitre committed
1449 1450 1451
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
Russell King's avatar
Russell King committed
1452 1453
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
Nicolas Pitre's avatar
Nicolas Pitre committed
1454
#endif
1455 1456 1457

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
Nicolas Pitre's avatar
Nicolas Pitre committed
1458 1459
}

1460 1461
static void __init map_lowmem(void)
{
1462
	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1463
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1464 1465
	phys_addr_t start, end;
	u64 i;
1466 1467

	/* Map all the lowmem memory banks. */
1468
	for_each_mem_range(i, &start, &end) {
1469 1470
		struct map_desc map;

1471 1472
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1473 1474 1475
		if (start >= end)
			break;

1476
		if (end < kernel_x_start) {
1477 1478 1479 1480
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1481

1482 1483 1484 1485 1486 1487 1488
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1517 1518 1519
	}
}

1520
#ifdef CONFIG_ARM_PV_FIXUP
1521
typedef void pgtables_remap(long long offset, unsigned long pgd);
1522 1523
pgtables_remap lpae_pgtables_remap_asm;

1524 1525 1526 1527
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1528
static void __init early_paging_init(const struct machine_desc *mdesc)
1529
{
1530 1531 1532
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1533
	long long offset;
1534

1535
	if (!mdesc->pv_fixup)
1536 1537
		return;

1538
	offset = mdesc->pv_fixup();
1539 1540
	if (offset == 0)
		return;
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	barrier();
1551

1552 1553
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1554

1555 1556 1557
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1558 1559 1560 1561 1562 1563

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1564 1565 1566 1567 1568 1569 1570
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1571
	 */
1572 1573 1574 1575 1576
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1577
	flush_cache_all();
1578 1579

	/*
1580 1581 1582 1583
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1584
	 */
1585
	lpae_pgtables_remap(offset, pa_pgd);
1586

1587 1588 1589
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1590 1591 1592 1593
}

#else

1594
static void __init early_paging_init(const struct machine_desc *mdesc)
1595
{
1596 1597
	long long offset;

1598
	if (!mdesc->pv_fixup)
1599 1600
		return;

1601
	offset = mdesc->pv_fixup();
1602 1603 1604 1605 1606 1607 1608
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1609 1610 1611 1612
}

#endif

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1642 1643 1644 1645
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1646
void __init paging_init(const struct machine_desc *mdesc)
1647 1648 1649
{
	void *zero_page;

1650
	prepare_page_table();
1651
	map_lowmem();
1652
	memblock_set_current_limit(arm_lowmem_limit);
1653
	dma_contiguous_remap();
1654
	early_fixmap_shutdown();
1655
	devicemaps_init(mdesc);
Nicolas Pitre's avatar
Nicolas Pitre committed
1656
	kmap_init();
1657
	tcm_init();
1658 1659 1660

	top_pmd = pmd_off_k(0xffff0000);

Russell King's avatar
Russell King committed
1661 1662
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
Russell King's avatar
Russell King committed
1663

1664
	bootmem_init();
Russell King's avatar
Russell King committed
1665

1666
	empty_zero_page = virt_to_page(zero_page);
1667
	__flush_dcache_page(NULL, empty_zero_page);
1668
}
1669 1670 1671 1672 1673 1674

void __init early_mm_init(const struct machine_desc *mdesc)
{
	build_mem_type_table();
	early_paging_init(mdesc);
}
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

void set_pte_at(struct mm_struct *mm, unsigned long addr,
			      pte_t *ptep, pte_t pteval)
{
	unsigned long ext = 0;

	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
		if (!pte_special(pteval))
			__sync_icache_dcache(pteval);
		ext |= PTE_EXT_NG;
	}

	set_pte_ext(ptep, pteval, ext);
}