An error occurred fetching the project authors.
- 16 Oct, 2023 14 commits
-
-
Mark Rutland authored
In system_supports_address_auth() and system_supports_generic_auth() we use cpus_have_const_cap to check for ARM64_HAS_ADDRESS_AUTH and ARM64_HAS_GENERIC_AUTH respectively, but this is not necessary and alternative_has_cap_*() would bre preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_HAS_ADDRESS_AUTH cpucap is a boot cpu feature which is detected and patched early on the boot CPU before any pointer authentication keys are enabled via their respective SCTLR_ELx.EN* bits. Nothing which uses system_supports_address_auth() is called before the boot alternatives are patched. Thus it is safe for system_supports_address_auth() to use cpus_have_final_boot_cap() to check for ARM64_HAS_ADDRESS_AUTH. The ARM64_HAS_GENERIC_AUTH cpucap is a system feature which is detected on all CPUs, then finalized and patched under setup_system_capabilities(). We use system_supports_generic_auth() in a few places: * The pac_generic_keys_get() and pac_generic_keys_set() functions are only reachable from system calls once userspace is up and running. As cpucaps are finalzied long before userspace runs, these can safely use alternative_has_cap_*() or cpus_have_final_cap(). * The ptrauth_prctl_reset_keys() function is only reachable from system calls once userspace is up and running. As cpucaps are finalized long before userspace runs, this can safely use alternative_has_cap_*() or cpus_have_final_cap(). * The ptrauth_keys_install_user() function is used during context-switch. This is called prior to alternatives being applied, and so cannot use cpus_have_final_cap(), but as this only needs to switch the APGA key for userspace tasks, it's safe to use alternative_has_cap_*(). * The ptrauth_keys_init_user() function is used to initialize userspace keys, and is only reachable after system cpucaps have been finalized and patched. Thus this can safely use alternative_has_cap_*() or cpus_have_final_cap(). * The system_has_full_ptr_auth() helper function is only used by KVM code, which is only reachable after system cpucaps have been finalized and patched. Thus this can safely use alternative_has_cap_*() or cpus_have_final_cap(). This patch modifies system_supports_address_auth() to use cpus_have_final_boot_cap() to check ARM64_HAS_ADDRESS_AUTH, and modifies system_supports_generic_auth() to use alternative_has_cap_unlikely() to check ARM64_HAS_GENERIC_AUTH. In either case this will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The use of cpus_have_final_boot_cap() will make it easier to spot if code is chaanged such that these run before the relevant cpucap is guaranteed to have been finalized. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
Currently we have a negative cpucap which describes the *absence* of FP/SIMD rather than *presence* of FP/SIMD. This largely works, but is somewhat awkward relative to other cpucaps that describe the presence of a feature, and it would be nicer to have a cpucap which describes the presence of FP/SIMD: * This will allow the cpucap to be treated as a standard ARM64_CPUCAP_SYSTEM_FEATURE, which can be detected with the standard has_cpuid_feature() function and ARM64_CPUID_FIELDS() description. * This ensures that the cpucap will only transition from not-present to present, reducing the risk of unintentional and/or unsafe usage of FP/SIMD before cpucaps are finalized. * This will allow using arm64_cpu_capabilities::cpu_enable() to enable the use of FP/SIMD later, with FP/SIMD being disabled at boot time otherwise. This will ensure that any unintentional and/or unsafe usage of FP/SIMD prior to this is trapped, and will ensure that FP/SIMD is never unintentionally enabled for userspace in mismatched big.LITTLE systems. This patch replaces the negative ARM64_HAS_NO_FPSIMD cpucap with a positive ARM64_HAS_FPSIMD cpucap, making changes as described above. Note that as FP/SIMD will now be trapped when not supported system-wide, do_fpsimd_acc() must handle these traps in the same way as for SVE and SME. The commentary in fpsimd_restore_current_state() is updated to describe the new scheme. No users of system_supports_fpsimd() need to know that FP/SIMD is available prior to alternatives being patched, so this is updated to use alternative_has_cap_likely() to check for the ARM64_HAS_FPSIMD cpucap, without generating code to test the system_cpucaps bitmap. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
The arm64_cpu_capabilities::cpu_enable() callbacks for SVE, SME, SME2, and FA64 are named with an unusual "${feature}_kernel_enable" pattern rather than the much more common "cpu_enable_${feature}". Now that we only use these as cpu_enable() callbacks, it would be nice to have them match the usual scheme. This patch renames the cpu_enable() callbacks to match this scheme. At the same time, the comment above cpu_enable_sve() is removed for consistency with the other cpu_enable() callbacks. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
Both sme2_kernel_enable() and fa64_kernel_enable() need to run after sme_kernel_enable(). This happens to be true today as ARM64_SME has a lower index than either ARM64_SME2 or ARM64_SME_FA64, and both functions have a comment to this effect. It would be nicer to have a build-time assertion like we for for can_use_gic_priorities() and has_gic_prio_relaxed_sync(), as that way it will be harder to miss any potential breakage. This patch replaces the comments with build-time assertions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
When a CPUs onlined we first probe for supported features and propetites, and then we subsequently enable features that have been detected. This is a little problematic for SVE and SME, as some properties (e.g. vector lengths) cannot be probed while they are disabled. Due to this, the code probing for SVE properties has to enable SVE for EL1 prior to proving, and the code probing for SME properties has to enable SME for EL1 prior to probing. We never disable SVE or SME for EL1 after probing. It would be a little nicer to transiently enable SVE and SME during probing, leaving them both disabled unless explicitly enabled, as this would make it much easier to catch unintentional usage (e.g. when they are not present system-wide). This patch reworks the SVE and SME feature probing code to only transiently enable support at EL1, disabling after probing is complete. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
Much of the arm64 KVM code uses cpus_have_const_cap() to check for cpucaps, but this is unnecessary and it would be preferable to use cpus_have_final_cap(). For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. KVM is initialized after cpucaps have been finalized and alternatives have been patched. Since commit: d86de40d ("arm64: cpufeature: upgrade hyp caps to final") ... use of cpus_have_const_cap() in hyp code is automatically converted to use cpus_have_final_cap(): | static __always_inline bool cpus_have_const_cap(int num) | { | if (is_hyp_code()) | return cpus_have_final_cap(num); | else if (system_capabilities_finalized()) | return __cpus_have_const_cap(num); | else | return cpus_have_cap(num); | } Thus, converting hyp code to use cpus_have_final_cap() directly will not result in any functional change. Non-hyp KVM code is also not executed until cpucaps have been finalized, and it would be preferable to extent the same treatment to this code and use cpus_have_final_cap() directly. This patch converts instances of cpus_have_const_cap() in KVM-only code over to cpus_have_final_cap(). As all of this code runs after cpucaps have been finalized, there should be no functional change as a result of this patch, but the redundant instructions generated by cpus_have_const_cap() will be removed from the non-hyp KVM code. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
The arm64_cpu_capabilities::cpu_enable callbacks are intended for cpu-local feature enablement (e.g. poking system registers). These get called for each online CPU when boot/system cpucaps get finalized and enabled, and get called whenever a CPU is subsequently onlined. For KPTI with the ARM64_UNMAP_KERNEL_AT_EL0 cpucap, we use the kpti_install_ng_mappings() function as the cpu_enable callback. This does a mixture of cpu-local configuration (setting VBAR_EL1 to the appropriate trampoline vectors) and some global configuration (rewriting the swapper page tables to sue non-glboal mappings) that must happen at most once. This patch splits kpti_install_ng_mappings() into a cpu-local cpu_enable_kpti() initialization function and a system-wide kpti_install_ng_mappings() function. The cpu_enable_kpti() function is responsible for selecting the necessary cpu-local vectors each time a CPU is onlined, and the kpti_install_ng_mappings() function performs the one-time rewrite of the translation tables too use non-global mappings. Splitting the two makes the code a bit easier to follow and also allows the page table rewriting code to be marked as __init such that it can be freed after use. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
For ARM64_WORKAROUND_2658417, we use a cpu_enable() callback to hide the ID_AA64ISAR1_EL1.BF16 ID register field. This is a little awkward as CPUs may attempt to apply the workaround concurrently, requiring that we protect the bulk of the callback with a raw_spinlock, and requiring some pointless work every time a CPU is subsequently hotplugged in. This patch makes this a little simpler by handling the masking once at boot time. A new user_feature_fixup() function is called at the start of setup_user_features() to mask the feature, matching the style of elf_hwcap_fixup(). The ARM64_WORKAROUND_2658417 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Note that the ARM64_WORKAROUND_2658417 capability is matched with ERRATA_MIDR_RANGE(), which implicitly gives the capability a ARM64_CPUCAP_LOCAL_CPU_ERRATUM type, which forbids the late onlining of a CPU with the erratum if the erratum was not present at boot time. Therefore this patch doesn't change the behaviour for late onlining. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
Currently setup_cpu_features() handles a mixture of one-time kernel feature setup (e.g. cpucaps) and one-time user feature setup (e.g. ELF hwcaps). Subsequent patches will rework other one-time setup and expand the logic currently in setup_cpu_features(), and in preparation for this it would be helpful to split the kernel and user setup into separate functions. This patch splits setup_user_features() out of setup_cpu_features(), with a few additional cleanups of note: * setup_cpu_features() is renamed to setup_system_features() to make it clear that it handles system-wide feature setup rather than cpu-local feature setup. * setup_system_capabilities() is folded into setup_system_features(). * Presence of TTBR0 pan is logged immediately after update_cpu_capabilities(), so that this is guaranteed to appear alongside all the other detected system cpucaps. * The 'cwg' variable is removed as its value is only consumed once and it's simpler to use cache_type_cwg() directly without assigning its return value to a variable. * The call to setup_user_features() is moved after alternatives are patched, which will allow user feature setup code to depend on alternative branches and allow for simplifications in subsequent patches. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
The cpus_have_final_cap() function can be used to test a cpucap while also verifying that we do not consume the cpucap until system capabilities have been finalized. It would be helpful if we could do likewise for boot cpucaps. This patch adds a new cpus_have_final_boot_cap() helper which can be used to test a cpucap while also verifying that boot capabilities have been finalized. Users will be added in subsequent patches. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
Many cpucaps can only be set when certain CONFIG_* options are selected, and we need to check the CONFIG_* option before the cap in order to avoid generating redundant code. Due to this, we have a growing number of helpers in <asm/cpufeature.h> of the form: | static __always_inline bool system_supports_foo(void) | { | return IS_ENABLED(CONFIG_ARM64_FOO) && | cpus_have_const_cap(ARM64_HAS_FOO); | } This is unfortunate as it forces us to use cpus_have_const_cap() unnecessarily, resulting in redundant code being generated by the compiler. In the vast majority of cases, we only require that feature checks indicate the presence of a feature after cpucaps have been finalized, and so it would be sufficient to use alternative_has_cap_*(). However some code needs to handle a feature before alternatives have been patched, and must test the system_cpucaps bitmap via cpus_have_const_cap(). In other cases we'd like to check for unintentional usage of a cpucap before alternatives are patched, and so it would be preferable to use cpus_have_final_cap(). Placing the IS_ENABLED() checks in each callsite is tedious and error-prone, and the same applies for writing wrappers for each comination of cpucap and alternative_has_cap_*() / cpus_have_cap() / cpus_have_final_cap(). It would be nicer if we could centralize the knowledge of which cpucaps are possible, and have alternative_has_cap_*(), cpus_have_cap(), and cpus_have_final_cap() handle this automatically. This patch adds a new cpucap_is_possible() function which will be responsible for checking the CONFIG_* option, and updates the low-level cpucap checks to use this. The existing CONFIG_* checks in <asm/cpufeature.h> are moved over to cpucap_is_possible(), but the (now trival) wrapper functions are retained for now. There should be no functional change as a result of this patch alone. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
For clarity it would be nice to factor cpucap manipulation out of <asm/cpufeature.h>, and the obvious place would be <asm/cpucap.h>, but this will clash somewhat with <generated/asm/cpucaps.h>. Rename <generated/asm/cpucaps.h> to <generated/asm/cpucap-defs.h>, matching what we do for <generated/asm/sysreg-defs.h>, and introduce a new <asm/cpucaps.h> which includes the generated header. Subsequent patches will fill out <asm/cpucaps.h>. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
When KPTI is in use, we cannot register a runstate region as XEN requires that this is always a valid VA, which we cannot guarantee. Due to this, xen_starting_cpu() must avoid registering each CPU's runstate region, and xen_guest_init() must avoid setting up features that depend upon it. We tried to ensure that in commit: f88af722 (" xen/arm: do not setup the runstate info page if kpti is enabled") ... where we added checks for xen_kernel_unmapped_at_usr(), which wraps arm64_kernel_unmapped_at_el0() on arm64 and is always false on 32-bit arm. Unfortunately, as xen_guest_init() is an early_initcall, this happens before secondary CPUs are booted and arm64 has finalized the ARM64_UNMAP_KERNEL_AT_EL0 cpucap which backs arm64_kernel_unmapped_at_el0(), and so this can subsequently be set as secondary CPUs are onlined. On a big.LITTLE system where the boot CPU does not require KPTI but some secondary CPUs do, this will result in xen_guest_init() intializing features that depend on the runstate region, and xen_starting_cpu() registering the runstate region on some CPUs before KPTI is subsequent enabled, resulting the the problems the aforementioned commit tried to avoid. Handle this more robsutly by deferring the initialization of the runstate region until secondary CPUs have been initialized and the ARM64_UNMAP_KERNEL_AT_EL0 cpucap has been finalized. The per-cpu work is moved into a new hotplug starting function which is registered later when we're certain that KPTI will not be used. Fixes: f88af722 ("xen/arm: do not setup the runstate info page if kpti is enabled") Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Bertrand Marquis <bertrand.marquis@arm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
Mark Rutland authored
We attempt to initialize each CPU's arch_timer event stream in arch_timer_evtstrm_enable(), which we call from the arch_timer_starting_cpu() cpu hotplug callback which is registered early in boot. As this is registered before we initialize the system cpucaps, the test for ARM64_HAS_ECV will always be false for CPUs present at boot time, and will only be taken into account for CPUs onlined late (including those which are hotplugged out and in again). Due to this, CPUs present and boot time may not use the intended divider and scale factor to generate the event stream, and may differ from other CPUs. Correct this by only initializing the event stream after cpucaps have been finalized, registering a separate CPU hotplug callback for the event stream configuration. Since the caps must be finalized by this point, use cpus_have_final_cap() to verify this. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-
- 24 Sep, 2023 4 commits
-
-
Linus Torvalds authored
-
git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds authored
Pull kvm fixes from Paolo Bonzini: "ARM: - Fix EL2 Stage-1 MMIO mappings where a random address was used - Fix SMCCC function number comparison when the SVE hint is set RISC-V: - Fix KVM_GET_REG_LIST API for ISA_EXT registers - Fix reading ISA_EXT register of a missing extension - Fix ISA_EXT register handling in get-reg-list test - Fix filtering of AIA registers in get-reg-list test x86: - Fixes for TSC_AUX virtualization - Stop zapping page tables asynchronously, since we don't zap them as often as before" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: SVM: Do not use user return MSR support for virtualized TSC_AUX KVM: SVM: Fix TSC_AUX virtualization setup KVM: SVM: INTERCEPT_RDTSCP is never intercepted anyway KVM: x86/mmu: Stop zapping invalidated TDP MMU roots asynchronously KVM: x86/mmu: Do not filter address spaces in for_each_tdp_mmu_root_yield_safe() KVM: x86/mmu: Open code leaf invalidation from mmu_notifier KVM: riscv: selftests: Selectively filter-out AIA registers KVM: riscv: selftests: Fix ISA_EXT register handling in get-reg-list RISC-V: KVM: Fix riscv_vcpu_get_isa_ext_single() for missing extensions RISC-V: KVM: Fix KVM_GET_REG_LIST API for ISA_EXT registers KVM: selftests: Assert that vasprintf() is successful KVM: arm64: nvhe: Ignore SVE hint in SMCCC function ID KVM: arm64: Properly return allocated EL2 VA from hyp_alloc_private_va_range()
-
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-traceLinus Torvalds authored
Pull tracing fixes from Steven Rostedt: - Fix the "bytes" output of the per_cpu stat file The tracefs/per_cpu/cpu*/stats "bytes" was giving bogus values as the accounting was not accurate. It is suppose to show how many used bytes are still in the ring buffer, but even when the ring buffer was empty it would still show there were bytes used. - Fix a bug in eventfs where reading a dynamic event directory (open) and then creating a dynamic event that goes into that diretory screws up the accounting. On close, the newly created event dentry will get a "dput" without ever having a "dget" done for it. The fix is to allocate an array on dir open to save what dentries were actually "dget" on, and what ones to "dput" on close. * tag 'trace-v6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: eventfs: Remember what dentries were created on dir open ring-buffer: Fix bytes info in per_cpu buffer stats
-
git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxlLinus Torvalds authored
Pull cxl fixes from Dan Williams: "A collection of regression fixes, bug fixes, and some small cleanups to the Compute Express Link code. The regressions arrived in the v6.5 dev cycle and missed the v6.6 merge window due to my personal absences this cycle. The most important fixes are for scenarios where the CXL subsystem fails to parse valid region configurations established by platform firmware. This is important because agreement between OS and BIOS on the CXL configuration is fundamental to implementing "OS native" error handling, i.e. address translation and component failure identification. Other important fixes are a driver load error when the BIOS lets the Linux PCI core handle AER events, but not CXL memory errors. The other fixex might have end user impact, but for now are only known to trigger in our test/emulation environment. Summary: - Fix multiple scenarios where platform firmware defined regions fail to be assembled by the CXL core. - Fix a spurious driver-load failure on platforms that enable OS native AER, but not OS native CXL error handling. - Fix a regression detecting "poison" commands when "security" commands are also defined. - Fix a cxl_test regression with the move to centralize CXL port register enumeration in the CXL core. - Miscellaneous small fixes and cleanups" * tag 'cxl-fixes-6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: cxl/acpi: Annotate struct cxl_cxims_data with __counted_by cxl/port: Fix cxl_test register enumeration regression cxl/region: Refactor granularity select in cxl_port_setup_targets() cxl/region: Match auto-discovered region decoders by HPA range cxl/mbox: Fix CEL logic for poison and security commands cxl/pci: Replace host_bridge->native_aer with pcie_aer_is_native() PCI/AER: Export pcie_aer_is_native() cxl/pci: Fix appropriate checking for _OSC while handling CXL RAS registers
-
- 23 Sep, 2023 14 commits
-
-
git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linuxLinus Torvalds authored
Pull gpio fixes from Bartosz Golaszewski: - fix an invalid usage of __free(kfree) leading to kfreeing an ERR_PTR() - fix an irq domain leak in gpio-tb10x - MAINTAINERS update * tag 'gpio-fixes-for-v6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linux: gpio: sim: fix an invalid __free() usage gpio: tb10x: Fix an error handling path in tb10x_gpio_probe() MAINTAINERS: gpio-regmap: make myself a maintainer of it
-
Linus Torvalds authored
Merge tag 'mm-hotfixes-stable-2023-09-23-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "13 hotfixes, 10 of which pertain to post-6.5 issues. The other three are cc:stable" * tag 'mm-hotfixes-stable-2023-09-23-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: proc: nommu: fix empty /proc/<pid>/maps filemap: add filemap_map_order0_folio() to handle order0 folio proc: nommu: /proc/<pid>/maps: release mmap read lock mm: memcontrol: fix GFP_NOFS recursion in memory.high enforcement pidfd: prevent a kernel-doc warning argv_split: fix kernel-doc warnings scatterlist: add missing function params to kernel-doc selftests/proc: fixup proc-empty-vm test after KSM changes revert "scripts/gdb/symbols: add specific ko module load command" selftests: link libasan statically for tests with -fsanitize=address task_work: add kerneldoc annotation for 'data' argument mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy list sh: mm: re-add lost __ref to ioremap_prot() to fix modpost warning
-
git://git.samba.org/sfrench/cifs-2.6Linus Torvalds authored
Pull smb client fixes from Steve French: "Six smb3 client fixes, including three for stable, from the SMB plugfest (testing event) this week: - Reparse point handling fix (found when investigating dir enumeration when fifo in dir) - Fix excessive thread creation for dir lease cleanup - UAF fix in negotiate path - remove duplicate error message mapping and fix confusing warning message - add dynamic trace point to improve debugging RDMA connection attempts" * tag '6.6-rc2-smb3-client-fixes' of git://git.samba.org/sfrench/cifs-2.6: smb3: fix confusing debug message smb: client: handle STATUS_IO_REPARSE_TAG_NOT_HANDLED smb3: remove duplicate error mapping cifs: Fix UAF in cifs_demultiplex_thread() smb3: do not start laundromat thread when dir leases disabled smb3: Add dynamic trace points for RDMA (smbdirect) reconnect
-
git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linuxLinus Torvalds authored
Pull i2c fixes from Wolfram Sang: "A set of I2C driver fixes. Mostly fixing resource leaks or sanity checks" * tag 'i2c-for-6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: i2c: xiic: Correct return value check for xiic_reinit() i2c: mux: gpio: Add missing fwnode_handle_put() i2c: mux: demux-pinctrl: check the return value of devm_kstrdup() i2c: designware: fix __i2c_dw_disable() in case master is holding SCL low i2c: i801: unregister tco_pdev in i801_probe() error path
-
Charles Keepax authored
The code was accidentally mixing new and old style macros, update the macros used to remove an unused function warning whilst building with no PM enabled in the config. Fixes: ace6d144 ("mfd: cs42l43: Add support for cs42l43 core driver") Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com> Link: https://lore.kernel.org/all/20230822114914.340359-1-ckeepax@opensource.cirrus.com/Reviewed-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Lee Jones <lee@kernel.org> Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Linus Torvalds authored
Merge tag 'loongarch-fixes-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson Pull LoongArch fixes from Huacai Chen: "Fix lockdep, fix a boot failure, fix some build warnings, fix document links, and some cleanups" * tag 'loongarch-fixes-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: docs/zh_CN/LoongArch: Update the links of ABI docs/LoongArch: Update the links of ABI LoongArch: Don't inline kasan_mem_to_shadow()/kasan_shadow_to_mem() kasan: Cleanup the __HAVE_ARCH_SHADOW_MAP usage LoongArch: Set all reserved memblocks on Node#0 at initialization LoongArch: Remove dead code in relocate_new_kernel LoongArch: Use _UL() and _ULL() LoongArch: Fix some build warnings with W=1 LoongArch: Fix lockdep static memory detection
-
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linuxLinus Torvalds authored
Pull s390 fixes from Vasily Gorbik: - Fix potential string buffer overflow in hypervisor user-defined certificates handling - Update defconfigs * tag 's390-6.6-3' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: s390/cert_store: fix string length handling s390: update defconfigs
-
git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds authored
Pull iomap fixes from Darrick Wong: - Return EIO on bad inputs to iomap_to_bh instead of BUGging, to deal less poorly with block device io racing with block device resizing - Fix a stale page data exposure bug introduced in 6.6-rc1 when unsharing a file range that is not in the page cache * tag 'iomap-6.6-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: iomap: convert iomap_unshare_iter to use large folios iomap: don't skip reading in !uptodate folios when unsharing a range iomap: handle error conditions more gracefully in iomap_to_bh
-
https://github.com/kvm-riscv/linuxPaolo Bonzini authored
KVM/riscv fixes for 6.6, take #1 - Fix KVM_GET_REG_LIST API for ISA_EXT registers - Fix reading ISA_EXT register of a missing extension - Fix ISA_EXT register handling in get-reg-list test - Fix filtering of AIA registers in get-reg-list test
-
Tom Lendacky authored
When the TSC_AUX MSR is virtualized, the TSC_AUX value is swap type "B" within the VMSA. This means that the guest value is loaded on VMRUN and the host value is restored from the host save area on #VMEXIT. Since the value is restored on #VMEXIT, the KVM user return MSR support for TSC_AUX can be replaced by populating the host save area with the current host value of TSC_AUX. And, since TSC_AUX is not changed by Linux post-boot, the host save area can be set once in svm_hardware_enable(). This eliminates the two WRMSR instructions associated with the user return MSR support. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <d381de38eb0ab6c9c93dda8503b72b72546053d7.1694811272.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Tom Lendacky authored
The checks for virtualizing TSC_AUX occur during the vCPU reset processing path. However, at the time of initial vCPU reset processing, when the vCPU is first created, not all of the guest CPUID information has been set. In this case the RDTSCP and RDPID feature support for the guest is not in place and so TSC_AUX virtualization is not established. This continues for each vCPU created for the guest. On the first boot of an AP, vCPU reset processing is executed as a result of an APIC INIT event, this time with all of the guest CPUID information set, resulting in TSC_AUX virtualization being enabled, but only for the APs. The BSP always sees a TSC_AUX value of 0 which probably went unnoticed because, at least for Linux, the BSP TSC_AUX value is 0. Move the TSC_AUX virtualization enablement out of the init_vmcb() path and into the vcpu_after_set_cpuid() path to allow for proper initialization of the support after the guest CPUID information has been set. With the TSC_AUX virtualization support now in the vcpu_set_after_cpuid() path, the intercepts must be either cleared or set based on the guest CPUID input. Fixes: 296d5a17 ("KVM: SEV-ES: Use V_TSC_AUX if available instead of RDTSC/MSR_TSC_AUX intercepts") Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <4137fbcb9008951ab5f0befa74a0399d2cce809a.1694811272.git.thomas.lendacky@amd.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
svm_recalc_instruction_intercepts() is always called at least once before the vCPU is started, so the setting or clearing of the RDTSCP intercept can be dropped from the TSC_AUX virtualization support. Extracted from a patch by Tom Lendacky. Cc: stable@vger.kernel.org Fixes: 296d5a17 ("KVM: SEV-ES: Use V_TSC_AUX if available instead of RDTSC/MSR_TSC_AUX intercepts") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Stop zapping invalidate TDP MMU roots via work queue now that KVM preserves TDP MMU roots until they are explicitly invalidated. Zapping roots asynchronously was effectively a workaround to avoid stalling a vCPU for an extended during if a vCPU unloaded a root, which at the time happened whenever the guest toggled CR0.WP (a frequent operation for some guest kernels). While a clever hack, zapping roots via an unbound worker had subtle, unintended consequences on host scheduling, especially when zapping multiple roots, e.g. as part of a memslot. Because the work of zapping a root is no longer bound to the task that initiated the zap, things like the CPU affinity and priority of the original task get lost. Losing the affinity and priority can be especially problematic if unbound workqueues aren't affined to a small number of CPUs, as zapping multiple roots can cause KVM to heavily utilize the majority of CPUs in the system, *beyond* the CPUs KVM is already using to run vCPUs. When deleting a memslot via KVM_SET_USER_MEMORY_REGION, the async root zap can result in KVM occupying all logical CPUs for ~8ms, and result in high priority tasks not being scheduled in in a timely manner. In v5.15, which doesn't preserve unloaded roots, the issues were even more noticeable as KVM would zap roots more frequently and could occupy all CPUs for 50ms+. Consuming all CPUs for an extended duration can lead to significant jitter throughout the system, e.g. on ChromeOS with virtio-gpu, deleting memslots is a semi-frequent operation as memslots are deleted and recreated with different host virtual addresses to react to host GPU drivers allocating and freeing GPU blobs. On ChromeOS, the jitter manifests as audio blips during games due to the audio server's tasks not getting scheduled in promptly, despite the tasks having a high realtime priority. Deleting memslots isn't exactly a fast path and should be avoided when possible, and ChromeOS is working towards utilizing MAP_FIXED to avoid the memslot shenanigans, but KVM is squarely in the wrong. Not to mention that removing the async zapping eliminates a non-trivial amount of complexity. Note, one of the subtle behaviors hidden behind the async zapping is that KVM would zap invalidated roots only once (ignoring partial zaps from things like mmu_notifier events). Preserve this behavior by adding a flag to identify roots that are scheduled to be zapped versus roots that have already been zapped but not yet freed. Add a comment calling out why kvm_tdp_mmu_invalidate_all_roots() can encounter invalid roots, as it's not at all obvious why zapping invalidated roots shouldn't simply zap all invalid roots. Reported-by: Pattara Teerapong <pteerapong@google.com> Cc: David Stevens <stevensd@google.com> Cc: Yiwei Zhang<zzyiwei@google.com> Cc: Paul Hsia <paulhsia@google.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230916003916.2545000-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
All callers except the MMU notifier want to process all address spaces. Remove the address space ID argument of for_each_tdp_mmu_root_yield_safe() and switch the MMU notifier to use __for_each_tdp_mmu_root_yield_safe(). Extracted out of a patch by Sean Christopherson <seanjc@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 22 Sep, 2023 8 commits
-
-
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linuxLinus Torvalds authored
Pull hardening fixes from Kees Cook: - Fix UAPI stddef.h to avoid C++-ism (Alexey Dobriyan) - Fix harmless UAPI stddef.h header guard endif (Alexey Dobriyan) * tag 'hardening-v6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: uapi: stddef.h: Fix __DECLARE_FLEX_ARRAY for C++ uapi: stddef.h: Fix header guard location
-
git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds authored
Pull xfs fixes from Chandan Babu: - Fix an integer overflow bug when processing an fsmap call - Fix crash due to CPU hot remove event racing with filesystem mount operation - During read-only mount, XFS does not allow the contents of the log to be recovered when there are one or more unrecognized rcompat features in the primary superblock, since the log might have intent items which the kernel does not know how to process - During recovery of log intent items, XFS now reserves log space sufficient for one cycle of a permanent transaction to execute. Otherwise, this could lead to livelocks due to non-availability of log space - On an fs which has an ondisk unlinked inode list, trying to delete a file or allocating an O_TMPFILE file can cause the fs to the shutdown if the first inode in the ondisk inode list is not present in the inode cache. The bug is solved by explicitly loading the first inode in the ondisk unlinked inode list into the inode cache if it is not already cached A similar problem arises when the uncached inode is present in the middle of the ondisk unlinked inode list. This second bug is triggered when executing operations like quotacheck and bulkstat. In this case, XFS now reads in the entire ondisk unlinked inode list - Enable LARP mode only on recent v5 filesystems - Fix a out of bounds memory access in scrub - Fix a performance bug when locating the tail of the log during mounting a filesystem * tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: xfs: use roundup_pow_of_two instead of ffs during xlog_find_tail xfs: only call xchk_stats_merge after validating scrub inputs xfs: require a relatively recent V5 filesystem for LARP mode xfs: make inode unlinked bucket recovery work with quotacheck xfs: load uncached unlinked inodes into memory on demand xfs: reserve less log space when recovering log intent items xfs: fix log recovery when unknown rocompat bits are set xfs: reload entire unlinked bucket lists xfs: allow inode inactivation during a ro mount log recovery xfs: use i_prev_unlinked to distinguish inodes that are not on the unlinked list xfs: remove CPU hotplug infrastructure xfs: remove the all-mounts list xfs: use per-mount cpumask to track nonempty percpu inodegc lists xfs: fix an agbno overflow in __xfs_getfsmap_datadev xfs: fix per-cpu CIL structure aggregation racing with dying cpus xfs: fix select in config XFS_ONLINE_SCRUB_STATS
-
Kees Cook authored
Prepare for the coming implementation by GCC and Clang of the __counted_by attribute. Flexible array members annotated with __counted_by can have their accesses bounds-checked at run-time checking via CONFIG_UBSAN_BOUNDS (for array indexing) and CONFIG_FORTIFY_SOURCE (for strcpy/memcpy-family functions). As found with Coccinelle[1], add __counted_by for struct cxl_cxims_data. Additionally, since the element count member must be set before accessing the annotated flexible array member, move its initialization earlier. [1] https://github.com/kees/kernel-tools/blob/trunk/coccinelle/examples/counted_by.cocci Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jonathan Cameron <jonathan.cameron@huawei.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Alison Schofield <alison.schofield@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: linux-cxl@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Reviewed-by: Dave Jiang <dave.jiang@intel.com> Link: https://lore.kernel.org/r/20230922175319.work.096-kees@kernel.orgSigned-off-by: Dan Williams <dan.j.williams@intel.com>
-
Dan Williams authored
The cxl_test unit test environment models a CXL topology for sysfs/user-ABI regression testing. It uses interface mocking via the "--wrap=" linker option to redirect cxl_core routines that parse hardware registers with versions that just publish objects, like devm_cxl_enumerate_decoders(). Starting with: Commit 19ab69a6 ("cxl/port: Store the port's Component Register mappings in struct cxl_port") ...port register enumeration is moved into devm_cxl_add_port(). This conflicts with the "cxl_test avoids emulating registers stance" so either the port code needs to be refactored (too violent), or modified so that register enumeration is skipped on "fake" cxl_test ports (annoying, but straightforward). This conflict has happened previously and the "check for platform device" workaround to avoid instrusive refactoring was deployed in those scenarios. In general, refactoring should only benefit production code, test code needs to remain minimally instrusive to the greatest extent possible. This was missed previously because it may sometimes just cause warning messages to be emitted, but it can also cause test failures. The backport to -stable is only nice to have for clean cxl_test runs. Fixes: 19ab69a6 ("cxl/port: Store the port's Component Register mappings in struct cxl_port") Cc: stable@vger.kernel.org Reported-by: Alison Schofield <alison.schofield@intel.com> Reviewed-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Dave Jiang <dave.jiang@intel.com> Link: https://lore.kernel.org/r/169476525052.1013896.6235102957693675187.stgit@dwillia2-xfh.jf.intel.comSigned-off-by: Dan Williams <dan.j.williams@intel.com>
-
Steven Rostedt (Google) authored
Using the following code with libtracefs: int dfd; // create the directory events/kprobes/kp1 tracefs_kprobe_raw(NULL, "kp1", "schedule_timeout", "time=$arg1"); // Open the kprobes directory dfd = tracefs_instance_file_open(NULL, "events/kprobes", O_RDONLY); // Do a lookup of the kprobes/kp1 directory (by looking at enable) tracefs_file_exists(NULL, "events/kprobes/kp1/enable"); // Now create a new entry in the kprobes directory tracefs_kprobe_raw(NULL, "kp2", "schedule_hrtimeout", "expires=$arg1"); // Do another lookup to create the dentries tracefs_file_exists(NULL, "events/kprobes/kp2/enable")) // Close the directory close(dfd); What happened above, the first open (dfd) will call dcache_dir_open_wrapper() that will create the dentries and up their ref counts. Now the creation of "kp2" will add another dentry within the kprobes directory. Upon the close of dfd, eventfs_release() will now do a dput for all the entries in kprobes. But this is where the problem lies. The open only upped the dentry of kp1 and not kp2. Now the close is decrementing both kp1 and kp2, which causes kp2 to get a negative count. Doing a "trace-cmd reset" which deletes all the kprobes cause the kernel to crash! (due to the messed up accounting of the ref counts). To solve this, save all the dentries that are opened in the dcache_dir_open_wrapper() into an array, and use this array to know what dentries to do a dput on in eventfs_release(). Since the dcache_dir_open_wrapper() calls dcache_dir_open() which uses the file->private_data, we need to also add a wrapper around dcache_readdir() that uses the cursor assigned to the file->private_data. This is because the dentries need to also be saved in the file->private_data. To do this create the structure: struct dentry_list { void *cursor; struct dentry **dentries; }; Which will hold both the cursor and the dentries. Some shuffling around is needed to make sure that dcache_dir_open() and dcache_readdir() only see the cursor. Link: https://lore.kernel.org/linux-trace-kernel/20230919211804.230edf1e@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20230922163446.1431d4fa@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ajay Kaher <akaher@vmware.com> Fixes: 63940449 ("eventfs: Implement eventfs lookup, read, open functions") Reported-by: "Masami Hiramatsu (Google)" <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
-
Zheng Yejian authored
The 'bytes' info in file 'per_cpu/cpu<X>/stats' means the number of bytes in cpu buffer that have not been consumed. However, currently after consuming data by reading file 'trace_pipe', the 'bytes' info was not changed as expected. # cat per_cpu/cpu0/stats entries: 0 overrun: 0 commit overrun: 0 bytes: 568 <--- 'bytes' is problematical !!! oldest event ts: 8651.371479 now ts: 8653.912224 dropped events: 0 read events: 8 The root cause is incorrect stat on cpu_buffer->read_bytes. To fix it: 1. When stat 'read_bytes', account consumed event in rb_advance_reader(); 2. When stat 'entries_bytes', exclude the discarded padding event which is smaller than minimum size because it is invisible to reader. Then use rb_page_commit() instead of BUF_PAGE_SIZE at where accounting for page-based read/remove/overrun. Also correct the comments of ring_buffer_bytes_cpu() in this patch. Link: https://lore.kernel.org/linux-trace-kernel/20230921125425.1708423-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Fixes: c64e148a ("trace: Add ring buffer stats to measure rate of events") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
-
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pmLinus Torvalds authored
Pull thermal control fix from Rafael Wysocki: "Unbreak the trip point update sysfs interface that has been broken since the 6.3 cycle (Rafael Wysocki)" * tag 'thermal-6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: thermal: sysfs: Fix trip_point_hyst_store()
-
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pmLinus Torvalds authored
Pull ACPI fixes from Rafael Wysocki: "These fix a general ACPI processor driver regression and an ia64 build issue, both introduced recently. Specifics: - Fix recently introduced uninitialized memory access issue in the ACPI processor driver (Michal Wilczynski) - Fix ia64 build inadvertently broken by recent ACPI processor driver changes, which is prudent to do for 6.6 even though ia64 support is slated for removal in 6.7 (Ard Biesheuvel)" * tag 'acpi-6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: ACPI: processor: Fix uninitialized access of buf in acpi_set_pdc_bits() acpi: Provide ia64 dummy implementation of acpi_proc_quirk_mwait_check()
-