1. 03 Apr, 2019 5 commits
  2. 27 Mar, 2019 31 commits
  3. 23 Mar, 2019 4 commits
    • Greg Kroah-Hartman's avatar
      Linux 4.9.165 · 1c453afc
      Greg Kroah-Hartman authored
      1c453afc
    • Wanpeng Li's avatar
      KVM: X86: Fix residual mmio emulation request to userspace · 5e29da06
      Wanpeng Li authored
      commit bbeac283 upstream.
      
      Reported by syzkaller:
      
      The kvm-intel.unrestricted_guest=0
      
         WARNING: CPU: 5 PID: 1014 at /home/kernel/data/kvm/arch/x86/kvm//x86.c:7227 kvm_arch_vcpu_ioctl_run+0x38b/0x1be0 [kvm]
         CPU: 5 PID: 1014 Comm: warn_test Tainted: G        W  OE   4.13.0-rc3+ #8
         RIP: 0010:kvm_arch_vcpu_ioctl_run+0x38b/0x1be0 [kvm]
         Call Trace:
          ? put_pid+0x3a/0x50
          ? rcu_read_lock_sched_held+0x79/0x80
          ? kmem_cache_free+0x2f2/0x350
          kvm_vcpu_ioctl+0x340/0x700 [kvm]
          ? kvm_vcpu_ioctl+0x340/0x700 [kvm]
          ? __fget+0xfc/0x210
          do_vfs_ioctl+0xa4/0x6a0
          ? __fget+0x11d/0x210
          SyS_ioctl+0x79/0x90
          entry_SYSCALL_64_fastpath+0x23/0xc2
          ? __this_cpu_preempt_check+0x13/0x20
      
      The syszkaller folks reported a residual mmio emulation request to userspace
      due to vm86 fails to emulate inject real mode interrupt(fails to read CS) and
      incurs a triple fault. The vCPU returns to userspace with vcpu->mmio_needed == true
      and KVM_EXIT_SHUTDOWN exit reason. However, the syszkaller testcase constructs
      several threads to launch the same vCPU, the thread which lauch this vCPU after
      the thread whichs get the vcpu->mmio_needed == true and KVM_EXIT_SHUTDOWN will
      trigger the warning.
      
         #define _GNU_SOURCE
         #include <pthread.h>
         #include <stdio.h>
         #include <stdlib.h>
         #include <string.h>
         #include <sys/wait.h>
         #include <sys/types.h>
         #include <sys/stat.h>
         #include <sys/mman.h>
         #include <fcntl.h>
         #include <unistd.h>
         #include <linux/kvm.h>
         #include <stdio.h>
      
         int kvmcpu;
         struct kvm_run *run;
      
         void* thr(void* arg)
         {
           int res;
           res = ioctl(kvmcpu, KVM_RUN, 0);
           printf("ret1=%d exit_reason=%d suberror=%d\n",
               res, run->exit_reason, run->internal.suberror);
           return 0;
         }
      
         void test()
         {
           int i, kvm, kvmvm;
           pthread_t th[4];
      
           kvm = open("/dev/kvm", O_RDWR);
           kvmvm = ioctl(kvm, KVM_CREATE_VM, 0);
           kvmcpu = ioctl(kvmvm, KVM_CREATE_VCPU, 0);
           run = (struct kvm_run*)mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, kvmcpu, 0);
           srand(getpid());
           for (i = 0; i < 4; i++) {
             pthread_create(&th[i], 0, thr, 0);
             usleep(rand() % 10000);
           }
           for (i = 0; i < 4; i++)
             pthread_join(th[i], 0);
         }
      
         int main()
         {
           for (;;) {
             int pid = fork();
             if (pid < 0)
               exit(1);
             if (pid == 0) {
               test();
               exit(0);
             }
             int status;
             while (waitpid(pid, &status, __WALL) != pid) {}
           }
           return 0;
         }
      
      This patch fixes it by resetting the vcpu->mmio_needed once we receive
      the triple fault to avoid the residue.
      Reported-by: default avatarDmitry Vyukov <dvyukov@google.com>
      Tested-by: default avatarDmitry Vyukov <dvyukov@google.com>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Radim Krčmář <rkrcmar@redhat.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Signed-off-by: default avatarWanpeng Li <wanpeng.li@hotmail.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      Cc: Zubin Mithra <zsm@chromium.org>
      Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      5e29da06
    • Sean Christopherson's avatar
      KVM: nVMX: Ignore limit checks on VMX instructions using flat segments · 7b3c6c48
      Sean Christopherson authored
      commit 34333cc6 upstream.
      
      Regarding segments with a limit==0xffffffff, the SDM officially states:
      
          When the effective limit is FFFFFFFFH (4 GBytes), these accesses may
          or may not cause the indicated exceptions.  Behavior is
          implementation-specific and may vary from one execution to another.
      
      In practice, all CPUs that support VMX ignore limit checks for "flat
      segments", i.e. an expand-up data or code segment with base=0 and
      limit=0xffffffff.  This is subtly different than wrapping the effective
      address calculation based on the address size, as the flat segment
      behavior also applies to accesses that would wrap the 4g boundary, e.g.
      a 4-byte access starting at 0xffffffff will access linear addresses
      0xffffffff, 0x0, 0x1 and 0x2.
      
      Fixes: f9eb4af6 ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
      Cc: stable@vger.kernel.org
      Signed-off-by: default avatarSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      7b3c6c48
    • Sean Christopherson's avatar
      KVM: nVMX: Sign extend displacements of VMX instr's mem operands · 9748354a
      Sean Christopherson authored
      commit 946c522b upstream.
      
      The VMCS.EXIT_QUALIFCATION field reports the displacements of memory
      operands for various instructions, including VMX instructions, as a
      naturally sized unsigned value, but masks the value by the addr size,
      e.g. given a ModRM encoded as -0x28(%ebp), the -0x28 displacement is
      reported as 0xffffffd8 for a 32-bit address size.  Despite some weird
      wording regarding sign extension, the SDM explicitly states that bits
      beyond the instructions address size are undefined:
      
          In all cases, bits of this field beyond the instructionâ€s address
          size are undefined.
      
      Failure to sign extend the displacement results in KVM incorrectly
      treating a negative displacement as a large positive displacement when
      the address size of the VMX instruction is smaller than KVM's native
      size, e.g. a 32-bit address size on a 64-bit KVM.
      
      The very original decoding, added by commit 064aea77 ("KVM: nVMX:
      Decoding memory operands of VMX instructions"), sort of modeled sign
      extension by truncating the final virtual/linear address for a 32-bit
      address size.  I.e. it messed up the effective address but made it work
      by adjusting the final address.
      
      When segmentation checks were added, the truncation logic was kept
      as-is and no sign extension logic was introduced.  In other words, it
      kept calculating the wrong effective address while mostly generating
      the correct virtual/linear address.  As the effective address is what's
      used in the segment limit checks, this results in KVM incorreclty
      injecting #GP/#SS faults due to non-existent segment violations when
      a nested VMM uses negative displacements with an address size smaller
      than KVM's native address size.
      
      Using the -0x28(%ebp) example, an EBP value of 0x1000 will result in
      KVM using 0x100000fd8 as the effective address when checking for a
      segment limit violation.  This causes a 100% failure rate when running
      a 32-bit KVM build as L1 on top of a 64-bit KVM L0.
      
      Fixes: f9eb4af6 ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
      Cc: stable@vger.kernel.org
      Signed-off-by: default avatarSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      9748354a