- 05 Mar, 2012 1 commit
-
-
Greg Ungerer authored
A number of the early ColdFire cores use the same code to reset the CPU. Currently that is duplicated in each of the sub-arch files. Pull out this common code and use a single copy of it for all CPU types that use it. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
- 04 Mar, 2012 39 commits
-
-
Greg Ungerer authored
The original ColdFire timer interrupt setup is used by most of the users of the original ColdFire timer code. But the code is currently duplicated in each of the ColdFire CPU specific init files. Move it to the timers code that it is really part of. It is strait forward to make it conditional on also having the original interrupt engine that it needs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
We can move all the init calls in the initcall code into the more general arch setup code (which is config_BSP() here). That makes the 532x consistent with other ColdFire CPUs setup code. It means we can get rid of the initcall setup here all together. Also make sure we set the arch mach_reset function pointer to get the local arch reset code called on reset. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
We can move all the init calls in the initcall code into the more general arch setup code (which is config_BSP() here). That makes the 528x consistent with other ColdFire CPUs setup cod. It means we can get rif of the initcall setup here all together. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
We can move the QSPI init call to the more general config_BSP() code on the 523x platorm setup code. Then we can remove the initcall code all together. We can also remove the un-needed include of mcfuart.h while we are cleaning up here too. Also I noticed that we are not calling the fec_init() code here, and we should be doing that. Put that back in too. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
The ColdFire QSPI is common to quite a few ColdFire CPUs. No need to duplicate its platform setup code for every CPU family member that has it. Merge all the setup code into a single shared file. This also results in few platforms no longer needing any local platform setup code. In those cases remove the empty devices array and initcall code as well. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and code and use a single setup for all. So modify the ColdFire 532x QSPI addressing so that: . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used . move chip select definitions (CS) to appropriate header Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and code and use a single setup for all. So modify the ColdFire 528x QSPI addressing so that: . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used . move chip select definitions (CS) to appropriate header Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and code and use a single setup for all. So modify the ColdFire 527x QSPI addressing so that: . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used . move chip select definitions (CS) to appropriate header Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and code and use a single setup for all. So modify the ColdFire 5249 QSPI addressing so that: . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used . move chip select definitions (CS) to appropriate header Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and code and use a single setup for all. So modify the ColdFire 523x QSPI addressing so that: . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used . move chip select definitions (CS) to appropriate header Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and code and use a single setup for all. So modify the ColdFire 520x QSPI addressing so that: . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used . move chip select definitions (CS) to appropriate header Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
The ColdFire FEC is common to quite a few ColdFire CPUs. No need to duplicate its platform setup code for every CPU family member that has it. Merge all the setup code into a single shared file. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all FEC (ethernet) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 532x FEC addressing so that: . FECs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all FEC (ethernet) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 528x FEC addressing so that: . FECs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all FEC (ethernet) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 527x FEC addressing so that: . FECs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all FEC (ethernet) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 5272 FEC addressing so that: . FECs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all FEC (ethernet) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 523x FEC addressing so that: . FECs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all FEC (ethernet) addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 520x FEC addressing so that: . FECs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Some ColdFire CPU UART hardware modules can configure the IRQ they use. Currently the same setup code is duplicated in the init code for each of these ColdFire CPUs. Merge all this code to a single instance. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
The ColdFire UART is common to all ColdFire CPU's. No need to duplicate its platform setup code for every CPU family member. Merge all the setup code into a single shared file. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
Simplify the UART setup code so that it no longer loops for each UART present. Just make it do all the work it needs in a single function. This will make the code easier to share when we move to a single set of platform data for ColdFire UARTs. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 54xx UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 5407 UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 532x UART addressing so that: . UARTs are numbered from 0 up . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 528x UART addressing so that: . UARTs are numbered from 0 up . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 5307 UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 527x UART addressing so that: . UARTs are numbered from 0 up . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 5272 UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 5249 UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-
Greg Ungerer authored
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 523x UART addressing so that: . UARTs are numbered from 0 up . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
-