- 31 Oct, 2021 3 commits
-
-
Vincent Guittot authored
Decay max_newidle_lb_cost only when it has not been updated for a while and ensure to not decay a recently changed value. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20211019123537.17146-4-vincent.guittot@linaro.org
-
Vincent Guittot authored
In newidle_balance(), the scheduler skips load balance to the new idle cpu when the 1st sd of this_rq is: this_rq->avg_idle < sd->max_newidle_lb_cost Doing a costly call to update_blocked_averages() will not be useful and simply adds overhead when this condition is true. Check the condition early in newidle_balance() to skip update_blocked_averages() when possible. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20211019123537.17146-3-vincent.guittot@linaro.org
-
Vincent Guittot authored
The time spent to update the blocked load can be significant depending of the complexity fo the cgroup hierarchy. Take this time into account in the cost of the 1st load balance of a newly idle cpu. Also reduce the number of call to sched_clock_cpu() and track more actual work. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20211019123537.17146-2-vincent.guittot@linaro.org
-
- 26 Oct, 2021 1 commit
-
-
Peter Zijlstra authored
Use asm/unwind.h to implement wchan, since we cannot always rely on STACKTRACE=y. Fixes: bc9bbb81 ("x86: Fix get_wchan() to support the ORC unwinder") Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20211022152104.137058575@infradead.org
-
- 22 Oct, 2021 3 commits
-
-
Peter Zijlstra authored
Currently AMD/Hygon do not populate l2c_id, this means that for SMT enabled systems they report an L2 per thread. This is ofcourse not true but was harmless so far. However, since commit: 66558b73 ("sched: Add cluster scheduler level for x86") the scheduler topology setup requires: SMT <= L2 <= LLC Which leads to noisy warnings and possibly weird behaviour on affected chips. Therefore change the topology generation such that if l2c_id is not populated it follows the SMT topology, thereby satisfying the constraint. Fixes: 66558b73 ("sched: Add cluster scheduler level for x86") Reported-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
-
Peng Wang authored
After the removal of migrate_tasks(), there is no user of rq_relock() left, so remove it. Signed-off-by: Peng Wang <rocking@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/449948fdf9be4764b3929c52572917dd25eef758.1634611953.git.rocking@linux.alibaba.com
-
Peter Zijlstra authored
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb66 ("sched: Simplify wake_up_*idle*()") Reported-by: syzbot+d5b23b18d2f4feae8a67@syzkaller.appspotmail.com Reported-by: Pavel Machek <pavel@ucw.cz> Reported-by: Qian Cai <quic_qiancai@quicinc.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Qian Cai <quic_qiancai@quicinc.com>
-
- 15 Oct, 2021 13 commits
-
-
Sebastian Andrzej Siewior authored
On PREEMPT_RT most items are processed as LAZY via softirq context. Avoid to spin-wait for them because irq_work_sync() could have higher priority and not allow the irq-work to be completed. Wait additionally for !IRQ_WORK_HARD_IRQ irq_work items on PREEMPT_RT. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211006111852.1514359-5-bigeasy@linutronix.de
-
Sebastian Andrzej Siewior authored
The irq_work callback is invoked in hard IRQ context. By default all callbacks are scheduled for invocation right away (given supported by the architecture) except for the ones marked IRQ_WORK_LAZY which are delayed until the next timer-tick. While looking over the callbacks, some of them may acquire locks (spinlock_t, rwlock_t) which are transformed into sleeping locks on PREEMPT_RT and must not be acquired in hard IRQ context. Changing the locks into locks which could be acquired in this context will lead to other problems such as increased latencies if everything in the chain has IRQ-off locks. This will not solve all the issues as one callback has been noticed which invoked kref_put() and its callback invokes kfree() and this can not be invoked in hardirq context. Some callbacks are required to be invoked in hardirq context even on PREEMPT_RT to work properly. This includes for instance the NO_HZ callback which needs to be able to observe the idle context. The callbacks which require to be run in hardirq have already been marked. Use this information to split the callbacks onto the two lists on PREEMPT_RT: - lazy_list Work items which are not marked with IRQ_WORK_HARD_IRQ will be added to this list. Callbacks on this list will be invoked from a per-CPU thread. The handler here may acquire sleeping locks such as spinlock_t and invoke kfree(). - raised_list Work items which are marked with IRQ_WORK_HARD_IRQ will be added to this list. They will be invoked in hardirq context and must not acquire any sleeping locks. The wake up of the per-CPU thread occurs from irq_work handler/ hardirq context. The thread runs with lowest RT priority to ensure it runs before any SCHED_OTHER tasks do. [bigeasy: melt tglx's irq_work_tick_soft() which splits irq_work_tick() into a hard and soft variant. Collected fixes over time from Steven Rostedt and Mike Galbraith. Move to per-CPU threads instead of softirq as suggested by PeterZ.] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211007092646.uhshe3ut2wkrcfzv@linutronix.de
-
Sebastian Andrzej Siewior authored
irq_work() triggers instantly an interrupt if supported by the architecture. Otherwise the work will be processed on the next timer tick. In worst case irq_work_sync() could spin up to a jiffy. irq_work_sync() is usually used in tear down context which is fully preemptible. Based on review irq_work_sync() is invoked from preemptible context and there is one waiter at a time. This qualifies it to use rcuwait for synchronisation. Let irq_work_sync() synchronize with rcuwait if the architecture processes irqwork via the timer tick. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211006111852.1514359-3-bigeasy@linutronix.de
-
Sebastian Andrzej Siewior authored
The push-IPI logic for RT tasks expects to be invoked from hardirq context. One reason is that a RT task on the remote CPU would block the softirq processing on PREEMPT_RT and so avoid pulling / balancing the RT tasks as intended. Annotate root_domain::rto_push_work as IRQ_WORK_HARD_IRQ. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211006111852.1514359-2-bigeasy@linutronix.de
-
Tim Chen authored
There are x86 CPU architectures (e.g. Jacobsville) where L2 cahce is shared among a cluster of cores instead of being exclusive to one single core. To prevent oversubscription of L2 cache, load should be balanced between such L2 clusters, especially for tasks with no shared data. On benchmark such as SPECrate mcf test, this change provides a boost to performance especially on medium load system on Jacobsville. on a Jacobsville that has 24 Atom cores, arranged into 6 clusters of 4 cores each, the benchmark number is as follow: Improvement over baseline kernel for mcf_r copies run time base rate 1 -0.1% -0.2% 6 25.1% 25.1% 12 18.8% 19.0% 24 0.3% 0.3% So this looks pretty good. In terms of the system's task distribution, some pretty bad clumping can be seen for the vanilla kernel without the L2 cluster domain for the 6 and 12 copies case. With the extra domain for cluster, the load does get evened out between the clusters. Note this patch isn't an universal win as spreading isn't necessarily a win, particually for those workload who can benefit from packing. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-4-21cnbao@gmail.com
-
Barry Song authored
This patch adds scheduler level for clusters and automatically enables the load balance among clusters. It will directly benefit a lot of workload which loves more resources such as memory bandwidth, caches. Testing has widely been done in two different hardware configurations of Kunpeng920: 24 cores in one NUMA(6 clusters in each NUMA node); 32 cores in one NUMA(8 clusters in each NUMA node) Workload is running on either one NUMA node or four NUMA nodes, thus, this can estimate the effect of cluster spreading w/ and w/o NUMA load balance. * Stream benchmark: 4threads stream (on 1NUMA * 24cores = 24cores) stream stream w/o patch w/ patch MB/sec copy 29929.64 ( 0.00%) 32932.68 ( 10.03%) MB/sec scale 29861.10 ( 0.00%) 32710.58 ( 9.54%) MB/sec add 27034.42 ( 0.00%) 32400.68 ( 19.85%) MB/sec triad 27225.26 ( 0.00%) 31965.36 ( 17.41%) 6threads stream (on 1NUMA * 24cores = 24cores) stream stream w/o patch w/ patch MB/sec copy 40330.24 ( 0.00%) 42377.68 ( 5.08%) MB/sec scale 40196.42 ( 0.00%) 42197.90 ( 4.98%) MB/sec add 37427.00 ( 0.00%) 41960.78 ( 12.11%) MB/sec triad 37841.36 ( 0.00%) 42513.64 ( 12.35%) 12threads stream (on 1NUMA * 24cores = 24cores) stream stream w/o patch w/ patch MB/sec copy 52639.82 ( 0.00%) 53818.04 ( 2.24%) MB/sec scale 52350.30 ( 0.00%) 53253.38 ( 1.73%) MB/sec add 53607.68 ( 0.00%) 55198.82 ( 2.97%) MB/sec triad 54776.66 ( 0.00%) 56360.40 ( 2.89%) Thus, it could help memory-bound workload especially under medium load. Similar improvement is also seen in lkp-pbzip2: * lkp-pbzip2 benchmark 2-96 threads (on 4NUMA * 24cores = 96cores) lkp-pbzip2 lkp-pbzip2 w/o patch w/ patch Hmean tput-2 11062841.57 ( 0.00%) 11341817.51 * 2.52%* Hmean tput-5 26815503.70 ( 0.00%) 27412872.65 * 2.23%* Hmean tput-8 41873782.21 ( 0.00%) 43326212.92 * 3.47%* Hmean tput-12 61875980.48 ( 0.00%) 64578337.51 * 4.37%* Hmean tput-21 105814963.07 ( 0.00%) 111381851.01 * 5.26%* Hmean tput-30 150349470.98 ( 0.00%) 156507070.73 * 4.10%* Hmean tput-48 237195937.69 ( 0.00%) 242353597.17 * 2.17%* Hmean tput-79 360252509.37 ( 0.00%) 362635169.23 * 0.66%* Hmean tput-96 394571737.90 ( 0.00%) 400952978.48 * 1.62%* 2-24 threads (on 1NUMA * 24cores = 24cores) lkp-pbzip2 lkp-pbzip2 w/o patch w/ patch Hmean tput-2 11071705.49 ( 0.00%) 11296869.10 * 2.03%* Hmean tput-4 20782165.19 ( 0.00%) 21949232.15 * 5.62%* Hmean tput-6 30489565.14 ( 0.00%) 33023026.96 * 8.31%* Hmean tput-8 40376495.80 ( 0.00%) 42779286.27 * 5.95%* Hmean tput-12 61264033.85 ( 0.00%) 62995632.78 * 2.83%* Hmean tput-18 86697139.39 ( 0.00%) 86461545.74 ( -0.27%) Hmean tput-24 104854637.04 ( 0.00%) 104522649.46 * -0.32%* In the case of 6 threads and 8 threads, we see the greatest performance improvement. Similar improvement can be seen on lkp-pixz though the improvement is smaller: * lkp-pixz benchmark 2-24 threads lkp-pixz (on 1NUMA * 24cores = 24cores) lkp-pixz lkp-pixz w/o patch w/ patch Hmean tput-2 6486981.16 ( 0.00%) 6561515.98 * 1.15%* Hmean tput-4 11645766.38 ( 0.00%) 11614628.43 ( -0.27%) Hmean tput-6 15429943.96 ( 0.00%) 15957350.76 * 3.42%* Hmean tput-8 19974087.63 ( 0.00%) 20413746.98 * 2.20%* Hmean tput-12 28172068.18 ( 0.00%) 28751997.06 * 2.06%* Hmean tput-18 39413409.54 ( 0.00%) 39896830.55 * 1.23%* Hmean tput-24 49101815.85 ( 0.00%) 49418141.47 * 0.64%* * SPECrate benchmark 4,8,16 copies mcf_r(on 1NUMA * 32cores = 32cores) Base Base Run Time Rate ------- --------- 4 Copies w/o 580 (w/ 570) w/o 11.1 (w/ 11.3) 8 Copies w/o 647 (w/ 605) w/o 20.0 (w/ 21.4, +7%) 16 Copies w/o 844 (w/ 844) w/o 30.6 (w/ 30.6) 32 Copies(on 4NUMA * 32 cores = 128cores) [w/o patch] Base Base Base Benchmarks Copies Run Time Rate --------------- ------- --------- --------- 500.perlbench_r 32 584 87.2 * 502.gcc_r 32 503 90.2 * 505.mcf_r 32 745 69.4 * 520.omnetpp_r 32 1031 40.7 * 523.xalancbmk_r 32 597 56.6 * 525.x264_r 1 -- CE 531.deepsjeng_r 32 336 109 * 541.leela_r 32 556 95.4 * 548.exchange2_r 32 513 163 * 557.xz_r 32 530 65.2 * Est. SPECrate2017_int_base 80.3 [w/ patch] Base Base Base Benchmarks Copies Run Time Rate --------------- ------- --------- --------- 500.perlbench_r 32 580 87.8 (+0.688%) * 502.gcc_r 32 477 95.1 (+5.432%) * 505.mcf_r 32 644 80.3 (+13.574%) * 520.omnetpp_r 32 942 44.6 (+9.58%) * 523.xalancbmk_r 32 560 60.4 (+6.714%%) * 525.x264_r 1 -- CE 531.deepsjeng_r 32 337 109 (+0.000%) * 541.leela_r 32 554 95.6 (+0.210%) * 548.exchange2_r 32 515 163 (+0.000%) * 557.xz_r 32 524 66.0 (+1.227%) * Est. SPECrate2017_int_base 83.7 (+4.062%) On the other hand, it is slightly helpful to CPU-bound tasks like kernbench: * 24-96 threads kernbench (on 4NUMA * 24cores = 96cores) kernbench kernbench w/o cluster w/ cluster Min user-24 12054.67 ( 0.00%) 12024.19 ( 0.25%) Min syst-24 1751.51 ( 0.00%) 1731.68 ( 1.13%) Min elsp-24 600.46 ( 0.00%) 598.64 ( 0.30%) Min user-48 12361.93 ( 0.00%) 12315.32 ( 0.38%) Min syst-48 1917.66 ( 0.00%) 1892.73 ( 1.30%) Min elsp-48 333.96 ( 0.00%) 332.57 ( 0.42%) Min user-96 12922.40 ( 0.00%) 12921.17 ( 0.01%) Min syst-96 2143.94 ( 0.00%) 2110.39 ( 1.56%) Min elsp-96 211.22 ( 0.00%) 210.47 ( 0.36%) Amean user-24 12063.99 ( 0.00%) 12030.78 * 0.28%* Amean syst-24 1755.20 ( 0.00%) 1735.53 * 1.12%* Amean elsp-24 601.60 ( 0.00%) 600.19 ( 0.23%) Amean user-48 12362.62 ( 0.00%) 12315.56 * 0.38%* Amean syst-48 1921.59 ( 0.00%) 1894.95 * 1.39%* Amean elsp-48 334.10 ( 0.00%) 332.82 * 0.38%* Amean user-96 12925.27 ( 0.00%) 12922.63 ( 0.02%) Amean syst-96 2146.66 ( 0.00%) 2122.20 * 1.14%* Amean elsp-96 211.96 ( 0.00%) 211.79 ( 0.08%) Note this patch isn't an universal win, it might hurt those workload which can benefit from packing. Though tasks which want to take advantages of lower communication latency of one cluster won't necessarily been packed in one cluster while kernel is not aware of clusters, they have some chance to be randomly packed. But this patch will make them more likely spread. Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Tested-by: Yicong Yang <yangyicong@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
-
Jonathan Cameron authored
Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-clusterSigned-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
-
Peter Zijlstra authored
The compilers can't deal with obvious DCE vs that warning, resulting in code like: if (0) { sched sched_statistics *stats; stats = __schedstats_from_se(se); ... } triggering the warning. Kill the warning to make the robots stop reporting this. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Link: https://lkml.kernel.org/r/YWWPLnaZGybHsTkv@hirez.programming.kicks-ass.net
-
Kees Cook authored
Having a stable wchan means the process must be blocked and for it to stay that way while performing stack unwinding. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm] Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64] Link: https://lkml.kernel.org/r/20211008111626.332092234@infradead.org
-
Qi Zheng authored
Currently, the kernel CONFIG_UNWINDER_ORC option is enabled by default on x86, but the implementation of get_wchan() is still based on the frame pointer unwinder, so the /proc/<pid>/wchan usually returned 0 regardless of whether the task <pid> is running. Reimplement get_wchan() by calling stack_trace_save_tsk(), which is adapted to the ORC and frame pointer unwinders. Fixes: ee9f8fce ("x86/unwind: Add the ORC unwinder") Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211008111626.271115116@infradead.org
-
Kees Cook authored
The implementations of get_wchan() can be expensive. The only information imparted here is whether or not a process is currently blocked in the scheduler (and even this doesn't need to be exact). Avoid doing the heavy lifting of stack walking and just report that information by using task_is_running(). Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211008111626.211281780@infradead.org
-
Kees Cook authored
For files that lack trailing newlines and match a leaking address (e.g. wchan[1]), the leaking_addresses.pl report would run together with the next line, making things look corrupted. Unconditionally remove the newline on input, and write it back out on output. [1] https://lore.kernel.org/all/20210103142726.GC30643@xsang-OptiPlex-9020/Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211008111626.151570317@infradead.org
-
Kees Cook authored
This reverts commit 152c432b. When a kernel address couldn't be symbolized for /proc/$pid/wchan, it would leak the raw value, a potential information exposure. This is a regression compared to the safer pre-v5.12 behavior. Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Vito Caputo <vcaputo@pengaru.com> Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20211008111626.090829198@infradead.org
-
- 14 Oct, 2021 7 commits
-
-
Kees Cook authored
With struct sched_entity before the other sched entities, its alignment won't induce a struct hole. This saves 64 bytes in defconfig task_struct: Before: ... unsigned int rt_priority; /* 120 4 */ /* XXX 4 bytes hole, try to pack */ /* --- cacheline 2 boundary (128 bytes) --- */ const struct sched_class * sched_class; /* 128 8 */ /* XXX 56 bytes hole, try to pack */ /* --- cacheline 3 boundary (192 bytes) --- */ struct sched_entity se __attribute__((__aligned__(64))); /* 192 448 */ /* --- cacheline 10 boundary (640 bytes) --- */ struct sched_rt_entity rt; /* 640 48 */ struct sched_dl_entity dl __attribute__((__aligned__(8))); /* 688 224 */ /* --- cacheline 14 boundary (896 bytes) was 16 bytes ago --- */ After: ... unsigned int rt_priority; /* 120 4 */ /* XXX 4 bytes hole, try to pack */ /* --- cacheline 2 boundary (128 bytes) --- */ struct sched_entity se __attribute__((__aligned__(64))); /* 128 448 */ /* --- cacheline 9 boundary (576 bytes) --- */ struct sched_rt_entity rt; /* 576 48 */ struct sched_dl_entity dl __attribute__((__aligned__(8))); /* 624 224 */ /* --- cacheline 13 boundary (832 bytes) was 16 bytes ago --- */ Summary diff: - /* size: 7040, cachelines: 110, members: 188 */ + /* size: 6976, cachelines: 109, members: 188 */ Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210924025450.4138503-1-keescook@chromium.org
-
Zhang Qiao authored
There is a small race between copy_process() and sched_fork() where child->sched_task_group point to an already freed pointer. parent doing fork() | someone moving the parent | to another cgroup -------------------------------+------------------------------- copy_process() + dup_task_struct()<1> parent move to another cgroup, and free the old cgroup. <2> + sched_fork() + __set_task_cpu()<3> + task_fork_fair() + sched_slice()<4> In the worst case, this bug can lead to "use-after-free" and cause panic as shown above: (1) parent copy its sched_task_group to child at <1>; (2) someone move the parent to another cgroup and free the old cgroup at <2>; (3) the sched_task_group and cfs_rq that belong to the old cgroup will be accessed at <3> and <4>, which cause a panic: [] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 [] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0 [] Oops: 0000 [#1] SMP PTI [] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1 [] RIP: 0010:sched_slice+0x84/0xc0 [] Call Trace: [] task_fork_fair+0x81/0x120 [] sched_fork+0x132/0x240 [] copy_process.part.5+0x675/0x20e0 [] ? __handle_mm_fault+0x63f/0x690 [] _do_fork+0xcd/0x3b0 [] do_syscall_64+0x5d/0x1d0 [] entry_SYSCALL_64_after_hwframe+0x65/0xca [] RIP: 0033:0x7f04418cd7e1 Between cgroup_can_fork() and cgroup_post_fork(), the cgroup membership and thus sched_task_group can't change. So update child's sched_task_group at sched_post_fork() and move task_fork() and __set_task_cpu() (where accees the sched_task_group) from sched_fork() to sched_post_fork(). Fixes: 8323f26c ("sched: Fix race in task_group") Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
-
Yicong Yang authored
numa_distance in cpu_attach_domain() is introduced in commit b5b21734 ("sched/topology: Warn when NUMA diameter > 2") to warn user when NUMA diameter > 2 as we'll misrepresent the scheduler topology structures at that time. This is fixed by Barry in commit 585b6d27 ("sched/topology: fix the issue groups don't span domain->span for NUMA diameter > 2") and numa_distance is unused now. So remove it. Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Barry Song <baohua@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lore.kernel.org/r/20210915063158.80639-1-yangyicong@hisilicon.com
-
Bharata B Rao authored
Fix a few comments to help understand them better. Signed-off-by: Bharata B Rao <bharata@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20211004105706.3669-4-bharata@amd.com
-
Bharata B Rao authored
numa_group::fault_cpus is actually a pointer to the region in numa_group::faults[] where NUMA_CPU stats are located. Remove this redundant member and use numa_group::faults[NUMA_CPU] directly like it is done for similar per-process numa fault stats. There is no functionality change due to this commit. Signed-off-by: Bharata B Rao <bharata@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20211004105706.3669-3-bharata@amd.com
-
Bharata B Rao authored
While allocating group fault stats, task_numa_group() is using a hard coded number 4. Replace this by NR_NUMA_HINT_FAULT_STATS. No functionality change in this commit. Signed-off-by: Bharata B Rao <bharata@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20211004105706.3669-2-bharata@amd.com
-
Peter Zijlstra authored
Make sure to prod idle CPUs so they call klp_update_patch_state(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Tested-by: Petr Mladek <pmladek@suse.com> Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390 Link: https://lkml.kernel.org/r/20210929151723.162004989@infradead.org
-
- 07 Oct, 2021 4 commits
-
-
Peter Zijlstra authored
Simplify and make wake_up_if_idle() more robust, also don't iterate the whole machine with preempt_disable() in it's caller: wake_up_all_idle_cpus(). This prepares for another wake_up_if_idle() user that needs a full do_idle() cycle. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390 Link: https://lkml.kernel.org/r/20210929152428.769328779@infradead.org
-
Peter Zijlstra authored
Instead of frobbing around with scheduler internals, use the shiny new task_call_func() interface. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Tested-by: Petr Mladek <pmladek@suse.com> Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390 Link: https://lkml.kernel.org/r/20210929152428.709906138@infradead.org
-
Peter Zijlstra authored
Give try_invoke_on_locked_down_task() a saner name and have it return an int so that the caller might distinguish between different reasons of failure. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390 Link: https://lkml.kernel.org/r/20210929152428.649944917@infradead.org
-
Peter Zijlstra authored
Clarify and tighten try_invoke_on_locked_down_task(). Basically the function calls @func under task_rq_lock(), except it avoids taking rq->lock when possible. This makes calling @func unconditional (the function will get renamed in a later patch to remove the try). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390 Link: https://lkml.kernel.org/r/20210929152428.589323576@infradead.org
-
- 06 Oct, 2021 1 commit
-
-
Peter Zijlstra authored
When !SCHEDSTATS schedstat_enabled() is an unconditional 0 and the whole block doesn't exist, however GCC figures the scoped variable 'stats' is unused and complains about it. Upgrade the warning from -Wunused-variable to -Wunused-but-set-variable by writing it in two statements. This fixes the build because the new warning is in W=1. Given that whole if(0) {} thing, I don't feel motivated to change things overly much and quite strongly feel this is the compiler being daft. Fixes: cb3e971c435d ("sched: Make struct sched_statistics independent of fair sched class") Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
-
- 05 Oct, 2021 8 commits
-
-
Vincent Guittot authored
Since commit 89aafd67 ("sched/fair: Use prev instead of new target as recent_used_cpu"), p->recent_used_cpu is unconditionnaly set with prev. Fixes: 89aafd67 ("sched/fair: Use prev instead of new target as recent_used_cpu") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20210928103544.27489-1-vincent.guittot@linaro.org
-
Thomas Gleixner authored
Neither wq_worker_sleeping() nor io_wq_worker_sleeping() require to be invoked with preemption disabled: - The worker flag checks operations only need to be serialized against the worker thread itself. - The accounting and worker pool operations are serialized with locks. which means that disabling preemption has neither a reason nor a value. Remove it and update the stale comment. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com> Reviewed-by: Jens Axboe <axboe@kernel.dk> Link: https://lkml.kernel.org/r/8735pnafj7.ffs@tglx
-
Thomas Gleixner authored
Doing cleanups in the tail of schedule() is a latency punishment for the incoming task. The point of invoking kprobes_task_flush() for a dead task is that the instances are returned and cannot leak when __schedule() is kprobed. Move it into the delayed cleanup. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210928122411.537994026@linutronix.de
-
Thomas Gleixner authored
The queued remote wakeup mechanism has turned out to be suboptimal for RT enabled kernels. The maximum latencies go up by a factor of > 5x in certain scenarious. This is caused by either long wake lists or by a large number of TTWU IPIs which are processed back to back. Disable it for RT. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210928122411.482262764@linutronix.de
-
Thomas Gleixner authored
Batched task migrations are a source for large latencies as they keep the scheduler from running while processing the migrations. Limit the batch size to 8 instead of 32 when running on a RT enabled kernel. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210928122411.425097596@linutronix.de
-
Thomas Gleixner authored
mmdrop() is invoked from finish_task_switch() by the incoming task to drop the mm which was handed over by the previous task. mmdrop() can be quite expensive which prevents an incoming real-time task from getting useful work done. Provide mmdrop_sched() which maps to mmdrop() on !RT kernels. On RT kernels it delagates the eventually required invocation of __mmdrop() to RCU. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210928122411.648582026@linutronix.de
-
Shaokun Zhang authored
Make cookie functions static as these are no longer invoked directly by other code. No functional change intended. Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210922085735.52812-1-zhangshaokun@hisilicon.com
-
Ricardo Neri authored
When deciding to pull tasks in ASYM_PACKING, it is necessary not only to check for the idle state of the destination CPU, dst_cpu, but also of its SMT siblings. If dst_cpu is idle but its SMT siblings are busy, performance suffers if it pulls tasks from a medium priority CPU that does not have SMT siblings. Implement asym_smt_can_pull_tasks() to inspect the state of the SMT siblings of both dst_cpu and the CPUs in the candidate busiest group. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reviewed-by: Len Brown <len.brown@intel.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210911011819.12184-7-ricardo.neri-calderon@linux.intel.com
-